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We investigate entanglement properties of mixtures of short-range spin-s dimer coverings in lattices of
arbitrary topology and dimension. We show that in one spatial dimension nearest neighbor entanglement exists
for any spin s. Surprisingly, in higher spatial dimensions there is a threshold value of spin s below which the
nearest neighbor entanglement disappears. The traditional “classical” limit of large spin value corresponds to
the highest nearest neighbor entanglement that we quantify using the negativity.
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Recently, there has been a considerable interest in a pos-
sible link between entanglement and properties of many-
body systems �1�. Although a role of entanglement in the
description of such large macroscopic systems is not entirely
clear there are some promising results showing the connec-
tion between the critical phenomena and entanglement �2�.
Our present paper is a small contribution to this field.

Consider a macroscopic system of N subsystems with an
arbitrary spin s. Maximal entanglement of such a system
corresponds to the configuration where pairs of subsystems
exist in maximally entangled states �dimers�. The amount of
entanglement quantified by the relative entropy in this case is
�N /2�log�2s+1�. The dimer configuration is also the most
robust to noise in the sense that one has to destroy entangle-
ment between each pair of dimers in order to destroy all
entanglement. However, there are many dimer configurations
leading to the same maximal amount of entanglement. Fre-
quently in nature there is no reason why some of them
should be more likely than others, which is why they occur
as superpositions or mixtures of all possible dimer coverings.

Here we analyze how superposing and mixing of dimers
affects the robustness of their entanglement. We limit our-
selves to short-range dimers because in practice forces gen-
erating entanglement between subsystems are themselves es-
pecially short range �in momentum space this, of course,
need not be the case, an issue that is briefly addressed at the
end of the paper�.

Let us first consider a one-dimensional lattice that is a
union of two sublattices LA and LB. The sites belonging to
the lattice LA �LB� are enumerated by odd �even� numbers.
We assume that the lattice is described by the so-called spin
liquid, i.e., a state without magnetic order,

��̃� = ��ab�12���ab�34� ¯ ��ab��2N−1��2N��

+ ��ab��2N�1���ab�23� ¯ ��ab��2N−2��2N−1�� = �c1� + �c2� ,

�1�

with ��ab�n�n+1��= �1/�S��k=0
S−1�S

kb�k�n�k+a�n+1, S=2s+1, a ,b
=0,1 , . . . ,S−1, �=exp�2i� /S�, and the index n refers to the
nth site on the ring. The states ��ab�n�n+1�� form a generalized
Bell basis for two particles with spin s, i.e., they are com-
plete and maximally entangled. In analogy with the spin-1

2
case a maximally entangled state between two sites is called

a dimer and the states �c1� , �c2� are called dimer coverings.

We are interested in entanglement properties of the state ��̃�
in the thermodynamical limit, i.e., for N→�. Note that it
makes no difference in this limit whether we are superposing
or mixing two dimer coverings. As will be proven below all
the phase information is absent from the local entanglement
properties, which we are interested in.

We can prove the following facts for a one-dimensional
case.

�1� There is always nearest neighbor entanglement for an
arbitrary value of s. Furthermore, we present the negativity
as the function of s and show that it increases with s.

�2� The subset of even �or odd� sites does not contain
entanglement.

�3� The subset of even �or odd� sites is maximally en-
tangled to the rest.

Proof of (1). Let us first derive a density matrix for the
nearest neighbors. Due to the translational invariance of the
state it is enough to consider the density matrix �12 of the
first two spins. We have

�c1� = �
k1,k2,. . .,kN

��k1+k2+¯+kN�b

�SN
�k,k1 + a�12

��k2,k3, . . . ,kN�357. . .�k2 + a,k3 + a, . . . ,kN + a�468. . . ,

�c2� = �
k1,k2,. . .,kN

��k1+k2+¯+kN�b

�SN
�k1 + a,k2�12

��k2 + a,k3 + a, . . . ,kN + a�357. . .

��k3,k4, . . . ,kN−1,k1�468. . . . �2�

After some tedious but straightforward algebra we get

Tr345. . .�2N���c1�	c1�� = ��ab��	�ab�� ,

Tr345. . .�2N���c2�	c2�� =
1

S2 ,

Tr345. . .�2N���c1�	c2�� =
�abN

SN ��ab��	��a + 2Na�b�� , �3�

where 1 is the identity matrix. Thus the unnormalized density
matrix �̃12 reads
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�̃12 =
1

S2 + ��ab��	�ab�� +
�abN

SN ��ab��	��a + 2Na�b�� + H.c.

�4�

The trace of the matrix �̃12 equals M =2+2S1−N

�cos�2�abN /S� if the number of the sites is a multiplicity
of S, i.e., 2N=mS �m is an integer� and 2 otherwise.

In the thermodynamic limit the normalized state �12 be-
comes an equal mixture of the maximally entangled state
��ab�� and the white noise

�12 

N→� 1

2S2 +
1

2
��ab��	�ab�� . �5�

In a similar way we can compute the density matrix be-
tween next nearest neighbors, for instance, between the first
and the third spin

�̃13 =
2

S21 +
1

SN �
k1,k2

�−abN�k1,k2�	k2 + 2�N − 1�a,k1 + 2a�

+ H.c., �6�

which becomes the white noise in the thermodynamical limit
because the off diagonal elements rapidly vanish with N. It
can be checked that for larger separation one always gets the
white noise for the same reason, i.e., the off-diagonal ele-
ments vanish with N.

We finally calculate the negativity between nearest neigh-
bor spins. Since their state is a mixture of a maximally en-
tangled state with identity matrix as is expressed in Eq. �5�,
the overall eigenvalues will be the same mixtures of the ei-
genvalues of the identity matrix and the eigenvalues of the
maximally entangled state. This is also true for the partially
transposed state since a density matrix is diagonalized sim-
ply by unitary operation as

�12
T1 → U�12

T1U† =
1

2S2 +
1

2
U���ab��12	�ab���T1U†. �7�

T1 means partial transposition of the density matrix on the
particle 1. It is therefore easy to see that the negative eigen-
values of the partially transposed state all have the absolute
value of �S−1� /2S2. At the same time, the number of nega-
tive eigenvalues of the partially transposed total state is cal-
culated to be �S2−S� /2. The total negativity, which is the
summation of all negative eigenvalues, measures the amount
of entanglement in the state �3� and the total negativity is
hence S�S−1�2 /4S2 for the state. We see that, for large spin
value, the total negativity grows linearly with the size of spin
as claimed earlier.

Proof of (2) and (3). The density matrix �o ��e� describing
the subset of all the odd �even� sites has the following form:

�̃o = 2 +
�−Nab

SN �
k1,k2,. . .,kN

�k1,k2, . . . ,kN�

�	kN + 2a,k1 + 2a, . . . ,kN−1 + 2a� + H.c.,

�̃e = 2 +
1

SN �
k1,k2. . .kN

�k1 + a,k2 + a, . . . ,kN + a�

�	k2,k3, . . . ,kN,k1� + H.c. �8�

Both of them become the white noise in the thermodynamic
limit, which implies that there is no entanglement between
any subset of odd �even� sites. However, the set of all the
odd sites is maximally entangled with the set of all the even
sites.

The entanglement between the subsets of odd and even
sites can be seen already at the level of four sites. For in-
stance, the state of the first four sites is given by

�̃1234 = ��ab�12,�ab�34�	�ab�12,�ab�34�

+
11

S
� ��ab�23�	�ab�23� �

14

S

+ O�S2−N���ab�13,�ab�24�	�ab�14,�ab�23� + H.c. �9�

It is clear that the sites 1 and 3 treated as one subsystem are
entangled to the subsystem consisting of the sites 2 and 4 but
there is no genuine multipartite entanglement. The above for-
mula can be easily generalized for an arbitrary subset con-
taining even and odd sites and it can be seen that as long as
the size of the subsets is fixed the subset is not genuinely
multipartite entangled in the thermodynamical limit.

There are situations in which different dimer coverings
have the same energy. This happens, for example, in the
Majumdar-Ghosh Hamiltonian �4�, where we have nearest
and next nearest neighbor interactions. Unless there is some
broken symmetry mechanism each different covering will
contribute to the overall state with equal weight in the ther-
modynamic equilibrium. This means that it is more appropri-
ate to consider a mixture of dimer coverings rather than their
superposition. In any spatial dimension such a mixture, �,
has the following form

� =
1

M
�
k=1

M

�ck�	ck� , �10�

where �ck� is the kth dimer covering and M is the number of
all possible dimer coverings. For simplicity we present our
result in two dimensions. The generalization to higher di-
mensions is straightforward. �See Refs. �5,6�.�

We consider an infinite two-dimensional square lattice
that is a union of two sublattices LA and LB. A site belonging
to the sublattices LA has neighbors belonging to the sublat-
tices LB �coordination number is 4�. In this case, the state �
is defined as the incoherent mixture of all possible dimer
coverings between the sublattices LA and LB. The following
question arises, given a link of a pair of spins: What is the
ratio between coverings that admit maximal entangled pair
on the spins and all the other states?

To answer this question let us imagine a situation when
two arbitrary neighbors, say A and B, are in a maximally
entangled state, i.e., they form a dimer. The rest of the sites
can be covered by dimers and there are � of such coverings.
For an infinite lattice � is, of course, infinite but we can
assume that the lattice is very large in which case � is also
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large but finite. Suppose now that the same neighbors are not
in a maximally entangled state, i.e., they form dimers with
their other neighbors. As is illustrated in Fig. 1, it is easy to
see that in each such case �there are three of them� the num-
ber of the remaining dimer coverings �� is equal and ap-
proximately the same as in the previous case where the two
neighbors A and B were in a maximally entangled state, i.e.,
����. Therefore, for an infinite lattice the ratio of the dimer
coverings including the sites A and B to the dimer coverings
not including the sites A and B equals 1

3 . The consequence of
this is that after tracing out all the other sites the density
matrix describing the neighboring sites A and B �A and B can
be, in fact, any neighbors� is given by a generalized Werner
state containing 3

4 of the white noise. Similar to the 1D case
examined in the proof of �1�, one can find that all the nega-
tive eigenvalues of the partially transposed reduced density
matrix of two given neighboring spins A and B are �3
−S� /4S2. Thus, for a system consisting of spin 1

2 , there is no
entanglement between the neighbors and the situation
changes for larger spins S	3 �recall that S=2s+1, where s
is the spin�. It agrees with the previous result that the higher
amount of the white noise S / �S+1� can be admixed to a
maximally entangled state without destroying entanglement
�7�.

Similar reasoning can be applied to a “honeycomb” two-
dimensional lattice �coordination number 3�. In this case
each spin has only three neighbors which gives us the
amount of the white noise in the Werner state between the
nearest neighbors equal to 2

3 . For spin-1
2 we do not have

entanglement �the state is on the verge of being entangled�,
whereas entanglement exists for larger spins, i.e., for S	2.

In higher than two dimensions we can apply exactly the
same logic. All we need to do is to calculate the ratio of the
number of coverings containing a dimer between two neigh-
boring sites and those that do not. This ratio is always a
fraction 1/R, where R is a finite number that is the function
of the coordination number �for a simple regular lattice it is

equal to twice the spatial dimension�. Therefore, in any di-
mension and any lattice structure, entanglement will always
exist for spins with magnitude higher than R; likewise it
vanishes below this value.

A possible test of our prediction that there is a critical
value of the spin below which entanglement does not exist
could go as follows. Recently, condensates of fermionic at-
oms were observed in the laboratory �8�. In order to achieve
condensation fermions have to form entangled pairs �so-
called Cooper pairs�, which then behave like quasibosons.
Entangled fermionic pairs are formed through a scattering
process the strength of which can be controlled experimen-
tally by Feshbach resonance. Our calculation implies that
only atoms with sufficiently high spins can form entangled
pairs. In three dimensions we require atoms to have spin
higher than 2 �i.e., s


5
2 �. The experiment by Regal et al. �8�

uses potassium atoms, 40K, whose spin is 9
2 . Were they to use

atoms with spin of 3
2 or lower, we conjecture that no fermi-

onic condensation would be possible. Note that allowing
long-range dimers can only increase the spin value necessary
for entanglement between any two sites on the lattice. This is
because the ratio of the dimer coverings contributing to the
maximally entangled state between any two points on the
lattice to the rest of the coverings decreases.

It is important to emphasize that our assumptions do not
need to hold in practice. For example, the BCS model of
fermionic condensation �9� has a ground state where mo-
menta of spins are coupled in opposite directions as is sche-
matically shown in Fig. 2. Namely, spin dimers now exist
only between specific points on the lattice. This affects the
ratio of mixing and allows for entanglement with low spin in
higher dimensions. This model is highly nonisotropic in the
sense of lattice points not having the neighborhood.

As a conclusion, we investigate entanglement properties
of mixtures of short-range spin-s dimer coverings in lattices
of arbitrary topology and dimension. We show that, in one

�
�
�

A

BA

B

BABA
++

+

FIG. 1. �Color online� Mixture of four possible dimer coverings,
��ck� ,k=1, . . . ,4, for an infinite lattice site. The top box depicts one
of the dimer coverings when the neighbors A and B are maximally
entangled. The other three show some of the possible coverings
when the state of A and B is maximally mixed �therefore disen-
tangled�. We argue that the ratio of the number of the coverings
when A and B are maximally entangled to the number of coverings
when A and B are maximally mixed is 1:3 in the thermodynamic
limit �just like in the figure�.

k

k

FIG. 2. �Color online� Arrangement of dimers in the BCS
ground state in the momentum space. The pairs of points represent
pairs of spin entangled electrons with momenta of the same magni-
tude but of opposite directions. As we see this arrangement is not
isotropic, which is why our considerations no longer apply. In this
state we have fermionic pair condensation and yet each of the fer-
mions is spin-1

2 . This is in contrast to the isotropic case when the
minimal spin required for entanglement in three dimensions is 5

2
�see text for detailed explanation�.

BRIEF REPORTS PHYSICAL REVIEW A 76, 054302 �2007�

054302-3



spatial dimension, nearest neighbor entanglement exists for
any spin s. In higher spatial dimensions, there is a threshold
value of spin s below which the nearest neighbor entangle-
ment disappears and the threshold is found as s= �2D−1� /2
when D is the spatial dimensionality. Moreover, the tradi-
tional “classical” limit of large spin, s→�, corresponds to
the highest nearest neighbor entanglement that we quantify
using the negativity.

Dimer coverings present very simple entangled states. Yet
they are physically relevant as they frequently occur in na-
ture. Their entanglement structure is simple. Here we show
that overall entanglement is fully characterized only in terms
of nearest neighbor entanglements. In spite of its simplicity,

we encountered one surprising fact. Namely, in higher than
two dimensions the existence of entanglement is dependent
on the size of the spin in each lattice site. Many questions
remain open. For example, what happens when a degree of
anisotropy is introduced into dimer coverings? Also, when
does long range entanglement arise if we allow long-range
dimers? We hope that our work stimulates a number of other
interesting directions of research.

We acknowledge M. Terra Cunha for useful discussions
related to this work. V.V. is grateful to the Engineering and
Physical Sciences Research Council in the UK and the Royal
Society and Wolfson Foundation for financial support.

�1� M. Williamson and V. Vedral, Phys. Rev. A 76, 032115 �2007�.
�2� A. Osterloch, L. Amico, G. Falci, and R. Fazio, Nature �Lon-

don� 416, 608 �2002�.
�3� G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 �2002�.
�4� C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388

�1969�.
�5� Long range spin-1/2 dimer coverings, called spin gas, in two

dimensions and higher were considered in �6�.
�6� A. Chandran, D. Kaszlikowski, A. Sen De, U. Sen, and V.

Vedral, Phys. Rev. Lett. 99, 170502 �2007�.
�7� R. F. Werner, Phys. Rev. A 40, 4277 �1989�; M. Horodecki, P.

Horodecki, and R. Horodecki, ibid. 60, 1888 �1999�; M. Horo-
decki and P. Horodecki, ibid. 59, 4206 �1999�.

�8� C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 �2004�.

�9� J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 �1957�.

BRIEF REPORTS PHYSICAL REVIEW A 76, 054302 �2007�

054302-4


