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We discuss limitations in precision measurements of a weak classical force coupled to quantum mechanical

systems, the so-called standard quantum limit (SQL). Among the several contexts exploiting the measurement
of classical signals, gravitational wave (GW) detection is of paramount importance. In this framework, we
analyze the quantum limited sensitivity of a free test mass, a quantum mechanical harmonic oscillator, two
harmonic oscillators with equal masses and different resonance frequencies, and finally two mechanical oscil-
lators with different masses and resonating at the same frequency. The sensitivity analysis of the latter two

cases illustrates the potentialities of back-action reduction and classical impedance matching schemes, respec-
tively. By examining coupled quantum oscillators as detectors of classical signals, we found a viable path to
approach the SQL for planned or operating GW detectors, such as DUAL and AURIGA.
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I. INTRODUCTION

The standard quantum limit (SQL), defined more than 30
years ago [1], represents the sensitivity limit for a linear
position meter (sometimes called coordinate meter) imposed
by quantum mechanics. The device monitors the position x(z)
of a free test mass, and thereby deduces the classical force
signal F(¢) that acts on a mass.

In principle a macroscopic mass will exhibit quantum be-
havior if, first, its displacement can be measured with suffi-
cient accuracy and, second, thermal, seismic, and electronic
readout noises can be adequately reduced. In this case the
momentum and displacement uncertainties are given by the
Heisenberg uncertainty principle, which imposes fundamen-
tal [35] restrictions on the accuracy of macroscopic measure-
ments.

In the 1970s, in connection with efforts to operate gravi-
tational wave (GW) detectors, it became crucial to envisage
methods for measuring macroscopic observables at levels of
precision approaching and/or exceeding the SQL. This rep-
resents the first goal for the measuring sensitivity of an ap-
paratus devised to detect a weak classical force. A typical
example is the interferometric position measurement, where
the monitored free test mass is generally one of the mirrors
of the interferometer [1,2]. On the other hand, the applica-
tions of quantum oscillators coupled to classical signals are
relevant in many high-precision experiments, i.e., general
relativity tests, in gravimeters, accelerometers, gyroscopic
devices, etc. [3]. In particular, free masses (interferometers)
or mechanical oscillators (resonant bars) are employed as
GW detectors.

In Ref. [1], the authors formulated the concept of SQL for
high-precision measurements and demonstrated also that the
SQL can be overcome by changing the instrument designs.
Nowadays, approaching or beating the SQL is one of the
most attractive experimental challenges [4]: of the many pro-
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posed approaches, we must mention techniques to eliminate
the back-action contribution in quantum measurements [5,6],
methods for quantum nondemolition measurements [3,7-9],
and the use of speed meters [10]. However, the most prom-
ising approaches seem to be innovative nanotechnologies,
where very small mechanical oscillators are coupled to high-
sensitivity electronics [11,12] and advanced GW interferom-
eters [13].

In this paper we present the quantum noise analysis of a
system of two coupled oscillators. Our analysis makes it
clear that, for an experimental detection of weak forces, a
system of two oscillators is more suitable than a single os-
cillator as its noise stiffness can be more easily adapted to a
quantum limited amplifier. In particular, we compare the per-
formances of a system of two harmonic oscillators with
equal masses and different resonance frequencies (weak cou-
pling), and with different masses and resonating at the same
frequency (tight coupling). The two cases are of some rel-
evance as they illustrate the potentialities of back-action re-
duction and classical impedance matching schemes for mea-
surements of a weak force. As concrete examples of the two
schemes, we analyze in some detail the planned DUAL de-
tector [14] and the operating AURIGA resonant detector
[15], respectively.

The paper is organized as follows. In Sec. II we discuss in
detail the quantum limits in the detection of a classical force
coupled to free or interacting particles. In Sec. III we apply
the SQL formalism to a system of two equal mass harmonic
oscillators with different resonance frequencies and to a
couple of harmonic oscillators with different masses and the
same resonance frequency. For the latter system, the thermal
noise effect has been also calculated. Conclusions are drawn
in Sec. IV.

II. QUANTUM LIMITS FOR THE DETECTION
OF A CLASSICAL FORCE

As is well-known, the uncertainty principle states that one
cannot assign exact simultaneous values to the position and
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momentum of a quantum mechanical system. Rather, we can
only determine such quantities with some characteristic “un-
certainties,” Ax and Ap, which satisfy the inequality

f
AxApZE, (1)

where  Ax=[[T2P(x)(x-X)%dx]"* and Ap=[[TZI1(p)(p
—p)%dp]"? are the standard deviations of x and p, respec-
tively, X and p their mean values, and P and II their prob-
ability density functions, given by the modulus squared of
solutions of the Schrodinger equation with suitable boundary
conditions. The variances of these two random variables are
related to their power spectral densities by (Ax)?
=[S (w)dw and (Ap)*=[77S (w)dw, where S, (m?/Hz) is
the displacement noise power spectral density contributed by
the readout, and S, (N?/Hz’) is the impulse spectral density.

The SQL is a probe characteristic and can be evaluated by
using a quantum measuring device that operates under the
intrinsic noise condition S .Sp=%2/4 [1], where the spectral
density of the fluctuating back-action force, Sp(w) (N?/Hz),
is equal to S,(w) multiplied by w?.

By optimization of a measurement device at a particular
frequency, we mean that the device works at the SQL at that
frequency. A nonoptimized measuring device would spoil the
SQL sensitivity. In order to build an optimized measuring
apparatus, we have to specify the probe and how the mea-
suring device acts on the probe. When one measures a clas-
sical force by the induced motion on a probe (e.g., a free
mass or an oscillator), different SQLs can be defined, de-
pending on the dynamics of the system. For example, the
well-known case of SQL of a free mass depends on the time
interval between the two successive position measurements,
whereas the SQL of an oscillator also depends on its resonant
frequency [1,3]. In general, we can replace the inequality in
Eq. (1) with

ﬁ2
=
S.Sp= g (2)
which establishes a universal, mutual connection between
the accuracy of the monitoring and the perturbation of the
monitored object [1].

To compute the minimum detectable amplitude F;, of a
probe at unitary signal-to-noise ratio (SNR), we define the
standard force signal Fy(¢) as a sinusoid at frequency wp that

lasts for the time interval [—%, +%] The Fourier transform
of F(r) reads

Fy(w) = 7:F, sinc[%(w + wp)} , (3)

where F| is the force amplitude. For optimal signal process-
ing, the maximum achievable SNR is given by [16]

1 [T F(@)
SNR = fw S@) do, 4)

where S(w) is the total force noise at the detector output.
By solving Eq. (4) with SNR=1 we have Fy,
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={5L f*=sine?] Z(w+wp) )/ S(w)do} /77 In the limit of
77— 0, the classical impulsive force signal can be repre-
sented by F=P,8(t), where P, is the total exchanged mo-
mentum. In this case, the minimum detectable impulse at
SNR=1 can be easily calculated as PmmzlimTFHO TeF min-

GWs are an example of a weak classical perturbation,
where the response of the measuring device probe-object
may be comparable to its quantum mechanical uncertainties.
Moreover, the weakness of the interaction ensures that no
back-action of the probe affects the GW radiation field. Con-
sequently, the gravitational signal acts on the probe as a
“classical force” (i.e., a force that is independent of the probe
quantum state) [1]. From the theory of general relativity fol-
lows the expression of the classical force for a GW imping-
ing on a detector [17],

1 ..
F(t) = EMeffLeffh(t)’ (5)

where M, and L, are the effective mass and length of the
GW detector.

The sensitivity of all GW detectors is limited by the SQL,
which disallows repeated measurements of the relevant ob-
servables with arbitrary precision. Of course, a GW detector
can reach the SQL performances only if it employs a quan-
tum limited readout system. For instance, the capacitive
readout developed at the University of Trento is based on
superconducting quantum interference device (SQUID) am-
plifiers [18]: the best energy resolution achieved is a few 7
[19] and the single-quantum sensitivity appears within reach.

From Eq. (5), the sensitivity of GW detectors is given as
the noise power spectral density in terms of the wave ampli-
tude referred to at the input,

Spn(w) = S(w) 1/Hz. (6)

i)
M oyl g0

For GW burst signals, a useful relation is their minimum
amplitude, obtained with unity SNR, /A=~ 2F )/
(Mefngffw;), where ), is the probe angular frequency. For
other signals (e.g., stochastic background, periodic signals
or, loosely speaking, signals with strong frequency structures
in the detector band), the appropriate sensitivity indicator is
the minimum of the corresponding noise spectral density,
Sy and the bandwidth. However, if the ratio between the
detector band, Aw, and ), is <1, we have [20]

. 20, )> k
St = —( mzm) Aw, Aw= . (7)
O)p Mefpr

where the parameter k,=(Sz/S,)"? represents the readout
noise stiffness required to optimize the performances of the
detector, by achieving the best impedance matching with the
readout system [21]. The force and displacement noises can
be parametrized as Sp=nhk, and S,=n#/k,, respectively,
where n is the energy resolution of the probe expressed as
the number of quanta at the amplifier frequency, and the SQL
is recovered in the limit n— 1/2.

062101-2



COUPLED HARMONIC OSCILLATORS FOR THE ...

III. GW DETECTORS AT SQL

We want to discuss the minimum detectable amplitude of
a classical force acting on a free particle, an oscillator, and a
system of two coupled oscillators at their respective SQLs.
The sensitivity limits of a free test mass and a single har-
monic oscillator have been already studied [1]; here we only
report the main results preparatory to the sensitivity compu-
tation of two coupled harmonic oscillators with equal masses
and different resonance frequencies (weak coupling), and of
two mechanical oscillators with different masses and reso-
nating at the same frequency (tight coupling).

In what follows we will consider linear position meters
(amplifiers), with the position and force noises uncorrelated
and the corresponding spectral densities, S, and Sg, and their
ratio ki frequency independent [16]. These spectral densities,
which the meter exerts on the test mass, must satisfy the
uncertainty relation expressed by Eq. (2). On the other hand,
to get the SQL sensitivity, two requirements have to be sat-
isfied: (i) the noise sources have to be as small as possible
[i.e., the equality in Eq. (2) holds]; and (ii) the total force
noise has to reach its minimum (i.e., the noise stiffness
matches the amplifier at a given frequency v,).

It is worth noticing that the SQL sensitivity curve can be
considered as an envelope of the minimum of many sensitiv-
ity curves, corresponding to different amplifiers matched to
different k,. However, in practice, the same amplifier can be
optimized over a frequency band, where its sensitivity curve
overlaps closely the SQL curve, and so k, can be considered
independent of frequency within this band.

The total noise in a measurement at the SQL can be de-
scribed by its (bilateral) spectral density S(w), which we will
specialize to some relevant systems for the GW detection,
namely, a free particle (interferometric detector), an oscilla-
tor (single mode resonant detector), and a system of two
coupled oscillators: weak coupling for the back-action reduc-
tion and high coupling for the impedance matching.

A. Free test mass

The equation of motion referring to the linear detection
scheme of an external classical force, F fm(t), acting on the
free test mass, m, is equal to

d2
Fp(t) = Fp(t) = mﬁxﬂ(f) =0, ()

where x(t) is the additive noise of the meter and F(?) is its
back-action force noise.

From Eq. (8), the spectral density of the total noise readily
follows:

Sfm(w) =m2w4Sx+SF. (9)

For any given amplifier optimization frequency w,=2mv,,
Spm(@) can be minimized by adjusting the ratio of the
spectral densities Sp/ szmzwi, and the corresponding SQL
power spectral density is S?,SL(%) =fimaw? [16]. In effect, the
sensitivity of a measuring device can be largely optimized by
adjusting the Sy/S, ratio.

The total force noise power spectral density, obtained by
optimizing the amplifier at w,, is
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FIG. 1. Comparison between the minimum detectable amplitude
of a force acting on a free particle, at different values of the fre-
quency v,=w,/(2), and at the SQL; m=1 kg and 75=1 s.

4
thq(w):%m(%mi), (10)
where S, () —>S?,3L(w) for w— w,.

Figure 1 shows the minimum detectable amplitude of an
impulsive force lasting for a time 7p=1 s, acting on the free
test mass at the SQL (bold solid line), F?H?L(w)= %w, and
the force obtained by optimizing the amplifier at w,:

[hm | 1[o® o2\ |
Ffm(w)= T—Fw|:5(w—§+g):| . (11)

Each curve in Fig. 1 is tangent to the SQL curve just at the
frequency where, from time to time, we have optimized kﬁ.

B. Harmonic oscillator

In the case of an oscillator of mass m, and angular reso-
nant frequency w,, the equation of motion is

d2
F,(t) = Ft) - mo(ﬁ + w(z;))fﬂ(f) =0, (12)
where F,(r) is the external force acting on the oscillator. In
the frequency domain, and in the presence of dissipative
forces, the equation of motion is

F,(w) = Fy(w) + m,0*xq(w) - mow(21|: I+ é:|xfl(w) =0,

(13)

where Q is the quality factor of a low loss material and
mowi[l +i/Q] the complex spring constant. Here we assume
the losses are independent of frequency and the relation ¢
=1/Q holds, where ¢ is the phase lag [22]. The power spec-
tral density associated with F,(w) in Eq. (13) is

4
So(w)zmi[(wﬁ—wz)% %}sﬁs}p. (14)

The spectral densities S, and Sy satisfy Eq. (2) in the SQL
conditions. By adjusting ki, we can provide the minimum of
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FIG. 2. Comparison between the minimum detectable amplitude
of a force acting on an oscillator, for different values of v,
=w,/(2m), and at the SQL; m,=1 kg, 0=10, and 7z=1 s.

spectral density in some interesting physical situations (as
shown in Fig. 2).

(i) The bold solid line corresponds to the minimum de-
tectable amplitude for a force that lasts for a time 7=1 s and
acts on the oscillator at the SQL,

fim,
(0452

(ii) The thin curves represent the amplitude obtained by
optimizing the amplifier at specific oscillator resonant fre-
quencies (v,=v,),

F — % l(Zz)ﬂi (w_Z 2)2 .
o;wa_\/QTFw 5 o+ w2+ 2 0 .

(16)

%) = . (15)

In Fig. 3 we show the minimum amplitude of the force cal-
culated by optimizing the amplifier at a frequency v,, equal
(dashed line) and different (dashed-dotted line) from v,,

F = \/E (wz_w3)2+(wi—w(2) 2+2“’3/Q2 12
e TF 2[(&% - a)i)z + wi/QZ]UZ >

(17)

and the SQL curve defined as in Fig. 2.

Notice that the above expression reduces to Eq. (16) for
w,=w,. In fact, the width of the minimum depends on wZ
—w? as long as |w,—w,|> (w,+w,)/(2Q), as shown in Fig.
3. In addition, the distance between the dashed-dotted and
the bold solid (SQL) lines depends on the Q value, and the
two curves will lie close together as Q increases. Equations
(15)—(17) were calculated by imposing SNR=1 in Eq. (4),
with the integrand function depending on the frequency we
choose to optimize. The spectral noise densities we substi-
tuted in Eq. (4) to calculate Egs. (15)—(17) are given by
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FIG. 3. Comparison of the minimum detectable amplitudes of a
force acting on the oscillator, at the SQL (bold solid line), and with
the amplifier optimized at frequency v,: (i) v,=v, (dashed line) and
(ii) v,# v, (dashed-dotted line); m,=1 kg, 0=10%, and 7,=10> s;
v,=w,/ (27).

4 11/2
§5 () = ﬁmo{(wi —w?)?+ %} , (18)
4 2
S, (w) =ﬁm0{ {(wz— o))+ %}% + ;’—Q} (19)
and

hm, ) o a);1

Sy(w) = =1 | (02— )+ 2

2\/(w2—w2)2+& ¢

0 a Q2
2 2 w,

+| () — w2)* + Q_Z , (20)

respectively. It is worth noticing that to obtain Eq. (15), we
considered in Eq. (4) the square of Fy(w) with wp=w,, while
in order to find Eqgs. (16) and (17) we used just the square of
Fy(w). Also for an interacting particle, the intersection be-
tween each curve of Fig. 2 with the SQL curve occurs at the
frequency where, from time to time, we have optimized ki.

The advantage to consider an oscillator is evident from
Fig. 4, where we compare its behavior with that of a free
mass. In particular, the SQL of minimum detectable ampli-
tude for a force acting on an oscillator lies below the corre-
sponding limit for a free test mass. This is due to the Q factor
that, for temperatures approaching absolute zero, is a dimen-
sionless measure of dissipation at the oscillator resonant fre-
quency [22]. Moreover, from the dotted line in Fig. 4, we
note a narrowing of the bandwidth, with a minimum force
amplitude in correspondence with the oscillator resonant fre-
quency.

C. Coupled harmonic oscillators

In the field of GW detection, detector designs usually in-
volve two or more coupled harmonic oscillators. The im-
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FIG. 4. Minimum amplitude force acting on a free and interact-
ing test mass. In this case, m,=m=1 kg, 0=10, and 7p=1 s.

provements of the detector sensitivity arise either from im-
pedance matching or back-action reduction [21]. Up to now,
resonant transducers have been widely adopted for resonant
detectors to match the mechanical impedance to the SQUID
amplifier (see e.g., Ref. [23]); however, the advanced wide-
band acoustic DUAL detector exploits a novel back-action
reduction scheme [14].

1. Weak coupling with different resonant frequencies

Let us consider two weakly coupled quantum mechanical
harmonic oscillators, each having the same mass and me-
chanically resonating at different frequencies. This is the
suitable model for a wideband acoustic GW DUAL detector
[14], which consists of two concentric massive bodies, two
cylinders or two spheres.

The model of the DUAL detector that we consider in this
paper is sketched in Fig. 5; it consists of a simple one-
dimensional system, with two mechanical harmonic oscilla-
tors. This is a crude approximation of a DUAL system; in-
deed for a three-dimensional body, the dynamics of elastic
deformations is given as the superposition of the dynamics of
a huge number of normal modes of vibration (for a detailed
discussion see Refs. [14,24]). However, the model of two
oscillators weakly coupled is accurate enough to study the
SQL sensitivity of a DUAL detector.

The equations for the two resonators read

d ]
Fplt) = Fy(t) =my = 50(0) ~ k, [1 + QLl]xl(t) =0,

2

J .
Fp(t) + Fp, (1) - mzﬁxz(f) - knz[l + QLJXQ(I) =0,

(21)

where F,(1) is the back-action force and Fp(z) is the exter-
nal force acting on two different mechanical resonators,
evaluated by a differential measurement of their positions
x,(t) and x,(7). Here the resonant angular frequencies and the
material quality factors for the two resonators are w,
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A
A

FIG. 5. One-dimensional scheme of a DUAL detector: the force
Fp acting on both masses, m; and m,, is measured by the relative
displacement, x| —x,, of the two oscillators; kn,_le,z and F, are the
elastic and back-action forces, respectively.

=(ky, ,/ my 5)"? and Q ,, respectively. We measure the differ-
ential displacement with an amplifier that is characterized by
its additive noise and back-action noise, trying to reach the
best coupling between the two resonators and the amplifier
[21].
In fact, by solving Egs. (21), we obtain in the frequency
domain the equation
x@) = Hy, (@)Fp(0) - Hy, (0)Fy @), (22)
where x,(w)=x;(w)—x,(w) is the relative displacement of the

two oscillators. The transfer functions of the two resonators
are

1

H(w)= (23)

b
2 2 !
—ml’zw +m1’2(l)1,2 1 +

0>

represented by solid and dashed lines in Fig. 6, respectively.
The transfer functions associated with Fp(w) and F,,(w) are
HFD(a))=H1(w)—H2(w) and HFba(w)=Hl(w)+H2(w) (bold
solid and dotted lines in Fig. 6, respectively).

The noise power spectral density for the measurement of
Fp(w), due to the amplifier system, is

Se+ |HF,M((U)|ZSF

Hr (@f .

Splw) =

where the numerator represents the total displacement noise.
As in the other cases, by applying the SQL condition, S,Sp
=h?/4, and adjusting the ratio Sz/S, properly, we obtain the
minimum of the considered power spectral density. Then, we
can write Eq. (24) as a function of S:
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FIG. 6. The solid and dashed lines represent the modulus of the
transfer functions of the slow and fast oscillators which correspond,
in the three-dimensional case, to the outer and the inner cylinders,
respectively. We used m;=m,=10% kg, 0,;=10°, 0,=2X10°, »,
=1 kHz, and v,=2 kHz; v| ,=w; »/(27). The modulus of the trans-
fer functions Hp =H,—H, (bold solid line) and Hr, =H,+H, (dot-
ted line) are also shown. The minimum of this last curve
(~1.6 kHz) is the point of the reduction of the back-action (for a
detailed discussion about this topic see Refs. [14,25]).

ﬁZ
Se+ |H, (o)’ 7=
Sp() - (25)
w) =
° |HFD(0))|2
Minimizing this equation with respect to S,, we have
|HF (wmin)|
Sp(Onin) = hi————3, (26)
P |HFD(wmin) :
which is the lowest noise at w,,;,, obtained when the noise
power spectral density of the amplifier is ST

=§|Hpba(wmin)|. The SQL solid curve in Fig. 7, calculated
from Eq. (26), shows three minima: two around 1 and 2 kHz,
which correspond to the two cylinders’ resonance frequen-
cies and one around 1.6 kHz, which represents the back-
action reduction. The other curves in Fig. 7 are obtained by
replacing different S, values in Eq. (25): S,=10"*> m?/Hz
for the dotted curve; S,=10"* m?/Hz for the dashed
curve; S,=107% m?/Hz for the bold solid curve; and S,
=10"* m?/Hz for the dashed-dot-dot curve. We can see that
the curve with a good sensitivity in a wide frequency band is

2 2
- +wb<

Oy

2(1+ !
- po| 1+ —=
! O

Blw)=M,

i i
l+—> +/.Lw,2r<l +—) —,uw,zr<

3
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FIG. 7. Optimized noise curves for a DUAL detector. In particu-
lar, the solid line represents the noise optimized at every frequency.
The other curves refer to different values of S, in Eq. (25): (i) S,
=10"%? m?/Hz for the dotted curve; (ii) S,=10"* m?/Hz for the
dashed curve; (iii) S,=10"* m?/Hz for the bold solid curve, and
(iv) S,=10"* m?/Hz for the dashed-dot-dot curve. DUAL param-
eters as in Fig. 6.

the maximally flat bold solid curve, indicating an optimal
coupling between the two oscillators and the amplifier,
through a back-action reduction measurement [21].

2. High coupling with equal resonant frequencies

Let us discuss now the problem of two quantum mechani-
cal harmonic oscillators, strongly coupled, with different
masses and the same resonance frequency. This is the typical
configuration of resonant GW detectors, where the two os-
cillators represent the bar fundamental mode coupled with
the resonant (capacitive [26] or inductive [27]) transducer.
As an example of two highly coupled oscillators, we can
consider the AURIGA detector [28], designed to measure the
force signal due to GWs acting on an aluminum cylinder (the
bar), in a frequency band around its fundamental normal
mode (~900 Hz). The equations of motion of the two oscil-
lators, which represent bar and transducer, in the frequency
domain read [26]

x(w)

y(w)

)

) ) <F(w) +Fy(0) )

B(w)< _Fba(w)

where x(w) and y(w) are the displacements of the bar and the
transducer and

)
1+—
O

1+ L) - wz}
(o

Qi

ot

062101-6



COUPLED HARMONIC OSCILLATORS FOR THE ...

TABLE 1. Masses, resonant frequencies, and Q factors of the
AURIGA detector together with the bar length, L;, and the optimi-
zation frequency of the amplifier, v,=w,/(27).

M (kg) v (Hz) o L, (m) v, (Hz)
Bar 23%X10° 8968 5x10° 3 —
Transducer 6.1 898.4  2x10° — 900

here u=M, /M,<1, and M,, M,,, O, and Q,. are the
masses and Q factors of the bar and transducer, respectively.
The forces F,,(w) and F(w) are the back-action force acting
both on the bar and transducer and the external force, im-
pinging on the bar. By solving these equations, we obtain the
displacements x(w), y(w) and then their difference [x(w)
—y(w)], fed to the amplifier. Then, the expression for the
force signal noise at the SQL is given by

$3%(w) =

(27)

tr

where P(w)=[(1+p)w?*-wi)+w}/ 0}, w, and w, are the
resonant angular frequencies of the bar and the transducer,
correspondingly, and ||B(w)| is the determinant of the matrix
B(w). In Table T we report the design parameters of the AU-
RIGA detector in the present configuration [15].

Figure 8 shows the square root of S;;,(w) in the case of the
SQL (solid line) and in the case of optimization at a particu-
lar amplifier frequency v, (dashed line). The dashed line has
only one minimum, whereas the solid one has two more
minima. This is due to the optimization process. In fact, to
optimize at a particular amplifier frequency means to differ-
entiate the total spectral density with respect to the displace-
ment noise spectral density, which entails the suppression of
the poles of the noise transfer functions.

The solid line in Fig. 8 is obtained by using Eq. (27) as
the total spectral density in Eq. (6), with M,,=M,/2 and

1x107° :
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FIG. 8. S, 1/ % in the SQL case (solid line) and in the optimized

case v,=900 Hz (dashed line). The inset represents a zoom of S,llf

around 900 Hz. AURIGA parameters as in Table L.
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Lop=4Ly/ m* [17], while the external force noise power spec-
tral density for the dashed line is given by

Bo)*  P(w)
S T 2 "B(w [ ” - :
(28)
The external force transfer function is expressed by
-M,w’
Hi(w)= —"— (29)
T B@)
while the back-action transfer function is given by
Hp (w)= [ 2<1+i>—w—,uw2] (30)
b ||B( )| Q)

As expected by an impedance matching, the overall sensitiv-
ity of two coupled oscillators and a single oscillator remains
the same. In fact, by assuming w,=w,=w,, 0,=0,.=0, and
M,=m,, one can demonstrate that Eq. (27) reduces to
Eq. (18) with the minimum scaled from #Am wo/ Q to
(him, w2/ Q) p over the narrower frequency range w,(1 =+ ,u)

D. Thermal noise contribution

Another physical limit exists on the minimum momentum
of a test mass, a phenomenon usually referred to as thermal
noise that constitutes a generalization of Brownian motion
[22]. The fluctuation-dissipation theorem, enunciated by
Callen and Welton [29], establishes a relationship between
the thermal fluctuations and the dissipations of a linear sys-
tem. In order to calculate the total noise budget of a GW
detector, the thermal noise spectrum can be estimated by
measuring losses of mechanical oscillators.

The sensitivity of GW detectors could also be limited by
thermal noise, and therefore it is important to study its con-
tributions [22,30]. In fact, by considering the thermal noise
in the case of a bar coupled with a resonant transducer, we
lose two orders of magnitude in the S 1/Z(w) spectrum, with
temperature 7=4.5 K and Q ~ 10°.

Let us consider an external force, for example the GW
force, acting on the bar and the back-action force acting both
on bar and transducer. When we add the thermal noise to the
input force noise power spectral density, Sp(w), we obtain
the following total spectral density:

Gw)
|HF(w)|2.

The term G (w)/|Hp(w)|? is the input force thermal noise
power spectral density;

Stot,F(w) =Sp(w) + (31)

G.l0) = =2 [ Hy, ()] (32)
is the output displacement thermal noise power spectral den-
sity [29]; kg is Boltzmann’s constant; and Hp(w) and H Fba(w)
are given by Egs. (29) and (30), respectively.

It is important to stress that we continue to use the term
“SQL curves” even if it is improper in the presence of ther-
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FIG. 9. Square root of Sj;, in the SQL case and in the optimiza-
tion case for two different antenna temperatures 7. AURIGA param-
eters as in Table 1.

mal noise, meaning that we optimize at any amplifier fre-
quency. Of course, SQL sensitivity can only be achieved if
thermal noise is below the back-action noise level.

The SQL curves in Fig. 9 have been calculated by

2S5 (w)]""2

[SiR ()] = T (33)
M fLesyw
where S50H(0)=57(w) + G, (0)/|Hx(w)[? and the bold solid

and thin lines correspond to temperatures 7=4.5 K and T
=100 mK, respectively.

The dashed curve, obtained for 7=4.5 K, and the dotted
curve for 7=100 mK, in Fig. 9, correspond to
284 p(w)

Of

Sp(w) = 5,
M opLegpw

(34)
with S,y r(w) given by Eq. (31) and Sp(w) obtained by opti-
mizing the amplifier at a frequency v,=900 Hz.

To be more specific, the bold solid and dashed lines
shown in Fig. 9 correspond to the solid and dashed lines in
Fig. 8 with the addition of the thermal noise contribution. It
is worth pointing out the differences in the sensitivity: it
ranges from ~ 1072 Hz""/? (see Fig. 8) to ~1072! Hz™2 for
a temperature of 4.5 K and to ~ 10722 Hz"!2 for 100 mK (see
Fig. 9) in correspondence of the bar resonant frequency. No-
tice that, as we anticipated, the sensitivity loses two magni-
tude orders at T=4.5 K.

In Fig. 9, where the minimum of S},;lz is ~900 Hz, we are
not able to discriminate between the resonance frequencies
of the bar and transducer. This occurs because the same reso-
nant frequencies are present in G(w) and |Hy(w)|?, and in
their ratio they cancel out.

Of course, the curves in Fig. 8, obtained without the ther-
mal noise contribution, are better at the frequency where we
have optimized the amplifier than the curves in Fig. 9 (ob-
tained with the addition of thermal noise). In order to reach
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the SQL, the thermal noise must be reduced by a suitable
choice of material Q factor and temperature 7.

IV. CONCLUSIONS

We have investigated the sensitivity of coupled harmonic
oscillators to interactions with a weak classical force. Start-
ing from a single particle and harmonic oscillator, we esti-
mated the force sensitivity of two harmonic oscillators, reso-
nating at different or equal frequencies. We applied the SQL
formalism to two GW detectors, DUAL and AURIGA, as
concrete examples of weak classical forces measured by dis-
placement probes at the SQL.

The SQL sensitivity obtained by considering an interact-
ing test mass is better than the free mass SQL, which dem-
onstrates the advantage of a quantum mechanical harmonic
oscillator. Moreover, even if we do not operate the probe at
the SQL, and optimize the amplifier at v,=1 kHz, we find in
a small interval around the oscillator resonant frequency an
amplitude force F9, =2.1X10"* N (Q=10 and 7;=1 s),
slightly lower than the one obtained for a free particle of the
same mass (1 kg), F/ =6.5X 107 N (7;=1 s).

We studied two coupled harmonic oscillators, with equal
masses and different resonance frequencies (as a model for
the DUAL detector), using typical design parameters of the
DUAL detector. We found the very low SQL force noise,
ngz 3% 10715 N/Hz!2, at the two oscillators’ resonant fre-
quencies. Moreover, the value of the displacement power
spectral density S,=10"* m?/Hz produces an extremely flat
force noise curve, i.e., ngz 10712 N/Hz"? in a frequency
band larger than 700 Hz: for instance, a DUAL detector of
M = 10° kg and L.;=1 m will reach a strain sensitivity of
~2.3X107% Hz " at 1.5 kHz.

The lowest achieved experimental displacement noise is
§,=2.5X107° m*/Hz [31] in the kHz range, as two differ-
ent kinds of implemented readout have already demonstrated
in bench experiments, i.e., the optomechanical and capacitive
schemes, based on Fabry-Perot cavities [25,32] and SQUID
amplifiers [33], respectively. Both readouts could reach, in
the near future, displacement sensitivities S, = 10"* m?/Hz.
However, to achieve the 10~ m?/Hz sensitivity, which al-
lows one to optimize the noise curve for a DUAL detector
(Fig. 7), nonresonant mechanical amplifiers or selective read-
out may be used [14,27].

Finally, we applied the concept of two strongly coupled
harmonic oscillators, with different masses and the same
resonance frequencies, to the AURIGA detector. By focusing
our attention on the SQL power spectral density S,llf, we
found a value of roughly 1072* Hz ' at the bar resonant
frequency by neglecting the thermal noise contribution, and
we obtained S)7=10"2! Hz"? and 102> Hz""? for a tem-
perature of 4.5 K and 100 mK, respectively.
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