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In this paper, we propose an experimentally feasible scheme that the superconducting quantum interference
devices are coupled with a high-quality cavity supporting a single-mode photon, to realize an effective Dicke
model. By using several hundred artificial two-level atoms, the strong coupling regime can be successfully
achieved. Moreover, in our proposal the superradiant phase transition for this model can be well controlled by
the frequency of external magnetic flux when the superconducting charge qubits work at their optimal point, in
which the qubits can be mostly immune from charge noise produced by uncontrollable charge fluctuations.
Finally, we propose to observe this phase transition by detecting the intracavity intensity in terms of a hetero-
dyne detector out of the cavity.
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In quantum optics the well-known Dicke model describes
N two-level natural atoms interacting with a single-mode
photon and has been regarded as an essential model to ex-
plore the fundamental quantum phenomena �1�. In the unit of
�, the Hamiltonian without rotating-wave approximation can
be written as HD=�0a†a+� j=1

N ���z
j +��a†+a��x

j /�N�, where
a and a† are the photon annihilation and creation operators
with the frequency �0, �l �l=x ,z� is the lth component of the
Pauli matrices, � is the frequency of the splitting between the
atomic levels, and � is the atom-field interaction strength. It
has been demonstrated that for the large N limit this model
can exhibit a second-order phase transition at the critical
point �c=��0� /2 �2� and the corresponding critical exponent
for the order parameter vanishes as N−2/3 at this transition
point �3�. As an important development in quantum informa-
tion and quantum computing, this phase transition has some
relations, to the quantum entanglement �4� and to the Berry
phase �5�, as well as to the quantum chaos �6�. Since in the
traditional Dicke model realized in the natural two-level
atomic ensembles, the frequencies �0 and � typically exceed
the atom-field coupling strength � by many orders of mag-
nitude, the quantum dissipation due to atomic spontaneous
emission and cavity loss is usually unavoidable. Moreover,
in standard current technique the atom-field coupling
strength � is difficult to be controlled. Therefore, this pre-
dicted phase transition has been never observed, which re-
mains a challenge to provide a practical physical system to
exhibit this interesting behavior �7�.

In this paper we propose an experimentally feasible
scheme that the superconducting quantum interference de-
vice �SQUID� are coupled with a high-quality cavity sup-
porting a single-mode photon, to realize an effective Dicke
model. It has been demonstrated in both theory and experi-
ment that this SQUID can act as the essential role of an
artificial two-level atom near the degenerate point �8�. It
should be noted that the natural atom is driven by using
microwave photons that excite electrons from one state to
other, whereas this artificial atom is mainly manipulated by
currents, voltages, and magnetic flux, which can be con-

trolled easily in experimental setups. Recently, the SQUID
inside a high-quality cavity has been recognized as a prom-
ising macroscopic device to explore various quantum phe-
nomena, process quantum information, and implement quan-
tum computing �9�. One of the advantages is that the cavity
can effectively protect the qubits from the environment,
which is important for a useful operation of qubits especially
in the scaling up of the solid-state devices. The other is that
an architecture using one-dimensional transmission line reso-
nators to arrive at the strong coupling regions between the
SQUID and photon field have been achieved �10�.

With a proper choice of parameters for the SQUID, the
realized Dicke model in our proposal can be arrived at the
strong coupling regime by using several hundred artificial
atoms, which has never been achieved in other quantum sys-
tems. It is also shown that the superradiant phase transition
for this model can be well controlled by the frequency of
external magnetic flux since in experiments, it is much easier
to produce precise frequency shifts as opposed to changing
the amplitude of the dc signal �11�. Moreover, in this case the
SQUIDs can work at their optimal point, in which the qubits
can be mostly immune from charge noise produced by un-
controllable charge fluctuations. Finally, we propose to ob-
serve this phase transition by detecting the intracavity inten-
sity in terms of a heterodyne detector out of the cavity �12�.

Figure 1�a� shows the ith SQUID constructed by two
identically Josephson junctions with lower capacitance CJ

i

and Josephson energy EJ
i . If we choose a material that the

superconducting energy gap is larger than the single-electron
charging energy, which can suppress the quasiparticle tunnel-
ing at low temperatures, the Hamiltonian for Fig. 1�a� can be
written as �8�

Hi = 4EC
i �ni − n̄i�2 − EJ

i �cos �1 + cos �2� , �1�

where EC
i =e2 / �2�Cg

i +2CJ
i �� is the charging energy with Cg

i

being the gate capacitance, ni is the number of the excess
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Cooper pair on the island, n̄i=Cg
i Vg / �2e� is the dimension-

less gate charge with Vg being the unified tunable gate volt-
age, �m�m=1,2� is the gauge-invariant phase difference be-
tween points on opposite sides of the mth junction. If this
SQUID locates within a single-mode cavity with frequency
�0 /2� shown in Fig. 1�b�, the gauge-invariant phase differ-
ence �m satisfies the condition such that �1+�2=2� and
�1−�2=2�	x

i /	0+2g�a+a†�, where � conjugates to the
Cooper pair number ni, a, and a† are the annihilation and
creation operators for the single-mode photon, 	x

i is the ad-
justable external magnetic flux, and 	0=�� /e is the flux
quantum. In the Coulomb gauge, the coupling strength

g=e
̂ · l̂ /�2
�0V�, where 
̂ is the unit polarization vector of
the cavity mode, l is the thickness of the insulating layer in
the junction, and V is the volume of the cavity, has a range
from 10−5 to 10−2 for the typical parameters. Generally
speaking, the effective flux g�a†+a� induced by the cavity

mode is much less than 	̃i=�	x
i /	0 and therefore the

Lamb-Dicke limit �g��a†a�+1�1� can be well satisfied.
When the charging energy EC

i is much larger than the
Josephson energy EJ

i , the relevant physics for the ith SQUID
is captured by taking into account only two charge
eigenstates ni=0,1, which constitute the basic vectors
	
0� , 
1�� of the computational Hilbert space of the qubit.
Hence, the whole system can be similar to an artificial two-
level atom interacting with the quantum harmonic oscillator,
and the corresponding Hamiltonian for the ith qubit can be

written as Hi=�0a†a+�i�z
i −EJ

i cos�	̃i+g�a†+a���x
i , where

�i=2EC
i �2n̄i−1� and the Pauli matrices are defined as

�z
i = 
0�i i�0
− 
1�i i�1
 and �x

i = 
0�i i�1
+ 
1�i i�0
.
If we consider the identical SQUIDs with the same exter-

nal magnetic flux and do not introduce the interaction be-
tween the ith and jth qubits, the Hamiltonian for Fig. 1�b� is

given by H=�0a†a+�Jz−EJ cos�	̃+g�a†+a��Jx, where
Jl=�i=1

N �l
i with j=N /2 are the collective artificial atomic

operators satisfying SU�2� commutation relations. In order to
show our scheme, we set �	x /	0=�t, �=0, to the rewritten
collective Hamiltonian as

H�t� = �0a†a −
EJ

2
�ei��t+g�a†+a�� + H.c.�Jx. �2�

Expanding the Hamiltonian �2� to the first order
of g in the Lamb-Dicke limit, we have H�t�
=�0a†a−

iEJg
2 �ei�t−e−i�t��a†+a�Jx �13�. Since a unitary trans-

formation does not change the eigenvalues of the system, in
the rotating reference frame through a unitary transformation
R�t�=e−i�tJz and under rotating-wave approximation, the
Hamiltonian is equivalently transferred to an effective time-
independent Hamiltonian He=R†�t�H�t�R�t�− iR†�t�dR�t� /dt

=�0a†a−�Jz−
EJg
2 �a†+a�Jy. Finally, in terms of a proper co-

ordinate transformation, an effective Dicke-like Hamiltonian
can be obtained by

He = �0a†a + �Jz +
�

�N
�a† + a�Jx, �3�

where �=gEJ
�N /2. It can be seen clearly that the Hamil-

tonian �3� is identical to that of the standard Dicke model in
quantum optics. However, in our proposal the frequency �
can be well controlled since in experiments, it is much easier
to produce precise frequency shifts as opposed to changing
the amplitude of the dc signal.

For the current experimental parameters with CJ=79 aF,
Cg=0.50 aF, Vg=0.325 V, and EJ�100 �eV, the charging
energy EC can be evaluated by EC�1000 �eV. For the
strong interaction between the SQUID and cavity, the cou-
pling strength g is considered by g�10−2. For typical cavity
with the length of the order cm and the SQUID with the
loop dimension of the order �m, the number of the SQUID
is of the order 103. If the number of the artificial atom is
chosen as N=100, the atom-field coupling strength can be
obtained by �=gEJ

�N /2=5 �eV. Comparing with the pho-
tonic energy ��0�30 �eV �14�, it is seen clearly that the
strong coupling regime can be successfully achieved. There-
fore, in our scheme, the quantum dissipation arising from
atomic spontaneous emission and cavity loss can be neglect-
able. Moreover, the Lamb-Dicke and strong coupling limits
can be satisfied simultaneously.

Following the procedure of Ref. �6� the ground-state
properties for the Hamiltonian �3� can be evaluated by means
of Holstein-Primakoff transformation �15�, which is defined
as J+=b†�N−b†b, J−=�N−b†bb and Jz= �b†b−N /2� with
�b ,b†�=1, and boson expansion method �16�. However, in
order to describe the collective behavior for the Hamiltonian
�3� we should introduce shifting boson operators c† and d†

with properly scaled auxiliary parameters � and  such as
c†=a†+�N� and d†=b†−�N. Thus, we have

i
x�
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FIG. 1. �Color online� Scheme of our proposed experimental
setups. �a� A qubit, �b� a series of qubits monitored by a unified gate
voltage, �c� the total quantum device where the quantum network
shown in �b� is loaded into the cavity formed by the reflective
surfaces of mirrors �M1 ,M2�. The HD out of the cavity can allow
the real-time determination of intracavity intensity I� 
�a�
2.
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He = NH0 + N1/2H1 + ¯

= N��0�2 + ��2 − 1/2� − 4�̃��k�

+ N1/2	�− �0� + 2�̃�k��c† + c�

+ �� − 2�̃���k − 2/�k���d† + d�� + ¯ ,

where k=1−2.
The critical frequency of external magnetic flux can be

derived from N1/2H1=0 by �6�

�c =
Ng2EJ

2

�0
. �4�

With the above-mentioned parameters, this critical frequency
is evaluated by �c=5.08 GHz, which can be achieved ex-
perimentally. For ���c, the effective potential
U�=��a†+a�Jx /�N� plays the essential role for the whole
Hamiltonian He and the macroscopic excitations can occur.
The corresponding phase is called the superradiant phase.
With the increasing of �, the contribution of this effective
potential U is cut back. When � exceeds �c, the rest Hamil-
tonian H0�=�0a†a+�Jz� dominates in the Hamiltonian He

and the system is only microscopically excited. The corre-
sponding phase becomes the normal phase. The ground state
energies for the superradiant and normal phases are given
by E0=−N��� /2+�2�1−�2� /�0� with �=��0 /Ng2EJ

2 and
E0=−N� /2, respectively. Figure 2 shows the scaled ground
state energy E0 /N and its second-order derivative with re-
spect to � as a function of �, which clearly illustrates the
nature of the second-order phase transition. The correspond-
ing auxiliary parameters � and  are given by �
=��1−�2 /�0 and =��1−�� /2 and �==0, respectively.

In the rest of this paper we give a scheme of how to
observe this superradiant phase transition in the strong cou-
pling regime. Figure 1�c� shows the total quantum device

where the SQUID’s quantum network is loaded into an
optical cavity formed by the reflective surfaces of mirrors
�M1 ,M2�. It should be noted that in such quantum system
that the many-body quantum pseudospin state is not acces-
sible to observe, here we propose to detect the direct and
striking signatures of the photon field by a heterodyne detec-
tor �HD� out of the cavity. In the conventional quantum
optics the well-defined intracavity intensity I� 
�a�
2 can be
conveniently observed by means of the quantum nondemoli-
tion measurement �12�. In terms of the inverse transforma-
tion a†=c†−�N� and the ground state properties, the scaled
intracavity intensity I /N can be evaluated by

I

N
� �N�2�1 − �2�/�0

2, � � �c,

0, � � �c.
� �5�

Figure 3 shows the scaled intracavity intensity I /N and its
first-order derivative with respect to � as a function of �. In
the normal phase the scaled intracavity intensity I /N van-
ishes to zero whereas it depends on the relative parameters of
both the SQUID and the cavity in the superradiant phase,
which also illustrates a macroscopic collective excitation
phenomenon. It is interesting that this superradiant phase
transition characterized by the nonanalyticity of the scaled
intracavity intensity I /N is remarkably of the first order.
When the frequency � approaches the critical value �c, the
scaled intracavity intensity I /N vanishes as �I /N�� 
�−�c
.
Since the diverging characteristic length scale is
�
�−�c
−v with v=1 /2, the critical exponent for the
scaled intracavity intensity I /N can be derived from
I /N� 
�−�c
zv by z=2, which shows the universality prin-
ciple of quantum phase transition �17�.

Comparing with the existing scheme to observe the super-
radiant phase transition, our proposed scheme processes
likely the following advantages. �1� The SQUID and the
high-quality cavity can be highly fabricated and the
SQUID’s quantum network can be scaled to many qubits. �2�
The superradiant phase transition can be well controlled by
the frequency of external magnetic flux since in experiments,
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FIG. 2. �Color online� The scaled ground-state energy E0 /N
versus the frequency � with the parameters EC�1000 �eV
�CJ=80 aF, Cg=0.50 aF�, EJ�100 �eV, g�10−2, N=100, and
��0�30 �eV. The critical frequency is evaluated by
�c=5.08 GHz. Inset: the second-order derivative of E0 /N with re-
spect to � versus �.
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FIG. 3. �Color online� The scaled intracavity intensity I /N ver-
sus the frequency � with the same parameters as those in Fig. 2.
Inset: The first-order derivative of I /N with respect to � versus �.
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it is much easier to produce precise frequency shifts as op-
posed to changing the amplitude of the dc signal. �3� The
SQUIDs can work at their optimal point ��=0�, in which the
qubits can be mostly immune from charge noise produced by
uncontrollable charge fluctuations. �4� The intracavity inten-
sity I� 
�a�
2, which is remarkably of the first order, is a good
witness to observe this superradiant phase transition in the
current experimental setups.

In conclusion, we have proposed an experimentally fea-
sible scheme to realize an effective Dicke model with the
strong coupling regime. The interesting collective behavior
of this model, the superradiant phase transition, which has
never been observed, has been also suggested to be realized.
Before ending this paper, we should make one remark. The
no-go theory tell us that this phase transition cannot occur if
in the atomic system three conditions including minimal cou-

pling, classical radiation field, and dipole approximation are
satisfied simultaneously �18�. However, in our proposal the
quantized field �or photon� is considered. Moreover, the cor-
responding Hamiltonian is described by the system of spins
interacting with radiation. Therefore, we argue that this pro-
posed solid-state system is a perfect system to study the su-
perradiant phase transition, which awaits the experimental
validation.
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