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We have combined the idea of renormalization group and quantum-information theory. We have shown how
the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is
obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the
quantum-information properties of a many-body system. We have obtained the concurrence as a measure of
entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising
model in transverse field. We have found that the derivative of concurrence between two blocks each contain-
ing half of the system size diverges at the critical point with the exponent, which is directly associated with the
divergence of the correlation length.
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A fundamental difference between quantum and classical
physics is the possible existence of nonclassical correlations
in quantum systems called entanglement �1�. Recently, the
study of strongly correlated systems in condensed matter
physics from the perspective notions of quantum-information
theory has received much attention. It seems that the main
motivations for such treatment are two fold: �i� Over the last
decade the entanglement has been realized to be a crucial
resource to process and send information in ways such as
quantum teleportation, supercoding, and algorithms for
quantum computations �2�. �ii� The features of the ground
state of many-body systems which consists of a superposi-
tion of a huge number of product states opens the question of
how these states are interrelated.

The role of entanglement in quantum phase transition
�QPT� �3� is of considerable interest �4�. Quantum phase
transitions occur at absolute zero and are driven by quantum
fluctuations. Entanglement as a direct measure of quantum
correlations shows nonanalytic behavior such as discontinu-
ity in the vicinity of the quantum phase transition point �5�.
In the past few years the subject of several activities were to
investigate the behavior of entanglement in the vicinity of
quantum critical point for different spin models �4,6–10� as
well as itinerant systems �11–13�.

Our main purpose in this work is to combine the idea of
quantum renormalization group �QRG� �14,15� and
quantum-information properties �QIP�. This will give two
insights on �i� how a quantum information property evolves
as the size of system becomes large and �ii� QRG connects
the nonanalytic behavior of entanglement to the critical phe-
nomenon properties of the model. To have a concrete discus-
sion, the one-dimensional S= 1

2 Ising model in a transverse
field �ITF� has been considered by implementing the quan-
tum renormalization group approach.

The main idea of the RG method is the mode elimination
or thinning of the degrees of freedom followed by an itera-
tion which reduces the number of variables step by step until
reaching a fixed point. In Kadanoff’s approach, the lattice is
divided into blocks. Each block is treated independently to

build the projection operator onto the lower energy subspace.
The projection of the interblock interaction is mapped to an
effective Hamiltonian �Hef f� which acts on the renormalized
subspace �16,17�.

We have considered the ITF model on a periodic chain of
N sites with the Hamiltonian

H = − J�
i=1

N

��i
z�i+1

z + g�i
x� . �1�

To implement QRG the Hamiltonian is divided to two-site
blocks �18�, HB=�I=1

N/2hI
B with hI

B=−J��1,I
z �2,I

z +g�1,I
x �. The re-

maining part of the Hamiltonian is included in the interblock
part, HBB=−J�I=1

N/2��2,I
z �1,I+1

z +g�2,I
x �, where � j,I

� refers to the
� component of the Pauli matrix at site j of the block labeled
by I. The Hamiltonian of each block �hI

B� is diagonalized
exactly and the projection operator �P0� is constructed from
the two lowest eigenstates, P0= ��0���0 � + ��1���1�. In this re-
spect the effective Hamiltonian �Hef f = P0�HB+HBB�P0� is
similar to the original one �Eq. �1�� replacing the couplings
with the following renormalized coupling constants:

J� = J
2�	g2 + 1 + g�

1 + �	g2 + 1 + g�2
, g� = g2. �2�

Since the block Hamiltonian is treated exactly, the density
matrix can be written in terms of the ground state of the
two-site block, �12= ��0���0�. We confine our interest to the
entanglement between two sites which is measured by con-
currence. The concurrence in terms of the parameters defined
for a two-site block is

C = Max
�1 − �2 − �3 − �4,0� , �3�

where �k�k=1,2 ,3 ,4� are the square roots of the eigenvalues
in descending order of the operator R12,

R12 = �12�̃12, �̃12 = ��1
y

� �2
y��12

* ��1
y

� �2
y� .
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The concurrence as a measure of entanglement is a local
quantity which includes the global properties of a system.
Generally, the global properties of a system enters into the
entanglement effectively by summing over the whole de-
grees of freedom except the local one. In other words, a
system can be supposed of a single site and a heat bath �the
rest of system�. It is supposed that the effect of a heat bath
can be replaced by an effective single-site quantity, the en-
tanglement. The effective single site represents the long-
range properties of the model and not the microscopic ones.
Having this in mind we can enter the global properties of the
model to the entanglement �the local quantity� using the
renormalization-group idea. In this respect, we always think
of a two-site model which can be treated exactly as obtained
above. However, the coupling constants of the two-site
model are the effective ones which are given by the renor-
malization group procedure. This can be used as an approach
to calculate the entanglement in a large system.

Before implementing the idea of renormalization group to
calculate the entanglement, let us first briefly analyze the RG
equations �Eq. �2��. The RG equations give the flow of cou-
pling constants in the phase diagram. Any point in the phase
diagram runs to a stable fixed point �after enough iterations�
which defines the stable phases. The unstable fixed points are
important because they define the critical points which are at
the border of different stable phases. There are two stable
and one unstable fixed point for the RG equations of ITF
model. The stable phases are represented by two fixed points
g=0 �long-ranged ordered Ising phase� and g=� �the para-
magnetic phase�. The critical point gc=1 is the transition
point between the Ising �g�gc� and paramagnetic �g�gc�
phases. The obtained critical point is exactly the same as
what can be obtained by transforming the ITF model to free
fermions using the Jordan-Wigner transformation �19�.

To implement the idea of RG approach in concurrence we
have plotted in Fig. 1 the value of C versus g for different
RG steps. In the n RG step the expression given in Eq. �3� is
evaluated at the renormalized coupling given by the n itera-
tion of g given in Eq. �2�. The zero RG step means a bare
two-site model, while in the first RG step the effective two-

site model represents a four-site chain. Generally, in the n
RG step, a chain of 2n+1 sites is represented effectively by
the two sites with renormalized couplings. All plots in Fig. 1
cross each other at the critical point, gc=1. In other words
the critical point is a scale-free point where the quantum
fluctuations extend over all length scales.

After few RG iterations �which represent a large enough
system�, the concurrence at the critical point �gc� of the
model discontinues, that is, a signature of phase transition.
As shown in Fig. 1, the concurrence switches from 1 to 0. It
means that the entanglement acts similar to an order param-
eter, i.e., for the paramagnetic phase the entanglement is zero
and for the long-ranged ferromagnetic phase it is equal to
one.

The nonanalytic behavior in some physical quantity is a
feature of second-order quantum phase transition. It is also
accompanied by a scaling behavior since the correlation
length diverges and there is no characteristic length scale in
the system at the critical point. Osterloh et al. �4� have veri-
fied that the entanglement in the vicinity of critical point of
ITF model and XY model in transverse field shows a scaling
behavior. They have concentrated on the concurrence be-
tween the two nearest-neighbor sites at various sizes of sys-
tem. As we have stated in the RG approach for the ITF
model, a large system, i.e., N=2n+1, can be effectively de-
scribed by two sites with the renormalized couplings of the
nth RG step. Thus, the entanglement between the two renor-
malized sites represents the entanglement between two parts
of the system each containing N /2 sites effectively. In this
respect we can speak of block entanglement—the entangle-
ment between a block and the rest of system—in a large
system provided the size of the block and the rest of system
is equal.

Having this in mind, the first derivative of concurrence is
analyzed as a function of coupling g at different RG steps
which manifest the size of the system. The derivative of
concurrence with respect to the coupling constant � dC

dg
� shows

a singular behavior at the critical point �Fig. 2�. The singular
behavior is the result of discontinuous change of C at g=gc.
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FIG. 1. �Color online� Concurrence of the ITF chain as a func-
tion of g �transverse field strength normalized to the exchange in-
teraction� at different RG steps.
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FIG. 2. �Color online� Evolution of the first derivative Concur-
rence under RG in the limit of large system �high RG step�, the
nonanalyticity behavior of the first derivative of concurrence is cap-
tured through the diverging.
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We have plotted dC
dg versus g in Fig. 2 for different RG steps

which shows the singular behavior as the size of the system
becomes large �higher RG steps�. A more detailed analysis
shows that the position of the minimum �gm� of dC

dg tends
towards the critical point similar to gm=gc+N−	 with 	
=0.97, which has been plotted in Fig. 3. A similar behavior
has been reported in Osterloh’s work �4�, which shows that
�m scales as �m=1+N−1.87. It should be noticed that �m is the
position of the minimum of the derivative of concurrence of
two nearest-neighbor sites, which is different from our case.
In our treatment the derivative of the concurrence of two
blocks shows a singular behavior. Moreover, we have de-
rived the scaling behavior of y�� dC

dg �gm
� versus N. This has

been plotted in Fig. 4, which shows a linear behavior of ln�y�
versus ln�N�. The scaling behavior is � dC

dg �gm
� N	 with expo-

nent 	=1. However, the minimum value of the derivative of
concurrence for two nearest-neighbor sites diverges logarith-
mically �4�, dC

d� ��m
=−0.2702 ln N.

We would like to show that the exponent 	 is directly
related to the correlation length exponent close to the critical
point. The correlation length exponent, 
, gives the behavior
of correlation length in the vicinity of gc, i.e., ��g−gc�−
.
Under the RG transformation, Eq. �2�, the correlation length
scales in the nth RG step as ��n��gn−gc�−
=� /nB

n , which

immediately leads to an expression for �
dgn

dg �gc
in terms of 


and nB �number of sites in each block�. Dividing the last
equation to ��g−gc�−
 gives �

dgn

dg �gc
N1/
, which implies

	=1 /
, since � dC
dg �gm

�
dgn

dg �gc
at the critical point. It should

also be noted that the scaling of the position of minimum,
gmin �Fig. 3�, also comes from the behavior of the correlation
length near the critical point. As the critical point is ap-
proached and in the limit of large system size, the correlation
length almost covers the size of the system, i.e., �N, and a
simple comparison with ��g−gc�−
 results in the following
scaling form gm=gc+N−1/
.

To obtain the finite-size scaling behavior of concurrence
we have followed a scaling trick in which all graphs collapse
on each other. This is also a manifestation of the existence of
finite-size scaling for the block entanglement. The scaling
trick is based on the divergence of derivative of concurrence
close to the critical point �Fig. 2� and the power-law scaling
obtained in Figs. 3 and 4. We define the scaling variable x
=N1/
�g−gm� and obtain the universal function F�x� such
that dC

dg N1/
F�x�, where F�x�=1 / �1+x2�. In this way we
have plotted � dC

dg �gm
− dC

dg � /N versus N�g−gm� in Fig. 5. The
curves which correspond to different system sizes clearly
collapse on a single universal curve. This results justify that
the RG implementation of entanglement truly capture the
critical behavior of the ITF model.

To summarize, we have initiated the idea of renormaliza-
tion group �RG� to study the quantum-information properties
�QIP� of a system. In this respect some basic notions have
been introduced: �i� The evolution of QIP, i.e., entanglement
or concurrence, in terms of RG steps give how the properties
develop from a finite-size system to its thermodynamic coun-
terpart. In other words, there exist some finite-size scaling
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FIG. 3. �Color online� Scaling of the position �gm� of the mini-
mum of concurrence at different RG steps, it is seen that gm goes to
gc as the size of the system becomes large as gm=gc+N−0.97.
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for the properties. �ii� The RG procedure can be implemented
to obtain the QIP of a system in terms of the effective Hamil-
tonian which is described by the renormalized coupling con-
stants. �iii� The RG procedure indicates that the exponents
governing the nonanalytic behavior of the QIP in the vicinity
of the critical point comes from the long-range properties of
the model. This is the manifestation of the fact that some
global properties of the system can be represented by local
properties such as entanglement. These notions have been
observed and approved in our study of the ITF model. More-
over, the RG approach shows that as the size of the system
becomes large two effective sites are entangled for ferromag-
netic, i.e., g�gc and disentangled for paramagnetic, i.e., g
�gc, and probably manifest the block entanglement is rel-

evant for the existence of ferromagnetic correlations.
We have also implemented the idea of the QRG to the

anisotropic Heisenberg model �XXZ� �20� to obtain the QIP.
We have used the Von Neuman entropy for searching the
entanglement between one site and the rest of a three-site
block. We have been able to obtain the scaling behavior of
the concurrence and entanglement of this model. This justi-
fies our main idea.
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