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In a pair of related papers, Wang et al. �Phys. Rev. A 75, 013813 �2007�; 75, 042105 �2007�� claim to
present evidence, based on quantum field theory, for the superluminality of evanescent modes in undersized
waveguides. Here we show that the conclusion of the authors is false and is based on an error: they mistake a
nonzero propagator for a nonzero commutator. The commutator of the field operator at two points separated by
a spacelike interval is strictly zero, which makes true superluminality impossible.
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In Refs. �1,2�, the authors claim to provide evidence that
the propagation of photons along an undersized waveguide is
superluminal. They base this claim on a calculation that uses
the heavy machinery of quantum field theory on a simple
problem of classical electrodynamics. In this Comment, I
point out that the authors’ interpretation of their calculation
is wrong since the system under study is completely causal
and does not permit true superluminality. Contrary to their
statements, the equal-time commutator between the field op-
erators at two different points is strictly zero, which means
that a measurement at one point cannot influence a measure-
ment at the other. What they mistake for superluminal propa-
gation is simply the behavior of an exponentially decaying
standing wave in which all spatial points oscillate synchro-
nously.

There is nothing inherently quantum mechanical about
evanescent waves. They are seen in water waves �3�, acous-
tic waves �4�, waves on a string �5�, and, indeed, classical
electromagnetic waves �6�. Occam’s razor tells us that we
should always seek the simplest consistent theory that ex-
plains all the observable facts �7�. Thus it has not been found
necessary to quantize water waves in order to explain the
generation and tunneling of evanescent ocean waves �3�. In
like manner, since the number of photons per cubic wave-
length in a microwave field of even 1 V /m greatly exceeds
unity, the phenomenon of evanescence of electromagnetic
waves in a waveguide must be described by classical elec-
trodynamics unless one is dealing with quantum noise or
vacuum fluctuations.

Evanescence is observed when a wave tries to propagate
in a region where it cannot exist with a real propagation
constant. The Klein-Gordon equation is a classical model for
such waves and is easily derived from Maxwell’s equations.
For a y-polarized transverse electric field propagating along
the z direction, the wave equation is
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By writing the field as the product

Ey�x,z,t� = Ey�x���z,t�

and using separation of variables, we obtain the Klein-
Gordon equation
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and the transverse mode equation

d2Ey

dx2 = − �2Ey�x� . �3�

With boundary conditions Ey�0�=Ey�b�=0, where b is the
width of the waveguide, we find

Ey�x� = A sin��x/b�;

hence the eigenvalue �=� /b for the fundamental mode. For
the Klein-Gordon equation, we assume a solution of the form

��z,t� = ei�kz−�t�,

which leads to the dispersion relation

k2 = �2/c2 − �2.

If ���c��c, the cutoff frequency, then k becomes imagi-
nary and we have

k = ± i� = ± i��c
2 − �2�1/2/c . �4�

Below the cutoff frequency, the solutions are exponential
forms,

��z,t� = �Ae−�z + Be�z�e−i�t. �5�

For an infinite waveguide, as considered in Refs. �1,2�, we
must discard the growing term, and hence the field solution
is

��z,t� = Ae−�ze−i�t. �6�

This is a pure evanescent wave, the normal mode of an infi-
nite waveguide excited below the cutoff frequency. It is not a
propagating wave but an exponentially attenuated standing
wave in which all spatial points oscillate in phase. The term
“propagating evanescent wave” is thus an oxymoron. A pure
evanescent wave does not propagate. Its energy is largely
localized within a 1 /e distance of lc=1 /�. The fact that all
points move up and down synchronously does not imply that
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anything has moved with superluminal velocity to connect
those points. At exactly the cutoff frequency, there is no at-
tenuation and every point oscillates with the same amplitude.
When the waveguide is excited with an impulse, it will ring
at the cutoff frequency �8�. As the excitation frequency is
reduced from cutoff, the attenuation constant increases, be-
coming a maximum as �→0. The localization distance
reaches its minimum of 1 /�. It is also seen that the stored
energy is localized within a distance of 1 /�, independent of
the length of the evanescent region. This saturation of the
stored energy has been used to explain the Hartman effect,
the saturation of group delay with barrier length �8–12�. The
evolution of a pure evanescent electromagnetic wave is thus
seen to be a purely classical phenomenon completely ex-
plained by Maxwell’s equations. It does not involve propa-
gation and hence cannot be superluminal. These arguments
directly contradict the assertion of Wang et al. that “the su-
perluminal behavior of photons through an undersized wave-
guide is due to a purely quantum-mechanical effect…” �2�.
The evolution of evanescent electromagnetic modes is nei-
ther superluminal nor a manifestation of quantum mechanics.

If the evanescent wave is a nonpropagating entity, how
does it get into the waveguide in the first place? The penetra-
tion of a wave into an evanescent region has been treated in
detail in Ref. �8� When a wave is first turned on, there is a
transient at the front which propagates at c because it con-
tains high frequencies that lie above the cutoff. Behind this
front a standing wave builds up. The evanescent wave in an
infinite medium is a steady-state solution in which all the
field points oscillate synchronously.

We turn now to the evidence supplied by the authors as
proof of the superluminality of evanescent modes �1,2�. They
consider the same Klein-Gordon equation but treat ��x� as a
quantum field operator whose vacuum state is �0�. A one-
quantum state occurring at the space-time point x= �t ,x� is
represented by ��x��0�, while one occurring at y= �t ,y� is
given by ��y��0�. The authors’ entire case for the superlumi-
nality of evanescent modes is based on a calculation of the
quantity

D�x − y� = �0���x���y��0� , �7�

which represents the amplitude for finding the particle at the
point x given that it was initially at point y. For definiteness
the authors take x= �t ,0 ,0 ,r� and y= �0,0 ,0 ,0�, where the
third space coordinate r lies along the axis of the infinitely
long waveguide. For a spacelike interval, x2= t2−r2�0 and
one can always find a reference frame in which t=0. In other
words, there is an inertial frame in which the two events at x
and y occur simultaneously. Because the two events have a
spacelike interval, they cannot be causally linked: one event
cannot cause the other. The result of the calculation, given in
standard textbooks �13,14�, is that asymptotically, for a pure
space interval,

D�x − y� → r−3/2 exp�− �r� . �8�

On the basis of this result the authors make the claim that
“the propagation of photons along the undersized waveguide

is superluminal.” This interpretation is simply wrong. All Eq.
�8� is saying is that one cannot localize the photon to within
a distance shorter than 1 /� �13�. The states ��x��0� and
��y��0� are not orthogonal, which means that they do not
represent states occurring with certainty at x and not occur-
ring at y for any x�y. Because of the finite spatial extent of
these states, the “photon” is spread out so that it is simulta-
neously at x and at y. It does not mean the photon has propa-
gated superluminally from y to x. The test for superluminal-
ity is whether a measurement at x can influence a
measurement at y over a spacelike interval. That would re-
quire a nonvanishing commutator between the two operators.

The impossibility of superluminal propagation of photons
described by the Klein-Gordon field is easily seen by consid-
ering the commutator ���x� ,��y��. A textbook calculation
�14� shows that

���x�,��y�� = D�x − y� − D�y − x� . �9�

For a spacelike interval �x2−y2��0, a Lorentz transforma-
tion of the second term takes �x−y�→−�x−y� and hence the
two terms in the commutator are identical and cancel to give
zero:

���x�,��y�� = 0. �10�

As stated in Ref. �14� “no measurement in the Klein-Gordon
theory can affect another measurement outside the light-
cone.” Superluminality is impossible for fields that satisfy
the Klein-Gordon equation.

In Ref. �1�, further erroneous statements are made regard-
ing causality. The claim is made that the equal-time commu-
tation relations do not vanish for two evanescent modes. This
claim is supposedly in agreement with a conclusion of
Carniglia and Mandel �15�. First, the commutators indeed
vanish as I have pointed out above. Second, the authors
missed an important point in the work they cite. In their
paper, Carniglia and Mandel note that “an element of non-
causality was introduced right at the beginning of our treat-
ment, when we chose to ignore the high-frequency behavior
of the refractive index, at frequencies in the region of anoma-
lous dispersion and beyond. For this reason, the commutator
given by Eq. 84 cannot be expected to be strictly causal….”
Thus their model was noncausal from the beginning, whereas
the Klein-Gordon model is strictly causal. Believing �errone-
ously� that the commutators do not vanish for evanescent
modes, Wang et al. then try to explain this by asserting that
“because evanescent modes inside an undersized waveguide
are not observable, causality is preserved” �1�. Again, this
cannot be true since experimenters routinely observe evanes-
cent modes by translating a probe along a slotted waveguide
�6�.

In conclusion, the results and interpretations given in the
two papers �1,2� are erroneous. The evolution of evanescent
waves is a purely classical effect that does not require quan-
tum field theory for its understanding. The purported evi-
dence for superluminality of these modes is shown to be
false. A pure evanescent wave is a standing wave which can-
not propagate at all, much less superluminally.
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