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Characteristic functions are shown to be useful for highly sensitive measurements. Redistributions of mo-
tional Fock states of a trapped atom can be directly monitored via the most fragile nonclassical part of the
characteristic function. The method can also be used for decoherence measurements in optical quantum-
information systems.
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I. INTRODUCTION

The experimental demonstrations of photon antibunching
�1�, sub-Poissonian photon statistics �2�, and quadrature
squeezing �3� also led to an increasing interest in practical
applications of nonclassical states. An early example is the
proposal to use squeezed light for enhancing the sensitivity
of interferometric gravitational-wave detection �4�. Experi-
ments have demonstrated the usefulness of squeezed light for
improving interferometric measurements �5,6� and spectros-
copy �7�.

Two decades after the first experimental demonstrations
of the potential usefulness of nonclassical states the latter
still play a minor role in practical measurements. There may
be several reasons for this fact. First, the experimental effort
for generating the needed nonclassical states is rather high.
Second, some applications, e.g., the use of squeezed light for
optimizing the laser power in gravitational-wave detection,
can be replaced with developments of laser sources. Third,
nonclassical states are usually highly fragile against losses,
which may substantially limit their advantages in some
applications.

The use of nonclassical states is frequently considered in
the context of the reduction of the quantum noise in a certain
observable below an ultimate classical noise limit. Examples
are the use of sub-Poissonian and squeezed light fields for
reducing the noise in direct and homodyne photodetection,
respectively. This requires one to link the measurement prin-
ciple with the observable whose quantum noise is reduced.
Below we will reconsider the application of nonclassical
states from a much broader point of view. When speaking
about nonclassical states in the following, we will only con-
sider quantum states of a single-mode harmonic oscillator
whose Glauber-Sudarshan P function is not a probability
density �8�.

The nonclassicality of quantum states can be completely
characterized in terms of measurable characteristic functions
of phase-dependent quadratures,

x̂� = âei� + â†e−i�, �1�

â �â†� being the bosonic annihilation �creation� operator and
� the phase parameter. To be more specific, a hierarchy of
necessary and sufficient conditions has been derived that
completely characterizes the nonclassicality of a given quan-
tum state in terms of the quadrature characteristic function
G�k ,�� �9�. A broad class of nonclassical states can be well

characterized by the rather simple condition of first-order
nonclassicality,

�G�k,��� � Ggr�k� , �2�

stating that the absolute value of the characteristic function
exceeds, for some arguments, the corresponding value of the
ground �or vacuum� state �10�.

The signatures of first-order nonclassicality are more gen-
eral than the quantum-noise reduction of a chosen observable
below some classical limit. The condition also includes fea-
tures such as quantum interference �11� and sub-Planck
structures in phase space �12�. Note that the nonclassical
effects of first and second order have been experimentally
demonstrated for radiation fields �13,14�. The needed char-
acteristic functions can also be observed for the quantized
center-of-mass motion of a trapped ion �15,16�.

In this paper we propose a measurement principle, where
the quadrature characteristic function serves as a highly sen-
sitive probe. It makes use of the fact that the nonclassical
signatures of the quadrature characteristic function are more
fragile with respect to dissipation than other nonclassical ef-
fects, such as sub-Poissonian statistics and squeezing. This
provides a tool for the highly sensitive diagnostics of deco-
herence effects, which is of great interest for quantum infor-
mation processing.

The paper is organized as follows. In Sec. II we consider
the detection of the characteristic function of the quadrature
distribution for the motion of trapped ions and for propagat-
ing radiation fields. The decoherence is caused in both cases,
for example, by a thermal reservoir. Section III is devoted to
the use of the most pronounced nonclassical features of the
characteristic functions for highly sensitive measurements. A
brief summary is given in Sec. IV.

II. DECOHERENCE IN TERMS OF CHARACTERISTIC
FUNCTIONS

Let us consider a nonclassical state �̂�0� of a bosonic
mode prepared at the initial time t=0. Its further evolution is
caused by the dissipation to be analyzed, leading to the state
�̂�t�. Eventually, the quadrature characteristic function
G�k , t ,�� is measured.

In the case of a trapped ion the measurement of G�k , t ,��
is performed as follows. An electronic transition is driven
simultaneously on the red and the blue motional sidebands in
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the resolved sideband regime, which is described by the
interaction Hamiltonian �15�

Ĥint = ���Â12 + ��Â21�x̂�, �3�

where Âij = �i��j� �i , j=1,2� is the electronic flip operator and
� is the effective Rabi frequency. Most importantly, it is
proportional to the quadrature operator x̂� of the center-of-
mass motion, the phase � being controlled by the phase dif-
ference of the driving lasers. The total state of the ion is
�̂�t�= �̂�t� � �̂�t�, with a properly prepared electronic state
�̂�t�. At time t the interaction �3� is switched on for the
interaction time �. The observation of the occupation
�11�t+� ,�� of the electronic ground state directly yields the
characteristic function G�k , t ,�� of the quadrature distribu-
tion �15�,

G�k,t,�� = 2��11
�inc��t + �,�� − 1

2� + 2i��11
�coh��t + �,�� − 1

2� ,

�4�

where the interaction �3� leads to the scaling k=2����. The
incoherent and coherent occupations �11

�inc� and �11
�coh� are

measured with the electronic preparations �11�t�=1 and
�11�t�= ��12�t��=

1
2 , respectively. The electronic-state occupa-

tions in Eq. �4� are detected with almost perfect efficiency,
by testing �at time t+�� a transition from the state �1� to an
auxiliary state for the appearance of fluorescence �16�.

For a radiation field the characteristic function can be
sampled in balanced homodyne detection �13,14�,

G�k,t,�� �
1

N�
	
j=1

N�

eikx�,j�t�. �5�

Here x�,j�t�, j=1, . . . ,N�, is the set of data recorded in bal-
anced homodyning for each setting of �. The quadratures
describe now the radiation mode at the time t. Thus they
carry the information on the dissipative interaction contained
in the radiation state �̂�t�.

To illustrate the idea, we deal with a simple model of
decoherence caused by a thermal bath of mean occupation
number n̄. The density operator �̂ in the interaction picture
obeys the master equation

d

dt
�̂ = 	�n̄ + 1��2â�̂â† − â†â�̂ − �̂â†â�

+ 	n̄�2â†�̂â − ââ†�̂ − �̂ââ†� , �6�

with 	 being the damping rate. The resulting equation for the
Wigner characteristic function, 
�� , t�
Tr��̂ exp��â†−��â��,
has the solution �19�


��,t� = exp�− �n̄ + 1/2����2�1 − exp�− 2	t���

�
„� exp�− 	t�,0… , �7�

where 
�� ,0� is the Wigner characteristic function of the
initial quantum state. From this result, the observable
quadrature characteristic function

G�k,t,�� = 
�ike−i�,t� �8�

is easily derived.

III. HIGHLY SENSITIVE DETECTION

A. Decoherence of a trapped ion

Let us first consider a trapped atom that is initially in the
number state �m�, which can be realized in experiments �17�.
The motional-state redistributions caused by the reservoir
lead to strong modifications of the nonclassical signatures of
the characteristic function, which represents our highly sen-
sitive probe. Note that the observed decoherence of a
Raman-driven trapped ion �17� is not completely understood
yet. Although dephasing mechanisms could be identified
�18�, a deeper insight in the role of motional states is still
required.

The Wigner characteristic function of the number state
�m� is given by


m��� = Lm����2�exp�− ���2/2� , �9�

where Lm�x� is a Laguerre polynomial of order m. Since the
state �m� is phase independent, we may write Gm�k ,��
=Gm�k�. In Fig. 1 we show the quadrature characteristic
functions Gm�k�
Gm�k , t=0� as functions of k, for m
=9,10,11. Clearly, the first-order nonclassicality condition
�2� is fulfilled for all the shown number states. For our ex-
amples, the first-order nonclassical effect is most pronounced
at the outermost local extremum, where �Gm�k��−Ggr�k�
becomes maximal.

Now we consider the time evolution of the characteristic
function Gm�k , t�, caused by the thermal reservoir. The initial
preparation of a Fock state �m� allows one to distinguish
motional-state redistribution effects from dephasing effects.
Using Eqs. �7�–�9�, we obtain

Gm�k,t� = exp�− n̄�1 − exp�− 2	t��k2�Lm�k2e−2	t�exp�− k2/2� .

�10�

This function can be monitored for a chosen time t, as dis-
cussed in connection with Eq. �4�.

To get more insight into the time evolution, we consider
the time derivative of the characteristic function at t=0,

FIG. 1. Characteristic functions Gm�k� versus k for number
states m=10 �full line�, 9 �dashed-dotted line�, and 11 �dotted line�,
together with the classical limit Ggr�k�=e−k2/2 �dashed line�.
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Ġm�k,0� = 2	�Lm−1
�1� �k2� − n̄Lm�k2��k2e−k2/2. �11�

It strongly depends on both k and n̄; for m=10 the maximum
of the time derivative occurs for k=kmax�6. Hence this ar-
gument of the characteristic function will be of particular
interest to detect the decoherence in a sensitive way. Com-
paring with Fig. 1, the most sensitive reaction on the
motional-state redistributions occurs around the outermost
maximum of the initial characteristic function, where the
nonclassical features are dominant. This reflects the expected
high fragility of nonclassical effects.

For the used Fock state it is interesting to compare the
time evolution of the characteristic function with that of the
sub-Poissonian statistics. For the Mandel parameter Q
= ���n̂�2�− �n̂�� / �n̂�, which measures the deviation from the
Poissonian statistics, we get

Q�t� =
�n̄2 − 2n̄m − m�e−4	t + 2n̄�m − n̄�e−2	t + n̄2

me−2	t + n̄�1 − e−2	t�
. �12�

Negative values of Q characterize a nonclassical quantum
state showing sub-Poissonian statistics.

In Fig. 2 we show the time evolution of the normalized
characteristic function, g10�k , t�=G10�k , t� /G10�k ,0�, for k
=kmax and n̄=1. For comparison, the time evolutions are also
shown for the Mandel Q parameter, the occupation probabil-
ity p10�t� of the initially prepared Fock state �m=10�, and the
normalized mean motional-state excitation n�t�, n�t�
= �n̂�t�� / �n̂�0��, with �n̂�t��=me−2	t+ n̄�1−e−2	t�. It is clearly
seen that the nonclassical characteristic function shows the
fastest decay and evolves much faster than the nonclassical
property described by the Mandel Q parameter. In fact, the
nonclassical part of the characteristic function decays even
faster than the occupation probability of the initially pre-
pared Fock state. Thus it yields a highly sensitive means of
detection, since even tiny dissipation leads to a noticeable
effect on that part of the characteristic function.

How can we explain the highly sensitive behavior of the
characteristic function in its outermost maximum? The
quadrature characteristic function,

G10�k,t� = 	
n=0

�

pn�t�Gn�k� , �13�

can be written as a sum of characteristic functions of number
states weighted with the occupation probabilities pn�t�. From
the master equation �6� it follows that at the very beginning
of the time evolution the only nonvanishing occupation prob-
abilities are p9�t�, p11�t�, and p10�t�=1− p9�t�− p11�t�. It is
seen from Fig. 1 that G9�k� and G11�k� attain for k=kmax

roughly the same absolute value as G10�k�, but with opposite
sign. Thus, according to Eq. �13�, the increase of p9�t� and
p11�t� leads to a faster decay of G10�k , t� compared with
p10�t�. The decay of G10�kmax, t� is roughly twice as fast as
the decay of p10�t�. Hence the detection of the characteristic
function is both simpler and more sensitive than a number-
state measurement, even though the latter is directly related
to the prepared number state.

For comparison we may look at the characteristic function
for other k values, which are within the classical region �such
as k�1� or which violate the classical limit only slightly
�e.g., k�2�. Then the temporal evolution is significantly
slower. For k�1 the neighboring functions are almost equal:
G9�k��G10�k��G11�k�, cf. Fig. 1. Thus increasing values of
p9 and p11 nearly compensate the decay of p10, resulting in a
slow decay of G10�k , t�.

B. Decoherence of radiation fields

In the following we will consider a typical application of
our method that could be realized for a radiation field. The
aim is to identify small decoherence effects during the trans-
mission of nonclassical light through media. This is of great
importance for applications such as in quantum communica-
tion, where the transmission can be performed via optical
fibers or through the atmosphere.

The preparation of photon number states, at least for
larger photon numbers, is much more difficult to realize as
the Fock-state preparation in the ion trap. However, we will
see that squeezed light can be used as the nonclassical radia-
tion source for our measurement principle as well. Let us
consider a squeezed vacuum,

�sv� = exp�− �r/2�â†2 + �r/2�â2��0� , �14�

with r�0. The action of the medium is modeled by the
thermal reservoir as before.

Due to the contact with the reservoir, the minimum of the
quadrature variance ��=0 in Eq. �1�� behaves like

��x̂�t��2�min = �1 + 2n̄��1 − e−2	t� + e−2re−2	t, �15�

where t represents the propagation time through the medium.
For the chosen phase �=0 the nonclassical effect is most
pronounced. The characteristic function for this phase is sim-
ply given by

Gsv�k,t� = e−k2��x̂�t��2�min/2. �16�

Its time derivative yields the k value with the maximum sen-
sitivity of our method to be

FIG. 2. The time evolution is shown for the occupation prob-
ability p10�t� of the state �m=10�, the normalized mean excitation
number n�t�, the Mandel parameter Q�t�, and the normalized char-
acteristic function g10�kmax, t� for n̄=1.
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kmax = 2e2r, �17�

which is independent of the value of n̄.
In Fig. 3 we show the time evolution of the normalized

mean photon number n�t�, the normally ordered quadrature
variance s�t�, and the characteristic function gsv�k , t�, where

s�t�= �:�x̂�t��2:�min / �:�x̂�0��2:�min and gsv�k , t�=Gsv�k , t� /
Gsv�k ,0�. As expected, the fastest decay is observed for the
characteristic function at k=kmax. To detect this highly sen-
sitive reaction on the reservoir effects, the characteristic
function can be sampled, at the end of the transmission chan-
nel, via balanced homodyne detection. For the sensitive de-
tection method under study, we only need to consider the
behavior for k=kmax and for the phase with the minimal
quadrature variance.

IV. SUMMARY

In conclusion, we have shown that highly sensitive mea-
surements can be performed by detecting the strongly non-
classical part of the quadrature characteristic function. The
method makes use of the high fragility of the nonclassical
effects. For example, the direct observation of the character-
istic function can monitor the redistribution of the motional-
state occupations of an initially prepared Fock state of a
trapped ion. Sensitive optical decoherence measurements can
be realized by using squeezed light. The method may be
useful for highly sensitive noise control in quantum-
information systems. It is based on a universal measurement
principle, which can be used with different types of initially
prepared nonclassical states.
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