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A radially polarized beam focused by a high-numerical-aperture �NA� objective has a strong longitudinal
and nonpropagating electric field in the focal region, which implies that it is suitable for axial optical trapping.
In this paper, we use the vectorial diffraction integral to represent the field distribution of the radially polarized
beam focused by a high-NA objective and then employ the T-matrix method to compute the radiation forces on
spherical particles. Effects of different parameters, such as the size of the sphere, the inner radius of the radially
polarized beam, and the NA of the objective, on the radiation forces are presented.
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I. INTRODUCTION

In 1986, Ashkin et al. demonstrated that a single focused
laser beam can pull up and trap a dielectric microsphere at
the position of the focus point �1�. This technology, namely,
the optical tweezer, has been widely applied in physics,
chemistry, and biophysical studies, e.g., trapping and cooling
single molecules and atoms �2�, measuring the force associ-
ated with the transcription of RNA �3�, and moving single
DNA molecules in viscous flows �4�, and so on. Accurate
calculation of the optical forces enables quantitative investi-
gation into the process of interaction between light and mat-
ters and a better understanding of the physical mechanism.

The radiation forces exerted by the incident beam on a
particle stem from the total momentum change due to scat-
tering, absorption, and emission by the trapped particle. In
theory, there are three methods for analysis of optical radia-
tion forces acting on microparticles in terms of the particle’s
size. If the particle is very small compared with the wave-
length of the incident light, the Rayleigh scattering model
presents no difficulties for determining the radiation forces
on such a small particle �5�. If the size of the particle is much
larger than the wavelength of the incident light, the ray op-
tics model can be employed as a good approximation to
compute the forces �6�. When the particle’s dimension is near
the wavelength of the incident light, these two models fail to
offer an adequate solution to the problem considered. In this
case, the radiation force is obtained via the Maxwell stress
tensor, which requires knowledge of the scattered field out-
side the particle. For spherical particles, the Mie scattering
theory can provide an exact solution to the scattering field;
then the radiation force on the sphere is determined by inte-
grating the Maxwell stress tensor over a spherical surface at
infinity. A comprehensive overview of how to calculate the
radiation on the sphere using the generalized Lorenz-Mie
theory has been made by Lock �7�. Recently, the T-matrix
method has also been applied to the calculation of radiation
forces acting on particles �8–12�. Since the T-matrix method
can compute the field scattered by a nonspherical particle, it
is able to obtain the radiation forces on spheroidal and even
ellipsoidal particles �13,14�.

Generally, we employ a fundamental mode Gaussian
beam to represent the incident field near the focus after being

focused by an objective. This description for the field, how-
ever, has non-negligible error, especially in the case of a
beam focused by a high-numerical-aperture �NA� objective.
A fifth-order corrected Gaussian model has been proposed by
Barton and Alexander to diminish the error �15�. Another
alternative to modeling the incident beam is the so-called
vectorial diffraction theory, which is based on the vectorial
Debye-type integral formulated by Wolf and Richards in
their classical paper �16�. Relative to the fifth-order corrected
Gaussian model, the vectorial diffraction theory can deal
with the effect of diffraction by a high-NA objective, the
apodization function, and spherical aberration. It thus cor-
rectly characterizes the field distribution near the focus.

By now, linearly or circularly polarized beams are the
most common ones used in optical trapping. Recently, beams
with cylindrically symmetric polarization such as radial po-
larization have been widely studied. Many methods have
been proposed for generating a radially polarized beam and
the properties of the beam have been analyzed in detail
�17–22�. The polarization property of the radial polarization
field causes it to have a vanishing Poynting flux component
along the propagation axis near the focus under tightly fo-
cusing conditions �21,22�. This character implies that the ra-
dial polarization field may reduce the scattering force and
thus improve the axial trapping efficiency. Zhan �22� demon-
strated this possibility for a metallic Rayleigh particle.
Kawauchi et al. �23� showed that higher axial trapping effi-
ciency is obtained by using a radially polarized beam to il-
luminate a dielectric particle in the ray optics regime.

In this paper, we use the T-matrix method to calculate
radiation forces on more general dielectric particles with size
ranging from the Rayleigh regime to several wavelengths,
illuminated by a radially polarized beam focused by a
high-NA objective. A familiar calculation for such general
particles with linear polarization beams has been done by
Ganic et al. �24,25�. We use a Debye-type integral to de-
scribe the field distribution near the focus. For each angular
spectrum of plane waves in the integrand, the expansion co-
efficients of vector spherical wave functions �VSWFs� can be
easily obtained. The expansion coefficients of the total field
are thus integrals of those of each of the plane waves. Once
the expansion coefficients of the incident field is known, the
scattering field is obtained by means of the T matrix, and the
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radiation forces are computed via the Maxwell stress tensor.
Numerical calculations of the radiation forces on spherical
particles exerted by the radial polarization field with different
configurations, such as the numerical aperture and the inner
radius of the beam, are given. At the same time, the case of
a linear polarization field is also discussed as a comparison.

II. THEORETICAL MODELING

Generally, there are two types of methods for obtaining a
radially polarized beam. One type generates the beam out-
side the laser cavity, e.g., Shoham et al. �18� used two coni-
cal reflectors and a cylindrical sheet of polarizing film to
produce a radially polarized beam from a randomly polarized
source. The other type generates the beam inside the laser
cavity, for example, Kozawa and Sato �19� placed two coni-
cal prisms, one convex and the other concave, inside a
neodymium-doped yttrium aluminum garnet �Nd:YAG� laser
cavity to obtain an output of the radially polarized TEM01
mode. The polarization of such a beam is in the radial direc-
tion, and the intensity distribution is of cylindrical symmetry
and takes on a ring shape as shown in Fig. 1. The radially
polarized beam focused by a high-NA objective has a strong
longitudinal and nonpropagating electric field in the focal
region �21,22�. For this field near the focus to be suited to the
T-matrix method, we first need to analyze the VSWF expan-
sions of the radially polarized beam in the focal region.

A. Expansion of a radially polarized beam using vector
spherical wave functions

The geometry of a radial polarization beam focused by an
objective is illustrated in Fig. 1. A radially polarized beam
with a planar wave front propagates along the optical axis
from the left and is focused by an aplanatic lens to produce a
converging spherical wave toward the focus of the lens. The
particle to be trapped is located somewhere near the focus.
For convenience of calculation, we set the focus point as the
origin of the coordinate system and denote the center posi-
tion of the sphere by the vector R. The refractive indices of
the particle and the environment are, respectively, n2 and n1.

According to the Debye-type integral representation de-
veloped by Wolf and Richards �16�, the electric field of the
radially polarized beam focused by a high-NA objective can
be written as

Ei�r� =
− ikf

2�
�

0

� �
0

2�

sin ��cos ��1/2l���

�exp�ikŝ · �r − R���̂ d� d� , �1�

in which k and f are the wave number in the ambient me-
dium and the focal length of the lens, respectively, � is the
maximal angle give by the NA of the objective lens, and l���
stands for the amplitude of the field at the entrance pupil of
the lens, which has a cylindrical symmetry about the optical
axis. The vector r designates the observation point position,
and the unit vector ŝ�� , �� defines the wave vector direction
of a given plane wave, where �� , �� represent the polar and
azimuthal angles, respectively, in a spherical coordinate sys-
tem. The polarization direction of the field in image space is

described by the unit vector �̂ in the � direction.
In the T-matrix method, all the fields are expanded in

terms of vector spherical wave functions,

Ei�r� = �
n=1

�

�
m=−n

n

�amnMmn
1 �kr� + bmnNmn

1 �kr�� , �2a�

Es�r� = �
n=1

�

�
m=−n

n

�emnMmn
3 �kr� + fmnNmn

3 �kr�� , �2b�

where Mmn
1,3�kr� and Nmn

1,3�kr� are VSWFs of the first and third
kind �26�, and the expansion coefficients amn and bmn of the
incident field can be determined from Eq. �1�. In Eq. �1�, the
incident field is a superposition of a series of plane waves
with polarization in the � direction. For each plane wave
component, we have the following expansions �26�:

�cos ��1/2l���exp�ikŝ · r��̂ = �
n=1

�

�
m=−n

n

�AmnMmn
1 �kr�

+ BmnNmn
1 �kr�� , �3�

with

�Amn

Bmn
� = �− 4in+1���cos ��1/2l����m�n

m���e−im�

�n
m���e−im� � , �4�

where �n
m��� and �n

m��� are functions involving the associ-
ated Legendre functions. Substituting this expression into
Eq. �1� and using the integral representation of the cylindri-
cal Bessel function, we finally have

amn = − 8��min+1−me−im�0�

��
0

�

�cos ��1/2l����n
3���Jm�k	0 sin ��

�exp�− ikz0 cos ��sin � d� , �5a�

bmn = − 8��in+1−me−im�0�

��
0

�

�cos ��1/2l����n
m���Jm�k	0 sin ��

�exp�− ikz0 cos ��sin � d� , �5b�
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FIG. 1. Geometry of a particle trapped by a radially polarized
beam focused by a lens. � is the maximum convergence angle given

by the lens, f is the focal length, ŝ and �̂ denote the wave vector
direction of a given plane wave spectrum and its polarization direc-
tion, respectively, and R is the position of the trapped particle.
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in which �	0 ,�0 ,z0� denote the position of the center of the
sphere and Jm�x� is the cylindrical Bessel function of order
m.

B. Radiation forces

Knowing the expansion coefficients of the incident field,
we can easily obtain the expansion coefficients of the scat-
tered field by use of the T matrix

�emn

fmn
� = �Tmnm�n�

11 Tmnm�n�
12

Tmnm�n�
21 Tmnm�n�

22 ��am�n�

bm�n�
� , �6�

where �T� is the T matrix related to the particle �26�.

The radiation force is computed by integrating the Max-
well stress tensor over any closed surface surrounding the
particle �for simplicity, we choose a sphere at infinity�:

	F
 = lim
r→�

�−
1

2
r2�

4�

d
 n��E2 + �0H2�� , �7�

in which E and H are the amplitudes of the total electric and
magnetic fields,

E = 
Ei + Es
, H = 
Hi + Hs
 . �8�

With the expansion of fields Eq. �1� substituted into Eq.
�7�, we can express the force in terms of the coefficients of
the field,

	Fz
 = −
�

2k2 �
n=1

�

�
m=−n

n

Im� 1

�n + 1�
�n�n + 2��n − m + 1��n + m + 1�

�2n + 1��2n + 3�
�2en+1,m

� en,m + 2fn+1,m
� fn,m + en+1,m

� an,m + an+1,m
� en,m

+ fn+1,m
� bn,m + bn+1,m

� fn,m� +
m

n�n + 1�
i�2fn,men,m

� + en,mbn,m
� + an,mfn,m

� �� , �9�

where � is the permittivity of the medium outside the par-
ticle. The more complex transverse force expressions can be
found in Refs. �14�. More generally, we use the dimension-
less force, the trapping efficiency, which is given by

Qi =
Fi

�n1P/c�
, i = x,y,z , �10�

where P is the incident beam power and c is the speed of
light in free space. Fi are calculated from Eq. �9�. Qi quan-
tifies how efficiently the available field momentum is trans-
ferred to the particle and does not depend on the power P
�5–7�. Alternatively, we also use the three-dimensional trap-
ping efficiency Q, whose three components are given by Eq.
�10�.

III. NUMERICAL RESULTS AND DISCUSSION

Traditionally, we divide the radiation force into two parts:
the gradient and scattering forces. The gradient force is re-
lated to the gradient of the modulus squared of the incident
field, 
Ei
2, and for Rayleigh particles it is proportional to the
gradient of 
Ei
2 �5�. The scattering force is always along the
propagation direction of the incident beam �commonly the z
axis�, and a strong longitudinal Poynting vector component
leads to a strong scattering force �5,6�, which is the situation
of the linearly polarized field. Meanwhile, a large particle
size gives a large scattering force, since a large size means
that the particle can absorb more photons when interacting
with the incident beam, which thus results in a larger scat-
tering force �6�. Because the radially polarized field has
avanishing longitudinal Poynting vector component near the

focus, we may expect the radially polarized field to provide
higher axial trapping efficiency by reducing the scattering
force. However, for Rayleigh particles, the scattering force is
not obvious �5�, since they have very small interacting sur-
faces with the incident beam. So the significant improvement
occurs when the size of the particle is of the order of the
wavelength. This will be clearly revealed below.

Now we present some numerical results to see how the
radially polarized beam affects the radiation forces. Through-
out this paper, we set the refractive index of the particle as
n2=1.59, and that of the medium as n1=1.33. The wave-
length of the incident beam is assumed to be 
0
=1.064 �m in free space, and the pupil apodization function
of the incidence has a simple form as in Ref. �22�:

l��� = �l0, sin−1�A1� � � � sin−1�A/n1� ,

0 otherwise,
� �11�

where l0 is a constant factor dependent on the power of the
incident field and A is the numerical aperture of the lens. A1
corresponds to the inner radius of the annulus, which is vari-
able.

First of all, we examine the case of Rayleigh particles
which correspond to very small particles. Figure 2 presents
trapping efficiencies of a sphere with radius a=50 nm illu-
minated by a radial polarization beam, where the transverse
trapping is assumed to be along the x axis in the focal plane
and the axial trapping means that the particle moves only
along the z axis. As a comparison, the trapping efficiency of
a linearly polarized �x direction� plane wave, which uni-
formly fills the entrance pupil of the objective, is also plotted
�dashed line�. Here, we choose A=1.26, and for the radial
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polarization beam A1=0.6. To justify our T-matrix method,
we use the Rayleigh model �5� to calculate the trapping ef-
ficiencies for both radial and linear polarization �solid sym-
bols�. It can be easily seen that for such a small particle the
two methods can reach very good agreement for either trans-
verse or axial trapping forces. From Fig. 2, we see that the
maximal trapping efficiencies produced by the radial polar-
ization beam are less than those of the linear polarization
plane wave for both Qx and Qz. This difference lies in the
fact that in the Rayleigh regime the dominant term of the
radiation forces of a very small particle �ka�1� is propor-
tional to the gradient of 
Ei
2. To illustrate this, a comparison
of the gradient of 
Ei
2 for the radial and linear polarization
modes is plotted in Fig. 3, in which the values are normal-
ized by the maximum of the linear polarization mode. We see
clearly that the linear polarization plane wave has larger gra-
dients of 
Ei
2 in both the x and z directions, which deter-
mines that the trapping efficiencies related to the two polar-
ization modes must have the same trend as shown in Fig. 2.

Now we turn to the case of a large particle �a
�wavelength 
�. In Fig. 4, we compute the radiation forces
on a spherical particle of radius a=1 �m with a radially and
a linearly polarizated beam, respectively. We find that for a
spherical particle with size of the order of the wavelength,
the transverse radiation force given by the linearly polarized
plane is still larger than that produced by the radially polar-
izated beam, which is in accordance with what we see in the
Rayleigh case above, but the difference in magnitude is in-

creased. However, in contrast to Fig. 2�b�, the radial polar-
ization beam gives rise to greater backward axial trapping
force as seen in Fig. 4�b�. This phenomenon occurs because
the radial polarization beam has a vanishing component of
the Poynting vector along the axial direction, which surely
lowers the so-called scattering forces on the particle.

For a comprehensive examination of the effects of the two
types of polarization field on particles, a comparison of
maximal trapping efficiencies Qmax between the radial and
linear polarization beams with varying size of the sphere is
presented in Fig. 5. As we see, the maxima of both Qx and Qz
increase with increasing size of the sphere. When the sphere
is large enough �about 1 �m�, gentle increases appear,
which implies that the results are approaching the geometric
optics prediction, where the trapping forces are independent
of the size of the sphere. In Fig. 5, we note that the radiation
forces of radial polarization and linear polarization present
different variation trends. For the transverse Qmax, the linear
polarization field corresponds to larger values than the radial
polarization field in both small and large size ranges. With
increasing size, the gap becomes more obvious, e.g., at a
=0.05 �m, the transverse Qmax corresponding to the linear
and radial modes are 0.0012 and 0.0010 with the ratio equal
to 1.2, while at a=0.5 �m, the ratio becomes 1.91. For the
axial Qmax, the situation is different. With a radius less than
some size �between 0.5 and 0.6 �m�, the linear polariza-
tion shows greater values. But for large size, the radial po-
larization field exhibits values much larger than those corre-
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FIG. 3. �Color online� Comparison of the gradient of modulus
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tion mode. Component along �a� x and �b� z axis.
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sponding to the linear polarization field. When a=3 �m, for
example, the axial Qmax corresponding to the radial and lin-
ear polarization fields is, respectively, 0.1860 and 0.1134,
and their ratio is up to 1.64. Obviously, this results directly
from the fact that the radial polarization field has a zero axial
component of the Poynting vector near the focus, as we
pointed out in the analysis of Fig. 2. Meanwhile, the trend of
the axial Qmax curve implies that even for particles in the ray
optics regime �a�5 �m�. This property of the radial polar-
ization field may be used to improve the axial trapping effi-
ciency for large-size particles.

In all preceding calculations, the inner radius of the annu-
lus A1 for the radial polarization is set equal to 0.6. At the
beginning of this section, we stated that this value is vari-
able. We may expect some changing results for the radiation
forces on varying the size of the inner radius. In Fig. 6, we
plot the curves of the maximal trapping efficiencies Qmax as
A1 varies. As a comparison, the change in inner radius of the
annulus for the linear polarization plane wave is realized by
obstructing the beam with an opaque disk �24�. We center
our discussion on a spherical particle with radius a=1 �m
and the numerical aperture of the objective, A, is still equal
to 1.26. We see from Fig. 6 that both the transverse and the
axial Qmax corresponding to the linear polarization plane
wave decrease as A1 increases �i.e., with increasing obstruc-
tion size�. Especially for the transverse Qmax, the drop is very
obvious, and the trend is in good agreement with the result of
Fig. 1 in Ref. �24�. However, for the radial polarization
mode, both the transverse and the axial Qmax first go up and
then decline with increasing value of A1; when A1 is about
0.4, the largest value for the axial Qmax appears, and the
largest value for the transverse Qmax emerges when A1 is
roughly equal to 0.2. Note that the value of the transverse
Qmax at A1=0.4 is just slightly smaller than the transverse
Qmax at A1=0.2, so, taking A1=0.4 is a good solution from
all points of view.

Finally, the effect of the numerical aperture of the objec-
tive lens on the radiation forces for the radial polarization
beam is examined. In our consideration, we fix the ratio of
inner and outer radii of the radial polarization beam at
0.6 /0.95=0.63. According to Fig. 7, as the NA increases,
either the transverse or the axial Qmax increases.

IV. CONCLUSIONS

Based on the vectorial diffraction theory and T-matrix
method, we have presented the radiation forces of the radial
and linear polarization beams on dielectric particles with size
ranging from the Rayleigh regime to several wavelengths.
For Rayleigh particles, our calculation results are in good
agreement with those predicted by the Rayleigh scattering
model. These results show that the linear polarization mode
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FIG. 5. �Color online� Comparison of Qmax between the radial
polarization beam and the linear polarization beam as a function of
the sphere radius a�0.01�3 �m�. A=1.26 and A1=0.6 for the
radial polarization beam.
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FIG. 6. �Color online� Maximal trapping efficiencies Qmax in
transverse and axial directions of a sphere of radius a=1 �m with
different A1 �A=1.26� for both radial and linear polarization
beams.
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can provide larger gradient forces in both transverse and
axial radial directions compared to a radial polarization field.
Since the scattering force for Rayleigh particles is small due
to their small size, the net trapping force given by the lin-

early polarized field is also larger. When the size of the par-
ticles approaches the wavelength of the beam, the scattering
force becomes obvious. Benefiting from the vanishing axial
component of the Poynting vector near the focus, the radial
polarization field improves the axial trapping efficiency by
reducing the scattering force. With increasing size of the par-
ticles, this improvement also increases. The calculation indi-
cates that, even for larger particles in the ray optics regime,
the improvement still exists, which was also tested by other
authors’ work �23�. Meanwhile the trapping efficiency can be
changed by adjusting the configuration of the beam. With
increasing inner radius of the radial polarization beam, the
axial trapping efficiency increases before reaching a maxi-
mum, and then decreases, while the transverse trapping effi-
ciency gently decreases in a large zone at the beginning.
Thereby an optimal inner radius can be taken for obtaining
both good axial and good transverse trapping efficiencies.
When the numerical aperture of the objective lens is in-
creased, the trapping efficiencies simply increase. These cal-
culation results provide a suggestive reference for design of
efficient optical trapping devices.
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