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We demonstrate confinement of 85Rb atoms in a dark, toroidal optical trap. We use a spatial light modulator
to convert a single blue-detuned Gaussian laser beam to a superposition of Laguerre-Gaussian modes that
forms a ring-shaped intensity null bounded harmonically in all directions. We measure a 1 /e spin-relaxation
lifetime of �1.5 s for a trap detuning of 4.0 nm. For smaller detunings, a time-dependent relaxation rate is
observed. We use these relaxation rate measurements and imaging diagnostics to optimize trap alignment in a
programmable manner with the modulator. The results are compared with numerical simulations.
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Toroidal traps for cold atoms have recently been of inter-
est for both fundamental and applied research. A toroidal
geometry can enable studies of phenomena in non-simply-
connected or low-dimensional topologies �1–12�, e.g., super-
fluid persistent circulation states of Bose-Einstein conden-
sates �BECs� �1�. A ring-shaped atom waveguide may also be
suitable for inertial measurements �13� and neutral-atom
storage �9–11,14�.

Several approaches for generating ring-shaped
waveguides have been proposed and implemented. Magnetic
fields have been used to create large ring traps for possible
use as atom storage rings or Sagnac interferometry
�2,10,11,14�. Helmerson et al. �1� used a combination of
magnetic and optical fields to demonstrate persistent current
flow of a BEC. Morizot et al. �8� proposed ring traps formed
from the combination of an optical standing wave with rf-
dressed atoms in a magnetic trap.

All-optical approaches have also been considered for tor-
oidal traps �15–17�. Wright et al. �15� suggested the use of
high-azimuthal-order Laguerre-Gaussian �LG� beams to con-
fine atoms with red detuning. Atoms in red-detuned optical
traps seek high intensity, and with large detuning, spontane-
ous photon scattering can be negligible. Photon scattering
can also be reduced by using blue-detuned optical traps.
Such “dark” traps confine atoms to low intensity, allowing
field-free measurements �18–21�, but are challenging to
make because they require an intensity minimum bounded
by higher intensity. This challenge is often overcome by
crossing beams �20,22,23� to plug a hollow optical potential,
although dark point atom traps have been realized with a
single laser beam containing a phase-engineered intensity
null �18�. The single beam approach has the advantage of
alignment simplicity over crossed-beam configurations. Lat-
tices of dark rings have been proposed �17� and realized �16�
using counterpropagating laser beams, but to the best of our
knowledge there have been no reports of atom confinement
in a lone optical ring trap.

In this paper, we report atom confinement within a differ-
ent class of dark optical ring traps. We form a bounded,
ring-shaped intensity null by converting a Gaussian laser
beam to a dual-ringed beam with a programmable spatial
light modulator �SLM�. SLMs are of increasing value in cold
atom manipulation experiments because of their ability to
reconfigure trap parameters �23–27�. We measure the spin-
relaxation lifetime, observe atom dynamics within the traps,

and compare the experimental results with numerical
simulations.

We form the dual-ringed laser beam by modifying the
spatial phase of a laser beam with a SLM, in a similar man-
ner to that used for producing hollow laser beams �23,25,28�.
The latter can be created by imparting an azimuthal phase
��r ,��= ��, with integer �, to a Gaussian laser beam E�r�
= �E0 �exp�−r2 /w0

2�, where w0 is the waist. The phase discon-
tinuity at r � 0 results in a hollow beam that, for low �,
closely approximates a pure LGp=0

� mode, where p and � are
radial and azimuthal indices. As shown in Figs. 1�a� and
1�b�, a dual ring is produced by introducing a � phase dis-
continuity at r=Rc�0 such that the resulting beam has large
overlap with the LGp=1

� mode, which has two radial nodes.
The parameter Rc /w0 controls the modal composition and
thus the propagation characteristics. In Ref. �29�, Rc /w0 was
set to generate high-purity LG modes. Here, we adjust Rc /w0
to create a superposition of LGp

� modes that produces a dark
ring at the focus of a lens that is bounded in both the radial
and longitudinal directions.

Figure 1�c� shows the calculated r-z cross section of a
toroidal beam with �=1 as it propagates along z through the
focus of an f =215 mm focal length lens �w0=1.7 mm�. We
have chosen values of Rc such that the barrier heights in the
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FIG. 1. �Color online� �a� Phase profile for creating the dark
optical ring. �b� charge-coupled device �CCD� image of a dual-
ringed beam in the focal plane. �c� Numerical simulation of r-z
cross section. Right: Transverse profile through the minimum, on a
line through points 1 and 2. Bottom: Profile along the minimum-
intensity path, indicated by the arrows, through points 3 and 4.
Length scales are shown on the profile plots. The dashed curves in
the profile plots are quadratic fits. The dark trap is formed in a ring
through the centers of the dashed ellipses.
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longitudinal and transverse directions are equal. For �=0, 1,
and 2, this condition is satisfied for Rc /w0�0.71, 0.79, and
0.85. The small numerical aperture �NA�, which equals
w0 / f =0.008, leads to a long aspect ratio of �1:300 for �
=1, defined as the ratio of the longitudinal trap frequency ��
to the transverse trap frequency ��. The mode composition
is dominated by p=0 �single-ringed� and p=1 �dual-ringed�
modes. For �=0, e.g., the p=0 �1� fraction is 13% �78%�.
The potential is harmonic in all directions, as indicated in
Fig. 1�c�. Under these conditions, the ratio of the inner radial
barrier height to the outer radial barrier height is �25–35 %.
The radius of the trap depends linearly on �, as it does for
hollow beams �30,31�.

The trapping beam is derived from a 30 mW extended
cavity diode laser tunable from 776–780 nm. The beam is
amplified to �350 mW with a tapered amplifier of which
�150 mW is coupled into polarization-maintaining fiber.
The linearly polarized fiber output is collimated with w0
=1.7 mm, and reshaped by a 512�512 reflective SLM
�Boulder Nonlinear Systems� with 15 	m pixels and �90%
absolute diffraction efficiency. A 4f imaging setup relays this
modified Gaussian beam to a magneto-optical trap �MOT�.
The 4f relay roughly positions the focus of the ring trap over
the MOT, but fine longitudinal adjustments are controlled
entirely by the SLM by adding a lens phase profile
�lens�r ,��=−�r2 / f
. We compensate for wave front errors
imposed by the SLM by calibrating the programmed phase
on a pixel-by-pixel basis.

The experiment begins with a MOT containing 107 85Rb
atoms. After a 1 s loading time, the MOT coils are shut off,
and the atoms are cooled to 5 	K��� /60kB during a 10 ms
molasses cooling stage. All cooling and trapping beams are
then extinguished, followed by a 100 	s pulse that optically
pumps the atoms into the F=2 hyperfine level. The toroidal
beam power is ramped to �150 mW over 5 ms during the
molasses stage. This ramp adiabatically loads atoms into the
trap and minimizes the energy gained in the loading process.
The trap diameter is significantly smaller than the initial
MOT size, so we typically load only a small fraction of
atoms ��5�104� into the traps. Collisions with background
gas limit the trap 1 /e lifetimes to �1 s. After a variable
delay, the trapped atoms are imaged onto an electron-
multiplying CCD camera �Andor Luca� by a 500 	s pulse
from the MOT and repump beams. Immediately prior to the
imaging pulse, the trapping beam is switched off to avoid
Stark shifting of the levels. For linear polarization, the opti-
cal potential is �19�

U�r� =
��I�r�

24Is
� �

 + LS
+

2�


	 , �1�

where Is=1.6 mW /cm2 is the saturation intensity, �=2�
�6.1 MHz is the linewidth, and LS=2��7.1 THz
�=15 nm� is the fine structure splitting. The resulting trap
depths for �=1 and =0.5, 1.0, 2.0, and 4 nm are 0.26��,
0.13��, 0.065��, and 0.033�� �at 780 nm,
1 nm↔493 GHz�. At =1 nm, ���2��800 Hz and ��
�2��3 Hz.

We record images of the trapped atoms with the camera

axis along x and along z. Images along x show the longitu-
dinal trap extent �Fig. 2�a��, while those along z show the
toroidal structure �Fig. 2�b��. The head-on views in Fig. 2�b�
are taken after a trap time of 600 ms for �=0–2. Also shown
are the azimuthally averaged beam intensity profiles in the
focal plane and atom distributions in the x and y �gravity�
directions. Because the trapping beam is propagating hori-
zontally, the potential is not azimuthally symmetric. The
gravitational potential energy difference between the inten-
sity nulls for �=2 is �/30 �2��200 kHz for 85Rb, which is
larger than the atom cloud temperature of 2��100 kHz.
Thus, most atoms are found in the bottom portion of the trap.
For ��1, atoms could initially be loaded on the axis of the
beam, along which there is no barrier. This is seen for �=2 in
Fig. 2. In our configuration it takes a few seconds for these
atoms to drift away. Although there should be little interac-
tion between axial atoms and the ring-trapped atoms under
adiabatic loading, the axial atoms can be reduced by several
means, such as orienting the trapping beam vertically, or
loading from an atom distribution that has been dimpled by a
blue-detuned Gaussian beam, as in Ref. �1�. A vertical propa-
gation axis would permit a symmetric ring potential in a
horizontal plane, but optical access in this direction was
limited.

Imaging constraints prevent high contrast images of the
toroidal atom distributions. We use an 85 mm Nikon f /1.4
lens, the front element of which is �250 mm away from the
trap location. This lens collects the maximum fluorescence
and achieves a peak resolution of �5 	m but suffers from
spherical aberration, which causes the observed loss
of contrast.

One benefit of dark traps for coherent atom manipulation
is the suppression of photon scattering events �18–21�. We
measure the spin-relaxation rate due to Raman scattering by
measuring the fraction of atoms in the trap that transfer to
F=3 as a function of trap �32�. The atoms are first pumped
into the F=2 hyperfine level. After a variable trapping time,
we image only the atoms that transfer to F=3 by using a
10 	s pulse of resonant cycling transition light. Within 2 ms,
both the repump and the cycling transition beams are
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FIG. 2. �Color online� �a� Image of atom cloud taken along x
axis for �=1. �b� Images taken along z axis �left� and profiles �right�
for toroidal traps using �=0–2. The experimental beam profiles are
shown for comparison �dotted line�. Trap time for this figure is 600
ms.

OLSON et al. PHYSICAL REVIEW A 76, 061404�R� �2007�

RAPID COMMUNICATIONS

061404-2



switched on to image the atoms in both the F=2 and 3 states.
For background subtraction, two images with the same pulse
sequence are taken with no atoms present. This type of back-
ground subtraction is necessary to eliminate false counts due
to CCD ghosting. By taking the images during a single load-
ing cycle, the effect of atom number fluctuations is reduced.
These images are recorded along x �as in Fig. 2�a��. Between
the first two imaging pulses, the atom distribution expands
slightly beyond the few integrated rows of pixels. This leads
to a slightly low estimate of the total atom count, but the
resulting F=3 normalized signal is proportional to the actual
F=3 fraction.

We record the F=3 signal fraction as a function of trap
time for four different detunings �Fig. 3�a��. In the simplest
approximation that all atoms have an equal scattering rate,
each curve can be modeled by a single exponential N3�t�
=C�1−exp�−t /���, as was used in Ref. �18�, where � is the
1 /e decay time. For �1 nm, however, a single relaxation
rate was not observed �Fig. 3�b��. This difference between
our results and those of Ref. �18� is most likely due to dif-
ferences in the trap loading technique, which we have found
to affect the rate curves. We note that the F=3 fraction at
long times should approach 7/12, but our measured values
are higher due to the pixel integration described above.

Instead of modeling the spin relaxation with a single-
parameter time constant, we phenomenologically “chirp” �
to be ��t�=�0+�t1/2 so that we can estimate the relaxation
rate at different times. We choose a sublinear chirp rate so
that the exponential will decay at long times, but the exact
functional form will depend on trap geometry. A steadily
increasing � should be expected since atoms initially loaded
into the trap in locations of high intensity scatter photons
more quickly than those loaded into the dark portions of the
trap. Thus, a rapid increase in the F=3 fraction is observed
for small t, followed by longer relaxation times for the atoms
with the least total energy. Using this form for the F=3 frac-

tion, approximate spin-relaxation lifetimes at t=0 for 
=0.5, 1.0, 2.0, and 4.0 nm are 35, 115, 460, and 1440 ms;
after 500 ms, these increase to 140, 230, 750, and 1500 ms.

The scattering time for atoms in a red-detuned trap of
comparable depth at =0.5 nm would be �2.5 ms, which is
50 times shorter than our recorded value. In Ref. �18�, the
blue-detuned trap had a scattering lifetime 700 times longer
than a comparable red-detuned trap at 0.5 nm. That work
used significantly higher intensities, where the differences
between red and blue detuning are more dramatic. Photon
scattering may be reduced substantially by using commer-
cially available lasers with higher power and larger detuning.
For �LS, spin relaxation is further suppressed, asymptoti-
cally scaling as −4 �32�. The time-dependent scattering rate
is likely not limited to toroidal geometries, but to the best of
our knowledge it has been observed for the first time in this
report. Also, we point out that we did not directly measure
the recoil scattering rate, but for our  this is on the same
order as the spin-relaxation rate. A recoil scattering rate of
1 s−1 corresponds to a heating rate of �400 nK /s.

To demonstrate the time-dependent scattering rate nu-
merically, we perform Monte Carlo simulations for 
=0.5 nm. The simulated trap is ramped on over 5 ms. The
atom cloud is initially in the F=2 state and normally distrib-
uted in position and velocity to match the MOT size and
temperature. Molasses effects are ignored. Within each time
step, each atom’s hyperfine level is changed with a probabil-
ity determined by the local scattering rate, as calculated from
the Kramers-Heisenberg formula �32�. The simulation re-
sults, compared to data in Fig. 3�b�, confirm the time-
dependent relaxation rate described above. For comparison,
the data have been renormalized to have an asymptotic value
of 7/12.

To demonstrate axial confinement and to quantify the de-
pendence of the scattering rates on the starting position of
the atoms in the trap, we displace the trap minimum from the
MOT by adjusting the lens function written to the SLM by a
few MOT radii �MOT radius �250 	m�. Thus, most atoms
are initially located in regions of high intensity, reducing the
overall scattering lifetime. When the atom cloud is displaced

0 200 400 600 800 1000

0.5

Time (ms)

Ti
m
e
(1
s)

F
=
3
fra
ct
io
n

z 1 cm

0.0

1.0

3.0 mm
1.5 mm
0.0 mm

(a)

(b)

FIG. 4. �Color online� �a� Spin-relaxation curves for three dif-
ferent starting positions. �b� Images of longitudinal oscillation of
the atom cloud using trap displacement from left to right of 3, 1.5,
and 0.0 mm.
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FIG. 3. �a� Measurement of F=3 fraction as a function of time
for =0.5 �triangles�, 1.0 �diamonds�, 2.0 �squares�, and 4 nm
�circles�. Fits �solid lines� using the model described in the text. �b�
Comparison of 0.5 nm data with a single-parameter exponential
curve and simulations.
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3, 1.5, and 0.0 mm away from the trap minimum, the single-
parameter rate constants �for =1 nm� are 145, 195, and
230 ms �Fig. 4�a��. For each displacement, we show a com-
posite image of the side views of the trap �Fig. 4�b��, where
each row in the image is a different slice in time. These
images show the atom cloud oscillating in the longitudinal
direction when the trap is not well overlapped with the atom
cloud. By displacing the trap focus, we can also estimate the
longitudinal trap frequency. For =1 nm, we measure ��
�2��2 Hz. This agrees well with the estimate of ���2�
�3 Hz from the calculated intensity profiles shown in Fig. 1.
The scattering rate data and the composite images can be
used to optimize the location of the trap focus, which is done
to �100 	m with the SLM.

As with all single-beam traps, the aspect ratio scales with
the inverse of the trapping beam NA. For similar beam pa-
rameters, an aspect ratio of �10 could be realized by using
an f =10 mm lens. A crossed-beam geometry, in which addi-
tional beams cap the potential in the longitudinal direction,
allows significantly tighter longitudinal confinement and
larger-diameter traps. In these cases, the ratio Rc /w0 can be

changed for optimal confinement. One possibility is to use
values of Rc /w0 such that the modified beam is primarily in
a single LGp=1

� mode �29�. Pure LGp=1
� modes have a radial

intensity null that persists for all values of z. When Rc /w0 is
chosen such that the most pure LGp=1

� is formed, the inner
radial barrier height is roughly three times larger than the
outer one, and the longitudinal barrier is minimized. There-
fore, the crossing beam can be well outside the focal plane,
where better beam quality is observed but the ring-shaped
null remains dark. The reduction of aberration effects outside
the focal plane was shown for hollow beams in Ref. �31�.

We have used a spatial light modulator to generate super-
positions of LG modes that form single-beam, dark ring traps
for cold atoms. We have shown that the atoms can be held in
these potentials with long state lifetimes. We have observed
atom dynamics in the longitudinal direction and shown that
by modifying the trap alignment with the SLM we can opti-
mize the scattering lifetime.

This work was funded by the Office of Naval Research
and the Defense Advanced Research Projects Agency.
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