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The notion of weak measurement provides a formalism for extracting information from a quantum system in
the limit of vanishing disturbance to its state. Here we extend this formalism to the measurement of sequences
of observables. When these observables do not commute, we may obtain information about joint properties of
a quantum system that would be forbidden in the usual strong measurement scenario. As an application, we
provide a physically compelling characterization of the notion of counterfactual quantum computation.
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I. INTRODUCTION

Quantum mechanics is still capable of giving us surprises.
A good example is the concept of weak measurement discov-
ered by Aharonov and his group �1,2�, which challenges one
of the canonical dicta of quantum mechanics: that noncom-
muting observables cannot be simultaneously measured.

Standard measurements yield the eigenvalues of the mea-
sured observables, but at the same time they significantly
disturb the measured system. In an ideal von Neumann mea-
surement the state of the system after the measurement be-
comes an eigenstate of the measured observable, no matter
what the original state of the system was. On the other hand,
by coupling a measuring device to a system weakly it is
possible to read out certain information while limiting the
disturbance to the system. The situation becomes particularly
interesting when one postselects on a particular outcome of
the experiment. In this case the eigenvalues of the measured
observable are no longer the relevant quantities; rather the
measuring device consistently indicates the weak value given
by the Aharonov-Albert-Vaidman �AAV� formula �2,3�:

Aw =
�� f�A��i�
�� f��i�

, �1�

where A is the operator whose value is being ascertained, ��i�
is the initial state of the system, and �� f� is the state that is
postselected �e.g., by performing a measurement�. The sig-
nificance of this formula is that, if we couple a measuring
device whose pointer has position coordinate q to the system
S, and subsequently measure q, then the mean value �q� of
the pointer position is given by

�q� = g Re�Aw� , �2�

where Re denotes the real part. This formula requires the
initial pointer wave function to be real and of zero mean, but
these assumptions will be relaxed later. The coupling inter-
action is also taken to be the standard von Neumann mea-
surement interaction H=gAp. The coupling constant g is as-
sumed to be small, but we can determine Aw to any desired
accuracy if enough repeats of the experiment are carried out.

The formula �1� implies that, if the initial state ��i� is an
eigenstate of a measurement operator A, then the weak value
postconditioned on that eigenstate is the same as the classical
�strong� measurement result. When there is a definite out-
come, therefore, strong and weak measurements agree. How-
ever, weak measurement can yield values outside the normal
range of measurement results, e.g., spins of 100 �2�. It can
also give complex values, whose imaginary part correspond
to the pointer momentum. In fact, the mean of the pointer
momentum is given by

�p� = 2gv Im�Aw� , �3�

where Im denotes the imaginary part and v is the variance in
the initial pointer momentum.

The fact that one hardly disturbs the system in making
weak measurements means that one can in principle measure
different variables in succession. We follow this idea up in
this paper.

II. A PARADOX

Weak measurement has proved to be a valuable tool in
analyzing paradoxical quantum situations such as Hardy’s
paradox �1,4�. To illustrate the idea of sequential weak mea-
surement and its potential applications we first construct a
quantum paradox. Consider the double interferometer, the
optical circuit shown in Fig. 1, where a photon passes
through two successive interferometers. This configuration
has been considered previously by Bläsi and Hardy �5� in
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another context. Using the labels of the paths shown in the
figure, and denoting the action of the ith beam splitter by Ui,
the system evolves as follows:

U1�A� = ��B� + �C��/�2, �4�

U2�B� = ��E� + �F��/�2, U2�C� = ��E� − �F��/�2, �5�

U3�E� = �− �D� + �D���/�2, U3�F� = ��D� + �D���/�2.

�6�

�The signs here are determined by the fact that reflection on
the silvered outer surface of a beam splitter gives a phase of
� whereas transmission or reflection by the inner surface
gives zero phase.�

Suppose now that we select a large number N of success-
ful runs of our experiment, i.e., those runs where the photon
is detected by the detector D.

We can now make the following statements about this
situation:

�1� All photons go through path E. Equations �4� and �5�
tell us that if a photon is injected along path A, it must exit
the first interferometer along path E. Consequently, if we
measure the observable PE, the projector for path E, we find
the total number of photons detected is NE=N with certainty.

�2� All photons go through path C. The second interfer-
ometer is arranged in such a way that any photon entering
along path B will end up at D�. Hence, a very simple calcu-
lation shows that if, instead of measuring NE, we measure
NC, the number of photons going along path C in all N runs
of the experiment, we will obtain with certainty NC=N.

�3� When photons go through path C, a subsequent mea-
surement reveals that half of them must go through path E
and half through path F. If we measure the position of the
photons in the first interferometer and find that all go via C,
then a subsequent measurement of NE and NF must yield N /2
in each case, up to statistical fluctuations. �In fact this is true
regardless of whether or not all photons end up eventually at
D.�

�4� When photons go through path E, a subsequent mea-
surement reveals that half of them must have come via path B

and half via path C. This last statement is similar to point �3�
above.

The above four statements seem to imply a paradoxical
situation. On the one hand, statement �2� tells us, when we
pool all the results, that all N photons go via path C; together
with statement �3� this implies that the number of photons
that go along path E must be N /2. On the other hand, state-
ment �1� tells us that all N photons actually go along path E.
A similar contradiction arises in connection with the number
of photons going along path C. On the one hand, statement
�1� tells us that all photons go via E; together with statement
�4� this implies that the number of photons that go along path
C must be only N /2. On the other hand, statement �2� tells us
that all N photons actually go along path C.

The usual way of resolving this paradox is to say that the
above statements refer to measurements that cannot all be
made simultaneously. Indeed, it is true that if we measure PE
we find it is 1 with certainty, but only if we do not also
measure PC. If we also measure PC in the same experiment,
then it is no longer the case that PE=1. Similarly, it is true
that PC=1 with certainty, but only if we do not also measure
NE. If we also measure PE in the same experiment, then it is
no longer the case that PE=1. So, we are told, the statements
�1�–�4� above have no simultaneous meaning, for they do not
refer to the same experiment. Hence there is no paradox: In
formulating the paradox presented above we made use of
facts that are not all simultaneously true.

On the other hand, as is emphasized in �3�, one should not
dismiss such paradoxes too lightly. Indeed it is possible to
make a tradeoff: By accepting some imprecision in measur-
ing PE, PC, etc., we can limit the disturbance these measure-
ments produce. The way to do this is to weaken the coupling
of the measuring devices to the photons.

Since the disturbance is now small, we can make all the
measurements in the same experiment, and we expect all the
statements �1�–�4� to be true. Hence we expect NE=N, NC
=N and obviously NF=0 and NB=0. On the other hand, we
also expect that NCE and NCF, the total numbers of photons
that went along C and subsequently along E or F, respec-
tively, should both be equal to N /2; this is because all the N
photons go via C and half of them should continue along E
and half along F. Also we expect NCF, the number of photons
that went along C and subsequently along E, to be NCE
=N /2. Similarly we expect that NCEand NBE should both be
N /2, since all N photons go along E and half of them must
come via B and half via C.

While all the above predictions seem reasonable, here is
the surprise: Overall we have only N photons. They could
have moved along four possible trajectories: BE, BF, CE or
CF �see Fig. 2�. Since NBE+NBF+NCE+NCF=N and since
NBE=NCE=NCF=N /2 it must be the case that NBF=−N /2.
Furthermore, our prediction has a remarkable internal con-
sistency. We know that the total number of photons that go
along F must be zero. They can arrive at F in two ways,
either by BF or CF. Thus NF=NBF+NCF. As noted above,
NCF=N /2, but no photons are supposed to go through F.
This is due to the fact that NBF is negative, i.e., NBF=−N /2.

The above predictions seem totally puzzling, no less puz-
zling than the original paradox. However, what we have now
is not a mere interpretation that can simply be dismissed.

BA

C

D’

1

2

3 D

F

E

FIG. 1. The double interferometer: an optical circuit in which a
photon, injected along path A, passes through two interferometers,
represented by paths B and C and paths E and F. Finally, the photon
is postselected at the detector D. The beamsplitters are shown with
their reflecting surface marked in black.
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These are now predictions about the results of real
measurements—in particular the weak measurement of the
number of photons that passes along path B and then along
path F. This is a two-time measurement.

In general, by ensuring that the measurement interaction
is weak, we can consider sequences of measurements. De-
scribing such measurements is the main subject of our paper.
In the process, we will formally derive the strange predic-
tions made above for the double interferometer, and will dis-
cuss the interpretation of weak measurements. Finally, we
apply these ideas to counterfactual computation, which is a
catch-all for numerous counterfactual phenomena including,
for example, interaction-free measurement �6�.

III. SEQUENTIAL WEAK MEASUREMENTS

The situation we shall consider is where a system S
evolves unitarily from an initial state ��i� to a final postse-
lected measurement outcome �� f�. At various points, observ-
ables may be measured weakly. Here we consider the sce-
nario where there is a single copy of the system, with the
measuring device weakly coupled to it. Generally, reliable
information will only be obtained after many repeats of the
given experiment.

In the simplest case where there is just one observable, A,
say, we assume the evolution from ��i� to the point where A
is measured is given by U, and from this point to the post-
selection the evolution is given by V. Then we can rewrite
Eq. �1� as

Aw =
�� f�VAU��i�
�� f�VU��i�

, �7�

and the mean of the pointer is given by Eq. �2� as before.
Consider next the case of two observables, A1 and A2,

measured at different times on a system S. We assume the
system evolves under U from ��i� to the point where A1 is
measured, then under V to the point where A2 is measured,
and finally under W to �� f�. Our strategy is to use two mea-
suring devices for measuring A1 and A2. Let the positions of
their pointers be denoted by q1 and q2, respectively. We
couple them to the system at successive times, measure q1
and q2, and then take the product q1q2.

We begin, therefore, with the weak coupling of system
and pointers, with the usual von Neumann-type Hamilto-

nians for measuring A1 and A2. The state of system and
pointers after this coupling is

�SM1M2
= e−igp2A2Ve−igp1A1U��i�S��q1���q2� , �8�

where p1 and p2 are the two pointer momenta �the label S
refers to the system and M1, M2 to the pointers�. Here ��q�
is the initial pointer distribution, and we have assumed, for
simplicity, that the two pointers have identical initial distri-
butions and equal coupling constants g. Post-selecting on
�� f� gives the state of the pointers as

�M1M2
= �� f�We−igp2A2Ve−igp1A1U��i���q1���q2� . �9�

As g is small, we can approximate the state as

�M1M2
= �� f�	W
1 − igp2A2 −

g

2
2p2

2A2
2 + ¯ �

�V
1 − igp1A1 −
g

2
2p1

2A1
2 + ¯ �U�

���i���q1���q2� . �10�

Putting p=−i� /�q, we obtain

�M1M2
= F
��q1���q2� − g�A1�w���q1���q2�

− g�A2�w��q1����q2� +
g2

2
�A1

2�w���q1���q2�

+
g2

2
�A2

2�w��q1����q2� + g2�A2,A1�w���q1����q2�

+ O�g3�� , �11�

where F= �� f�WVU��i�, �A1�w= �� f�WVA1U��i� /F, �A1
2�w

= �� f�WVA1
2U��i� /F, �A2�w= �� f�WA2VU��i� /F, �A2

2�w

= �� f�WA2
2VU��i� /F, and �A2 ,A1�w is defined by

�A2,A1�w =
�� f�WA2VA1U��i�

�� f�WVU��i�
. �12�

Following measurement of q1 and q2, the expected value
of their product is given by

�q1q2� =

 q1q2��M1M2

�2dq


 ��M1M2
�2dq

. �13�

For simplicity, let us make the following assumption �we will
discuss the general case later�:

Assumption A. The initial pointer distribution � is real
valued, and its mean is zero, i.e., �q�2�q�dq=0.

We also assume, without loss of generality, that � is nor-
malized so that ��2=1. With these assumptions, all the terms
in Eq. �13� of order 0 and 1 in g vanish, and we are left with

N/2 N/2

C E C

F

N/2

B

E

−N/2

B

F

FIG. 2. Paths through the double interferometer, and the number
of photons that follow the indicated path. Thus for instance NBE

=N /2. Note however the curious prediction NBF=−N /2.
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�q1q2� = g2��A2,A1�w + �A2,A1�w + �A1�w�A2�w + �A1�w�A2�w�

�

 q��q����q�dq�2

, �14�

where the overbars denote complex conjugates. Integration
by parts implies �q��q����q�dq=− 1

2 , so we obtain the final
result

�q1q2� =
g2

2
Re��A2,A1�w + �A1�w�A2�w� . �15�

Here �A2 ,A1�w is the sequential weak value given by Eq.
�12�; note the reverse order of operators, to fit with the con-
vention of operating on the left.

IV. THE SEQUENTIAL WEAK VALUE

In the section above we considered two measurements—a
measurement of A1 at time t1 and of A2 at t2—and we looked
at the product of the outcomes q1q2 in the limit when the
coupling of the measuring devices with the measured system
was weak. This procedure was motivated by our example of
the double interferometer: we wanted to check whether the
photon followed a given path, say the path that goes along C
in the first interferometer and then along E in the second
interferometer. In that case the variables of interest are PC,
the projector on path C and PE, the projector on path E.
When the photon follows this path, the value of the product
of these projectors is 1 while in all other situations the prod-
uct is 0. We wanted to see what the behavior of the photon
was when the measurements did not disturb it significantly.

Since q1 measures A1 and q2 measures A2, it seems obvi-
ous that the quantity that represents the product of the two
observables is �q1q2� given in Eq. �14� above. However, the
situation is more subtle, as we show below.

Consider the simpler case of two commuting operators A1
and A2, and suppose we are interested in the value of the
product A2A1 at some time t. �Note that we are now talking
about operators at one given time, not at two different times.�
We can measure this product in two different ways. First, we
can measure the product directly, by coupling a measuring
device directly to the product via the interaction Hamiltonian
H=gpA2A1. When we make the coupling weaker, we find
that the pointer indicates the value

�q� = g Re�A1A2�w = g Re
�� f�A2A1��i�

�� f��i�
. �16�

This is straightforward: it is simply the weak value of the
operator A2A1. On the other hand, we could attempt to mea-
sure the product in the same way that we measured the se-
quential product. That is, we can use two measuring devices
with pointer position variables q1 and q2, couple the first
measuring device to A1 and the second to A2, and then look
at the product q1q2. The latter method was proposed by Re-
sch and Steinberg �7� for the simultaneous measurement of
two operators. They showed that in this case

�q1q2� =
g2

2
Re��A1A2�w + �A1�w�A2�w� . �17�

We see that the value indicated by �q1q2� is not equal to the
weak value of the product, but contains a supplementary
term, Re�A1�w�A2�w. In other words, although we expected
the two methods to be equivalent, it is not the case. To obtain
the true weak value of the product we must subtract this
second term. This second term is an artifact of the method of
using two separate measuring devices rather than coupling
one measuring device directly to the product operator.

In the case of sequential measurement there is no product
operator to start with, for we are interested in the product of
the values of operators at two different times. Hence the first
method, of coupling directly to the product operator, makes
no sense, and we must use two independent couplings. In
order to obtain the quantity of interest, i.e., the quantity that
is relevant to situations such as the double interferometer of
Sec. II, we must subtract the term Re�A1�w�A2�w from Eq.
�15�. We thus conclude that the quantity of interest is the
sequential weak value given in Eq. �12�.

V. GENERAL SEQUENTIAL WEAK MEASUREMENT

Sequential weak measurement can be easily extended to n
measurements of Hermitian operators Ai with intervening
unitary evolution steps Ui. The weak values are given by

�An, . . . ,A1�w =
�� f�Un+1AnUn . . . A1U1��i�

�� f�Un+1Un . . . U1��i�
, �18�

and the expected values �q1q2 . . .qn� can be expressed in
terms of these weak values. For example, with assumption A,

�q1q2q3� =
g3

4
Re��A3,A2,A1�w + �A2,A1�w�A3�w

+ �A3,A1�w�A2�w + �A3,A2�w�A1�w� , �19�

and the case of general n is given in the Appendix. Similarly,
we can express expected values for products of momenta in
terms of the weak values �see the Appendix�. For instance,

�p1p2� = 2�gv�2 Re�− �A2,A1�w + �A1�w�A2�w� . �20�

Mixed products of positions and momenta give similar for-
mulas. For instance,

�q1p2� = − g2v Im��A2,A1�w + �A1�w�A2�w� . �21�

The foregoing examples illustrate a general pattern, which
is that expectations of products of p’s and q’s depend on the
real part of sequential weak values if there is an even number
of p’s in the product and on the imaginary part if there is an
odd number of p’s.

The sequential weak values satisfy the following rules:
�1� Linearity in each variable separately.

�An, . . . ,Ai, . . . ,A1�w + �An, . . . ,Ai�, . . . ,A1�w

= „An, . . . ,�Ai + Ai��, . . . ,A1…w,

for any 1� i�n.
�2� Agreement with strong measurement. Suppose that,

with preselection by ��i� and postselection by �� f�, strong
measurements of A1 ,A2 , . . . ,An always give the same out-
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comes a1 ,a2 , . . . ,an; then �An , . . . ,A1�w=a1a2¯an.
�3� Marginals. If I is the identity operator at location i,

�An, . . . ,Ai+1,Ai−1, . . . ,A1�w = �An, . . . ,Ai+1,I,Ai−1, . . . ,A1�w.

We can illustrate some of these rules with the double in-
terferometer experiment �Fig. 1�. The measurements we con-
sider are projectors that detect the presence of a photon on
various edges; for instance, the projector PB indicates
whether a photon is present on the edge B. For simplicity we
write Bw for the weak value �PB�w, etc., and we use the same
convention for sequential weak values. Then using Eq. �7�
we find Cw=1, Bw=0, Ew=1, and Fw=0. Using Eq. �12� we
find �E ,B�w=1 /2, �F ,B�w=−1 /2, �E ,C�w=1 /2, and
�F ,C�w=1 /2. Since PE+ PF= I, rule �1� implies �E ,B�w

+ �F ,B�w= �I ,B�w, and then rule �3� implies �I ,B�w=Bw. Thus
we expect �E ,B�w+ �F ,B�w=Bw, which holds if we substitute
the values above. Similarly �E ,C�w+ �F ,C�w=1 /2+1 /2
=Cw, and so on. As for rule �2�, we have seen �Sec. II� that
strong measurement of PC and PE yields 1, so we expect the
weak values to be the same, as is the case.

There is a further rule that applies when one of the opera-
tors being measured is a projector. We illustrate it with the
double interferometer. We can write

�E,C�w

�F,C�w
=

�D�U3PEU2�C��C�U1�A�
�D�U3PFU2�C��C�U1�A�

=
�D�U3PEU2�C�
�D�U3PFU2�C�

=
Ew

Fw
.

�22�

Here Ew and Fw in the final ratio are calculated assuming that
��i�= �C�, in other words, as though we were calculating
weak values for the second interferometer treated separately
from the rest of the system, with initial state �C� and postse-
lection by �D� �Fig. 3�. If we only knew the single-
measurement weak values Ew, Fw, and Cw, we could calcu-
late �E ,C�w and �F ,C�w using this rule and the relationship
�E ,C�w+ �F ,C�w=Cw derived above.

VI. BROADENING THE CONCEPT: WEAK
INTERACTIONS

So far, we have considered ideal weak measurements, in
which the pointer distribution is real and has zero mean �as-
sumption A�. If we drop these assumptions, we find in place
of Eq. �2� that

�q� = � + g�Re�Aw� + Im�Aw�y� , �23�

where y=��̄�pq+qp��dq−2�	, with �=��̄q�dq, 	

=��̄p�dq.
The expectation �r1r2¯rn� for a general initial pointer

distribution, where each ri is either qi or pi, is a very com-
plicated expression, but, so far as the system goes, depends
only on the real and complex parts of sequential weak values
up to �An , . . . ,A1�w. Thus we can write

�r1r2 ¯ rn� = 
„Re�An, . . . ,A1�w,Im�An, . . . ,A1�w, . . . ,

Re�An�w,Im�An�w, . . . ,Re�A1�w,Im�A1�w… ,

�24�

for some polynomial function 
. The coefficients in 
 are
themselves polynomials in expectations ��̄��pi ,qi��dq for
polynomials �, as we see in the case of Eq. �23�, where y has
this form.

In the next section, we shall want to consider the most
general possible type of weak interaction which allows any
sort of �suitably weak� coupling between the system and an
ancilla followed by any further evolution or measurement of
the ancilla alone �the pointer in our previous discussion and
its von Neumann measurement interaction gpA will be a spe-
cial case of such an ancilla and weak interaction�. Our notion
of general weak interaction is the following: Consider the
system and ancilla initially in product state ��i����. Let HS,anc
be any Hamiltonian of the joint system, and g a coupling
constant. For a single interaction event, and to first order in
g, the state becomes

�I − igHS,anc������� . �25�

Any joint Hamiltonian may be expressed as a sum of prod-
ucts of individual Hamiltonians

HS,anc = �
k

HS
k

� Hanc
k . �26�

Postselecting the system state in Eq. �25� with �� f� gives

�anc = �� f��i�
Ianc − ig�
k

�HS
k�wHanc

k ���� . �27�

The system Hamiltonians HS
k have been effectively replaced

by their weak values �HS
k�w. The important point here is that

all subsequent manipulations of the ancilla will depend on
the preselected and postselected system only through weak
values of suitably chosen observables. A similar result
clearly holds for any sequential weak interactions and suit-
ably associated sequential weak values, and also for terms of
any higher order in g.

As a simple illustrative example, suppose that the ancilla
is the pointer system of a von Neumann measurement inter-
action with assumption A in force, and that this same pointer
is weakly coupled twice for the sequential measurement of
both A1 and A2. If this pointer has position q and momentum
p, the pointer state after postselection is

�M = �� f��U3e−igpA2U2e−igpA1U1���i���q� , �28�

yielding

BA

C

DF

E

FIG. 3. The double interferometer restricted to its second inter-
ferometer. According to Eq. �22�, the ratio of the weak values
Ew /Fw in the second interferometer, with photons injected along C,
is the same as the ratio of the sequential weak values
�E ,C�w / �F ,C�w in the double interferometer with photons injected
along A.
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�q� = g Re��A1�w + �A2�w� .

The effect in this instance is therefore the same as adding the
individual postmeasurement results, and it depends on the
system only through associated weak values.

VII. COUNTERFACTUALITY AND WEAK
MEASUREMENT

Counterfactual computation �8,9� provides a general
framework for looking at counterfactual phenomena, includ-
ing interaction-free measurement as a special case. We con-
sider arbitrary protocols, at various points of which a quan-
tum computer can be inserted. The computer has a switch
qubit �with �0�
off and �1�
on� and an output qubit. A spe-
cial case of this formalism is where the protocol is repre-
sented by an optical circuit, and a computer insertion means
that the computer �or a copy of it� is placed in some path of
the circuit and is switched on by a photon passing along that
path.

We assume that the computer is programmed ready to
perform a computational task with answer 0 or 1 which will
be written into the output qubit if the switch is turned on. In
addition to the switch and output qubits, the protocol will in
general have additional qubits, and will involve some mea-
surements. We say that an outcome of these measurements
determines the computer output if that outcome only occurs
when the computer output has a specific value, �0� or �1�.
Such an outcome is said to be counterfactual if its occurrence
also implies that the computer was never switched on, i.e., its
switch was never set to �1�, during the protocol.

To make this precise, note first that one can always pro-
duce an equivalent protocol in which the state is entangled
with extra qubits and the measurement deferred to the end of
the protocol. Thus the protocol can be assumed to consist of
a period of unitary evolution followed by a measurement,
which can be assumed �again by adding extra qubits� to be a
projective measurement. Let ��i� be the initial state of the
protocol, and let �� f� be a measurement outcome that deter-
mines some specific computer output, in the sense defined
above. Suppose the computer is inserted n times. Let F �for
“off”� denote the projection �0��0� onto the off value of the
computer switch and N �for “on”� denote the complementary
projector �1��1�, and let � be one of the 2n possible strings of
F’s or N’s of length n; we call this a history. Let Ui denote
the unitary evolution in the protocol between the �i−1�th and
ith insertions of the computer.

Definition VII.1. �Counterfactuality by histories �9�.� The
measurement outcome �� f� is a counterfactual outcome if �1�
�� f� determines the computer output and �2� the amplitude of
any history � containing an N vanishes. In other words, for
all histories � other than the all-F history,
�� f�Un+1�nUn . . .U2�1U1��i�=0.

One may question whether this is the “correct” definition
of a notion of counterfactual computation or whether alter-
native definitions might be convincingly plausible. Condition
�1� is uncontroversial but condition �2� might seem less im-
mediately compelling. It is evidently equivalent to obtaining
a null result if we carry out a strong nondemolition measure-

ment of N at each computer insertion. However the distur-
bance that such a measurement causes might lead one to
question the suitability of this condition. Indeed recently
Hosten et al. �10� proposed an alternative definition of coun-
terfactual computation that violates condition �2� of defini-
tion VII.1 and sparked a controversy �11� over the relative
merits and validity of the two notions. We will now develop
some alternative characterizations of our definition VII.1 in
terms of weak measurements, thereby addressing the distur-
bance issue. We will argue that these characterizations con-
siderably strengthen the credibility of the original definition
as the “correct” one.

Let us therefore consider carrying out a weak measure-
ment of N at each insertion. A nonzero weak value implies
that there is a detectable physical effect that can only occur if
the computer is switched on. Vaidman’s treatment of the
three-box paradox �12� gives a good example of this reason-
ing.

Our two-interferometer example shows that it does not
suffice to consider the individual weak values at each inser-
tion. Suppose the computer is inserted in paths B and F, as
shown in Fig. 4. Then we have seen that the weak values Bw
and Fw are zero, yet the sequential weak value �F ,B�w is
nonzero. The nonvanishing of the sequential weak value im-
plies that a photon passes along both path B and F, since
there is a physical effect that causes correlated deflections of
pointers at both sites.

There is a subtlety here, because it could be argued that
because sequential pairwise weak measurements give
second-order effects in g �see Eq. �15��, we might detect a
departure from zero in the weak measurements for each op-
erator individually, i.e., in the deflections of the pointers at B
and F, if we looked at second- or higher-order terms in g.
However, if A is any projector and Aw=0, then the von Neu-
mann interaction e−igpA reduces to Ae−igp+ I−A, which is the
identity to all orders in g in the weak measurement calcula-
tion. Thus we truly need to carry out the sequential weak
measurement here to identify the physical effect due to the
photon.

In general, we need to consider all possible sequential
weak measurements to obtain an adequate test of counterfac-
tuality.

We therefore propose the following:
Definition VII.2. �Counterfactuality by weak values.� The

D’

D

E

BA

C

F

FIG. 4. The double interferometer of Fig. 1 treated as a protocol
with computer insertions �black rectangles� in paths B and F. If a
photon passes down either of these paths, the computer runs.
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measurement outcome �� f� is a counterfactual outcome if �1�
�� f� determines the computer output and �2�
�Nik

,Nik−1
, . . .Ni1

�w=0, for any 1� i1� i2� ¯ � ik�n,
where n is the number of insertions of the computer.

By Eq. �18�, conditions �2� for VII.1 and VII.2 are equiva-
lent, using the fact that F+N=1 together with the linearity
and marginal rules. For instance, with two insertions of the
computer, condition �2� of definition VII.1 amounts to
�N1 ,N2�w=0, �F1 ,N2�w=0, and �N1 ,F2�w=0, and these im-
ply �N1�w=0, �N2�w=0, and �N1 ,N2�w=0, which constitute
condition �2� for definition VII.2.

We can try to strengthen the requirements for counterfac-
tuality by demanding that a zero response is obtained for any
conceivable weak interaction, in the sense of the preceding
section. In our present application we must further restrict
the weak interaction to take place only if the switch has the
property of being “on,” i.e., the interaction Hamiltonian must
have the form �N � Ianc�Hs,anc�N � Ianc�. We say that such an
interaction is a weak interaction involving the projector N.
Since N is a one-dimensional projector, this implies that the
interaction Hamiltonian has the form N � Hanc. In a more

general scenario the projector Ñ for counterfactuality �analo-
gous to the switch being “on”� may have rank larger than 1
and then the interaction Hamiltonian may have the more gen-

eral form �Ñ � Ianc�Ms,anc�Ñ � Ianc� for any Hermitian M. For
example, the switch may be a photon with both path and
polarization properties. Then a weak interaction restricted to
its presence on a path would correspond to a two-
dimensional projector on its polarization state space associ-
ated to that path.

Definition VII.3. �Counterfactuality by general weak inter-
actions.� The measurement outcome �� f� is a counterfactual
outcome if �1� �� f� determines the computer output and �2�
Any possible weak interaction involving the projections
N1 , . . . ,Nn yields a null result.

By a null result, we mean the same result that would be
obtained for g=0. It is not difficult to show that this appar-
ently much broader concept is in fact equivalent to definition
VII.2. In one direction, we know from the last section that
any expectation depends only on the sequential weak values,
involving the projectors Ni, so when these weak values van-
ish we obtain a null result. In the other direction, we have
only to show that we can choose particular weak interactions
whose null results will imply the vanishing of all sequential
weak values. However, if we first obtain a null value of �qi�
and �pi� for the standard von Neumann measurement weak
interaction for every i, then we know by Eqs. �2� and �3� that
both real and imaginary parts of all the weak values �Ni�w

are zero. Then by obtaining null values of �qiqj� and �piqj�
for all i� j, we infer from Eqs. �15� and �21� that the real and
imaginary parts of all �N j ,Ni�w are zero. We continue this
way, using the fact that expectations of products of p’s and
q’s with an even number of p’s depend on the real part of
sequential weak values, whereas those with an odd number
of p’s depend on their imaginary parts �see the Appendix�.

We have therefore proved:
Theorem VII.4. All three definitions, VII.1, VII.2, and

VII.3, are equivalent.

VIII. DISCUSSION

The lesson that we learn from our results is that there is a
very interesting structure in quantum mechanics. When we
perform measurements to find out which way photons go
through the double interferometer, and when we make these
measurement weak enough, then �given that the final postse-
lection is successful� the results we obtain are consistent yet
very strange. Indeed the measurements indicate that N /2
photons go along path CF but also that −N /2 photons go
along path BF; strange as this number −N /2 is, it nonethe-
less combines with the result for the path N /2 to imply,
correctly, that no photons pass along path F. This consis-
tency applies to all the measurement results we obtain, and is
very reminiscent of the pattern of weak measurements seen
in Hardy’s paradox �1�, where negative numbers of particles
are also obtained �though here simultaneous �7� rather than
sequential weak measurements are carried out�.

What are we to make of these strange yet consistent re-
sults? The bold assumption is that, as long as they truly give
consistent answers in every physical situation, then they are
the actual values of the parameters being measured. And in
fact there is a body of work showing that weak values, even
when they lie in an unexpected range, can be treated as
though they were the actual values in the underlying physical
theory, and that they yield correct predictions. Examples in-
clude weakly measured negative kinetic energies when a par-
ticle is in a classically forbidden region �13�, and weakly
measured faster-than-light velocities that are associated with
Cerenkov radiation �14�. Here we are looking at traditional
weak values at a single time, as in Eq. �1�. For sequential
weak values, we can make a similar argument. The double
interferometer already gives an example that illustrates their
consistency. We thus suggest that sequential weak values
should also be interpreted as truly representing actual values
of the parameters being measured, providing valuable in-
sights in further physical situations.

To conclude, we mention the striking fact that sequential
weak values are formally closely related to amplitudes. Con-
sider the case where we measure n projectors PX1

, . . . , PXn

that define a path �x between the initial and postselected
states ��i� and �� f�, respectively. We can write

�PXn
, . . . ,PX1

�w =
�� f�Un+1�Xn��Xn�Un�Xn−1� ¯ �X1�U1��i�

�� f�Un ¯ U1��i�

=
amplitude��x�

�
i

amplitude��i�
, �29�

where �i runs over all paths between ��i� and �� f�. Nonethe-
less, weak values are similar to measurement results rather
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than amplitudes. This way of looking at sequential weak val-
ues suggests a close connection with path integrals that re-
mains to be explored.
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APPENDIX: CALCULATION OF GENERAL
CORRELATIONS

With assumption A, we show here that the general version
of Eq. �15� is

�q1q2 ¯ qn� =
gn

2n−1 Re�
r�s

�
i,j

�Air
, . . . ,Ai1

�w�Ajs
, . . . ,Aj1

�w,

�A1�

where the weak values in this formula are given by Eq. �18�.
In Eq. �A1� the sum is over all ordered indices i
= �i1 , . . . , ir� with ip� ip+1 for 1� p�r−1, and ordered indi-
ces j= �j1 , . . . , js� that make up the complement of i in the set
of integers from 1 to n, i.e., that satisfy
�i1 , . . . , ir�� �j1 , . . . , js�= �1,2 , . . . ,n� and �i1 , . . . , ir�
� �j1 , . . . , js�=�. We include the empty set � as a possible
set of indices. In order not to count indices twice, we require
r�s, and when r=s we require i1=1.

For instance, with n=2, the possible indices are i= �1,2�,
j=�; i= �1�, j= �2�, which yields

�q1q2� =
g2

2
Re��A2,A1�w + �A1�w�A2�w� . �A2�

This is just Eq. �15�. For n=3 we have i= �1,2 ,3�, j=�; i
= �1,2�, j= �3�; i= �1,3�, j= �2�; i= �2,3�, j= �1�, giving Eq.
�19�. Equation �A1� is proved in the same way as Eq. �15�,
the state of the n pointers after postselection being

�M1¯Mn
= �� f��Un+1e−igpnAnUn ¯ U2e−igp1A1U1�

���i���q1� ¯ ��qn�

= �� f��Un+1���qn� − gAn���qn� + ¯ �Un ¯ U2

����q1� − gA1���q1� + ¯ �U1���i�

= �� f�Un+1Un ¯ U1��i�
1 + g�
i

���qi�
��qi�

�Ai�w

+ g2�
i�j

���qi����qj�
��qi���qj�

�Aj,Ai�w + ¯ �
���q1� ¯ ��qn� . �A3�

Assumption A implies that only the terms in q1q2¯qn in
��M1¯Mn

�2 need to be taken into account in calculating

�q1q2 ¯ qn� =

 q1q2 ¯ qn��M1¯Mn

�2dq1 ¯ dqn


 ��M1¯Mn
�2dq1 ¯ dqn

,

and this leads to Eq. �A1�.
We can also calculate �p1p2¯pn�, the product of the mo-

menta of the pointers. To do this, it is convenient to move to
the momentum basis, replacing ��q� by its Fourier transform

�̃�p� and carrying out an expansion in the pi,

�M1¯Mn
= �� f��Un+1e−igpnAnUn ¯ U2e−igp1A1U1�

���i��̃�p1� ¯ �̃�pn�

= �� f�Un+1Un ¯ U1��i�
1 − ig�
i

pi�Ai�w

+ �− ig�2�
i�j

pipj�Aj,Ai�w + ¯ ��̃�p1� ¯ �̃�pn� .

�A4�

Assumption A implies that only the terms in p1p2¯pn in
��M1¯Mn

�2 need be considered in calculating

�p1p2 ¯ pn� =

 �M1¯Mn

p1 ¯ pn�M1¯Mn
dp1 ¯ dpn


 ��M1¯Mn
�2dp1 ¯ dpn

.

�A5�

It is simplest to treat the cases of n even and odd separately.
For the even case we have

�p1p2 ¯ p2m� = 2�− 1�m�gv�2m Re�
r�s

�
i,j

�− 1�r

��Air
, . . . ,Ai1

�w�Ajs
, . . . ,Aj1

�w �A6�

and for the odd case

�p1p2 ¯ p2m+1� = 2�− 1�m+1�gv�2m+1 Im�
r�s

�
i,j

�− 1�r

��Air
, . . . ,Ai1

�w�Ajs
, . . . ,Aj1

�w, �A7�

where v=�p2�̃2�p�dp.
The case of mixed products of positions and momenta are

treated similarly, and they depend only on the real or imagi-
nary parts of the sequential weak values given by Eq. �18�.
For example, to calculate �q1p2� we express the first variable
in the position basis and the second in the momentum basis,
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�M1,M2
= �� f�U3U2U1��i����q1��̃�p2� + g�A1�w���q1��̃�p2�

− ig�A2�w��q1�p2�̃�p2�

+ ig2�A2,A1�w���q1�p2�̃�p2�� ,

which yields Eq. �21�. For these mixed products, since there
is a factor of i for each p in the product, we take the imagi-
nary part of weak values when there is an odd number of p’s
present and the real part otherwise.

Thus all possible expectations of products of position or
momentum can be obtained from the sequential weak values.
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