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Optimizing potential energy functions for maximal intrinsic hyperpolarizability
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We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy
functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities,
which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found
that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpo-
larizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such

as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpo-
larizability to be dominated by only two excited states and (2) the energy ratio between the two dominant
states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these
potential energy functions may be implementable in multiple quantum well structures. The subset of potentials
with undulations reaffirm that modulation of conjugation may be an approach for making better organic
molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional

molecules may have larger diagonal intrinsic hyperpolarizability 8
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I. INTRODUCTION

Materials with large nonlinear-optical susceptibilities are
central for optical applications such as telecommunications
[1], three-dimensional nanophotolithography [2,3], and mak-
ing materials [4] for cancer therapies [5]. The fact that quan-
tum calculations show that there is a limit to the nonlinear-
optical response [6—11] is both interesting from the basic
science perspective and provides a target for making opti-
mized materials. In this work, we focus on the second-order
susceptibility and the underlying molecular hyperpolarizabil-
ity, which is the basis of electro-optic switches and frequency
doublers.

The fundamental limit of the off-resonance hyperpolariz-
ability is given by [8]
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where N is the number of electrons and E, the energy dif-
ference between the first excited state and the ground state
Ey=E,—E,. Using Eq. (1), we can define the off-resonant
intrinsic hyperpolarizability 3;, as the ratio of the actual hy-
perpolarizability (measured or calculated) 8 to the funda-

mental limit

Bint = B/ Brax- (2)

We note that since the dispersion of the fundamental limit of
B is also known [12] it is possible to calculate the intrinsic
hyperpolarizability at any set of wavelengths for any second-
order phenomena. In the present work, we treat only the
zero-frequency limit.

Until recently, the largest nonlinear susceptibilities of the
best molecules fell short of the fundamental limit by a factor
of 10%2[10,13,14] so the very best molecules had a value of
Bin=0.03. Since a sum-over-states (SOS) calculation of the
hyperpolarizability [15] using the analytical wave functions
of the clipped harmonic oscillator yields a value (;,,=0.57
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[14], the factor-of-30 gap is not of a fundamental nature.
Indeed, recently, it was reported that a molecule with asym-
metric conjugation modulation has a measured value of S;,
=0.048 [16].

To investigate how one might make molecules with a
larger intrinsic hyperpolarizability, Zhou and co-workers
used a numerical optimization process where a trial potential
energy function is entered as an input, and the code itera-
tively deforms the potential energy function until the intrin-
sic hyperpolarizability, calculated from the resulting wave
functions, converges to a local maximum [17]. In this work,
a hyperbolic tangent function was used as the starting poten-
tial due to the fact that it is both asymmetric yet relatively
flat away from the origin. This calculation was one-
dimensional and included only one electron, so electron cor-
relation effects were ignored. Furthermore, the intrinsic hy-
perpolarizability was calculated using the dipole-free sum-
over-states expression [18] and only 15 excited states were
included. The resulting optimized potential energy function
showed strong oscillations, which served to separate the spa-
tial overlap between the energy eigenfunctions. This led
Zhou and co-workers to propose that modulated conjugation
in the bridge between donor and acceptor ends of such mol-
ecules may be a paradigm for making molecules with higher
intrinsic hyperpolarizability [17].

Based on this paradigm, Pérez Moreno reported measure-
ments of a class of chromophores with varying degree of
modulated conjugation [16]. The best measured intrinsic hy-
perpolarizability was (;,,=0.048, about 50% larger than the
best previously reported. Given the modest degree of conju-
gation modulation for this molecule, this paradigm shows
promise for further improvements.

In the present work, we extend Zhou’s calculations to a
larger set of starting potentials. To circumvent truncation
problems associated with sum-over-states calculations, we
instead determine the hyperpolarizability using a finite dif-
ference technique. The optimization procedure is then ap-
plied to this nonperturbative hyperpolarizability.
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To study the effects of geometry on the hyperpolarizabil-
ity, Kuzyk and Watkins calculated the hyperpolarizability of
various arrangements of point charges, representing nuclei,
in two dimensions using a two-dimensional Coulomb poten-
tial [19]. In the present contribution, we apply our numerical
optimization technique to determine the arrangement and
charges of the nuclei in a planar molecule that maximizes the
intrinsic hyperpolarizability.

II. THEORY

In our previous work, we used a finite-state SOS model of
the hyperpolarizability that derives from perturbation theory
(we used both the standard Orr and Ward SOS expression
Bsos [15] and the other dipole free expression Bpp [18]). The
use of a finite number of states in lieu of the full infinite
sums can result in inaccuracies so, in the present work, we
use the nonperturbative approach, as follows. We begin by
solving the one-dimensional (1D) Schrédinger equation on
the interval a<<x<b for the ground-state wave function
(x,E) of an electron in a potential well defined by V(x) and
in the presence of a static electric field £ that adds to the
potential 6V=—exE. From this, the off-resonant hyperpolar-
izability is calculated with numerical differentiation, i.e., us-
ing finite differences, yielding

b
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Brp= (3)

Equation (3) is evaluated using the standard second-order
approximation to the second derivative

flz+h) =2f(z) + f(z = h)
hZ

f'(2) =

with several h values hy,hg/5,hy/25,.... We then refine
these values by Richardson extrapolation [20] and obtain our
estimate from the two closest extrapolated values. The error
of our estimates is of order 4%, so we can estimate second
derivatives as accurately as we please in principle by taking
h sufficiently small. In practice we are limited by roundoff
errors, which become larger as & is decreased. Our estimates
are correct to about seven decimal places.

Our computational mesh consists of 200 quadratic finite
elements with a total of 399 degrees of freedom. The poten-
tial energy function is a cubic spline with 40 degrees of
freedom. Thus the numerical calculations in regions where
the potential function is represented by 3 points in the spline
are covered by 15 elements with a total of about 30 degrees
of freedom. Consequently the finite element mesh is suffi-
ciently fine to capture all details of the potential function
accurately. As a test we repeated several runs with a refined
mesh with 400 finite elements and 799 degrees of freedom.
All results for the refined mesh agreed with those for the
original mesh to at least six decimal places.

Calculating B;,, from Egs. (3), (2), and (1) for a specific
potential, we use an optimization algorithm that continuously
varies the potential in a way that maximizes B;,. We also
compute the matrix [17,21]
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where xj;" is the magnitude of the fundamental limit of the
position matrix element x;, for a one-electron system and is
given by

) h
x[]r;)dx: /= (5)
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Each matrix element of 7, indexed by m and p, is a mea-
sure of how well the (m,p) sum rule is obeyed when trun-
cated to N states. If the sum rules are exactly obeyed, 7

=0 for all m and p. We note that if the sum rules are trunrllli
cated to an N-state model, the sum rules indexed by a large
value of m or p (i.e., m,p ~N) may be disobeyed even when
the position matrix elements and energies are exact. We have
found that the values of T,(:lv)) are small for exact wave func-
tions when m<<N/2 and p<N/2. So, when evaluating the 7
matrix to test our calculations, we consider only the compo-
nents TE::QN/Z;)SN/Z'

We observe that when using more than about 40 states in
SOS calculations of the hyperpolarizability only a marginal
increase of accuracy results when the potential energy func-
tion is parametrized with 400 degrees of freedom. So, to
ensure overkill, we use 80 states when calculating the 7 ma-
trix or the hyperpolarizability with an SOS expression so that
truncation errors are kept to a minimum. Since the hyperpo-
larizability depends critically on the transition dipole mo-
ment from the ground state to the excited states, we use the
value of ng)) as one important test of the accuracy of the
calculated wave functions. Additionally, we use the standard

deviation of 7™,

N/2 N/2
=2 ()
m=0 p=0

N/2

AV = , (6)

which quantifies, on average, how well the sum rules are
obeyed in aggregate, making A7™ a broader test of the ac-
curacy of a large set of wave functions.

Our code is written in MATLAB. For each trial potential we
use a quadratic finite element method [22] to approximate
the Schrodinger eigenvalue problem and the implicitly re-
started Arnoldi method [23] to compute the wave functions
and energy levels. To optimize B we use the Nelder-Mead
simplex algorithm [24].

As described in our previous work [17], we perform op-
timization, but this time using the exact intrinsic hyperpolar-
izability B=Bp/ Bmax> Where B, is the fundamental limit
of the hyperpolarizability, which is proportional to EI{?. To
determine E;,=FE,;—-E,, we also calculate the first excited
state energy Ej.

III. RESULTS AND DISCUSSIONS

Figure 1 shows an example of the optimized potential
energy function after 7000 iterations when starting with the
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FIG. 1. (Color online) Optimized potential energy function and
first 15 wave functions after 7000 iterations. The starting potential
is V(x)=0 using the nonperturbative hyperpolarizability for
optimization.

potential V(x)=0 and optimizing the nonperturbative intrin-
sic hyperpolarizability Byp/Bmax as calculated with Eq. (3).
Also shown are the eigenfunctions of the first 15 states com-
puted from the optimized potential. First, we note that the
potential energy function shows the same kinds of wiggles as
in our original paper [17], though not of sufficient amplitude
to localize the wave functions.

For the starting potentials we have investigated, our re-
sults fall into two broad classes. In the first, three common
features are (1) the best intrinsic hyperpolarizabilities are
near B;=0.71, (2) the best potentials have a series of
wiggles, and (3) the systems behave as a limited-state model.
In the second class of starting potentials, (1) the optimized
intrinsic hyperpolarizability is near B;,,=0.71, (2) the
wiggles are much less pronounced, and (3) many eigenfunc-
tions overlap but only three states contribute to the hyper-
polarizability. Figure 1 is an example of a class II potential.
However, in both classes, the maximum calculated intrinsic
hyperpolarizability appears to be bounded by ;,,=0.71. Us-
ing the set of potentials from both classes that lead to opti-
mized Byp/ Bmax» We calculate the lowest 80 eigenfunctions
and eigenvalues, from which we calculate Bpr and Bgos. In
most cases, we find that the three different formulas for B
converge to the same value when only the first 20 excited
states are used (using 80 states, the three are often the same
to within at least 4 decimal places) and 7y~ 10~*, showing
that the ground state sum rules are well obeyed. Furthermore,
the root-mean-square (rms) deviation of the 7 matrix when
including 40 states leads to 789 <0.001.

Figure 2 shows an example of the optimized potential
energy function when starting with the potential V(x)
=tanhx and optimizing the exact (nonperturbative) intrinsic
hyperpolarizability. Also shown are the eigenfunctions of the
first 15 states computed with the optimized potential. First,
we note that the potential energy function shows the same
kinds of wiggles as in our original paper [17] and only two
excited state wave functions and the ground state are local-
ized in the first deep well—placing this system in class I.

The observation that such potentials lead to hyperpolariz-
abilities that are near the fundamental limit motivated Zhou
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FIG. 2. (Color online) Optimized potential energy function and
first 15 wave functions after 8000 iterations. The starting potential
is V(x)=tanh(x), using the nonperturbative hyperpolarizability for
optimization.

and co-workers to suggest that molecules with modulated
conjugation may have enhanced intrinsic hyperpolarizabili-
ties [17]. A molecule with a modulated conjugation bridge
between the donor and acceptor end was later shown to have
record-high intrinsic hyperpolarizability [16]. As such, this
result warrants a more careful analysis.

It is worthwhile to compare our present results character-
ized by Fig. 2 with our past work [17], particularly for the
purpose of examining the impact of the approximations used
in the previous work [17]. Figure 3 shows the optimized
potential and wave functions obtained by Zhou and co-
workers using a 15-state model and optimizing the dipole-
free intrinsic hyperpolarizability. Since only 15 states were
used, the SOS expression for § did not fully converge; mak-
ing the result inaccurate as suggested by the fact that Bgog
and Bpp did not agree (for the rest of the document, all stated
hyperpolarizabilities are intrinsic hyperpolarizabilities unless
explicitly stated to the contrary). However, since the code
focused on optimizing the dipole-free form of 3, and 7y, was
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FIG. 3. (Color online) Optimized potential energy function us-
ing Bpr and the first 15 wave functions after 7000 iterations. The
starting potential is the tanh(x) potential. The final potential (shown
above) we refer to as the partially optimized tanh potential (POTP).
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TABLE I. Evolution of the POTP potential. 3; is the hyperpolarizability of the starting potential using 80
states while the other ones are after optimization of Byp.

Number of Té%o) A 780
Iterations Bs Bsos Bor Brp (X107?) (X107
0 0.5612 0.5612 0.5607 0.5612 11.2 15
1000 0.5612 0.7087 0.6682 0.7083 1810 40

small when f;,, was optimized, the dipole-free expression
may have converged to a reasonably accurate value while the
commonly used SOS expression was inaccurate. Indeed, it
was found that Bpp=0.72—in contrast to our more precise
present calculations using the nonperturbative approach,
which yields Byp<<0.71. So, the fact that our more precise
calculations, which do not rely on a sum-over states expres-
sion, agree so well with the 15-state model suggests that in
both cases, the limit for a one-dimensional single electron
molecule is just over S~0.7. This brute force calculation
serves as a numerical illustration of the observation that the
upper bound of S is the same for an exact nonperturbation
calculation and for a calculation that truncates the SOS ex-
pression, which presumedly should lead to large inaccuracies
[25,26]. At minimum, this result supports the existence of
fundamental limits of nonlinear susceptibilities that are in
line with past calculations.

To state Zhou’s approach more precisely [17], the calcu-
lations optimized the very special case of the intrinsic hyper-
polarizability for a 15 state model for a potential energy
function that is parametrized with 20 spline points. As such,
the potential energy function can at most develop about 20
wiggles. As a consequence, there are enough degrees of free-
dom in the potential energy function to force the 15 states to
be spatially well separated. Interestingly, after optimization,
only two excited states overlap with the ground state, allow-
ing only these two states to have nonzero transition dipole
moments with each other and the ground state—forcing the
system into a three-level SOS model for Bpg. This behavior
is interesting in light of the three-level ansatz, which asserts
that only three states determine the nonlinear response of a

Note that the exact and SOS expressions agree with each
other and that 7'(()%0) and A73% are small.

Figure 4 shows the result after 1000 iterations, using the
POTP potential as the starting potential and using the non-
perturbative hyperpolarizability for optimization. First, the
nonperturbative hyperpolarizability reaches just under 0.71,
but, the SOS and dipole-free expressions do not agree with
each other. Furthermore, both convergence metrics ( TE)%O) and
A789) are larger than before optimization. It would appear
that for the POTP potential, even 80 states are not sufficient
to characterize the nonlinear susceptibility when a sum-over-
states expression is used (either dipole free or traditional
SOS expression—though the SOS expression agrees better
with the nonperturbative approach). This is the only case that
we have observed where the three expressions for the hyper-
polarizability disagree when 80 states are used.

Interestingly, the optimized potential energy function still
retains the wiggles and the wave functions are still well sepa-
rated. This result is consistent with the suggestion of Zhou
and co-workers that modulation of conjugation may be a
good design strategy for making large-hyperpolarizability
molecules. We note that wiggles in the potential energy func-
tion are not required to get a large nonlinear-optical response
but appears to be one way that Mother Nature optimizes the
hyperpolarizability. Since this idea has been used to identify
molecules with experimentally measured record intrinsic hy-
perpolarizability [16] the concept of modulation of conjuga-
tion warrants further experimental studies.

As a case in point that non-wiggly potentials can lead to a
large nonlinear susceptibility is the clipped harmonic oscil-

system when it is near the fundamental limits. /\

It is interesting to compare the exact nonperturbation cal- 300 ——4 AC V)
culation, which does not depend on the excited state wave Y00 —A
functions (Fig. 2) and Zhou’s contrived system of 15 states 250 S\
(Fig. 3). Both cases have wiggles and the wave functions — -

. < 200 4 '\

appear to be mostly nonoverlapping. So, for the first 15 NG ) - 14
states, the wave functions appear similarly localized. The i 150 A [
situation becomes more interesting when 80 states are in- § LA .
cluded in calculating the hyperpolarizability for the partially 100 f —
optimized tanh potential (POTP) or when the exact nonper-
turbative approach is used. The first line in Table I summa- 50 i\
rizes the results with the POTP potential and 80 states.

First, let us focus on the sum-over-states results. Clearly, ot 5 1‘0 1'5 20

when 80 states are used in the calculation, it is impossible for
the excited state wave functions to not overlap with each
other, so the three-level approximation to S breaks down.
According to the three-level ansatz, we would expect the
hyperpolarizability to get smaller. Indeed, the additional ex-
cited states result in a smaller hyperpolarizability (=0.56).

X

FIG. 4. (Color online) Optimized potential energy function and
first 15 wave functions after 1000 iterations. The starting potential
is the POTP potential, using the nonperturbative hyperpolarizability
for optimization.

053831-4



OPTIMIZING POTENTIAL ENERGY FUNCTIONS FOR ...

PHYSICAL REVIEW A 76, 053831 (2007)

35 35
V(x)
ST S 7 807 v () o
o5 f TN NN l = />_<\ 25 S — e N P
B NAAA AT~ y d— o 20§ = '
NG v/\v/\vf\ ~ / 5_ A
= 5l A A - 15 bAacA
- N 7 - Al T~
= TN 2 AR~
> 10 —~ va X WEHF
N 4 gl
5 ~= P - ° N
0 V(X) H 0
v,
-5 : : — - : 1 1 2
0 5 10 15 20 0 5 0 5 0

X

FIG. 5. (Color online) Optimized potential energy function and
first 15 wave functions after 8000 iterations. The starting potential
is V(x)=x?, using the nonperturbative hyperpolarizability for
optimization.

lator, which we calculated to have an intrinsic hyperpolariz-
ability of about 0.57 [14]. Figure 5 shows the optimized
nonperturbative hyperpolarizability when using a clipped
harmonic oscillator as the starting potential. The properties
of all of the optimized potentials are summarized in Table II.
The clipped square root function also has a large hyperpolar-
izability (0.69). The optimized potential is shown in Fig. 6.
In these cases, the amplitude of the wiggles are small and all
the wave functions overlap. So, these fall into class II. Note
that the lack of wiggles shows that wiggles are not an inevi-
table consequence of our numerical calculations.

We may question whether small wiggles in the potential
energy function lead to large amplitude wiggles as an artifact
of our numerical optimization technique. To test this hypoth-
esis, we used the trial potential energy function x+sin(x),
where the wiggle amplitude is not large enough to cause the
wave functions to localize at the minima. The optimized po-
tential energy function retains an approximately linear from
with only small fluctuation. In fact, the results are very simi-
lar to what we found for the linear starting potential and the
wiggles do not affect the final result. The similarity between
these cases can be seen in Table II.

X

FIG. 6. (Color online) Optimized potential energy function and
first 15 wave functions after 8000 iterations. The starting potential
is V(x)=Vx, using the nonperturbative hyperpolarizability for
optimization.

Next, we test a starting potential with large wiggles as
shown in the upper portion of Fig. 7. The lower-energy
eigenfunctions are found to be localized mostly in the first
two wells. In fact, the lowest four energy eigenfunctions are
well approximated by harmonic oscillator wave functions,
which are approximately eigenstates of parity due to the lo-
cally centrosymmetric potential. As a result, the first excited
state holds most of the oscillator strength and the value of the
intrinsic hyperpolarizability is only 0.04.

After 3000 interactions, this class I potential energy func-
tion has high amplitude wiggles at a wavelength that is sig-
nificantly shorter than the wavelength of the initial sine func-
tion (bottom portion of Fig. 7). In common with the
optimized tanh(x) function, the wiggles are of large but al-
most chaotically varying amplitude. This leads to wave func-
tions that are spatially separated. While the wave functions
are not as well separated as we find for the tanh(x) starting
potential, the optimized potential yields only two dominant
transition from the ground state; so, this system is well ap-
proximated by a three-level model. As is apparent from Table
II, the ground state sum rule (characterized by 7'(()%0)) is better
obeyed in this optimized potential than in any others. So, the

TABLE II. Summary of calculations with different starting potentials. 3, is the hyperpolarizability of the starting potential while the other
ones are after optimization. The transition moments and energies are in dimensionless units. To convert to specific units, consider an example
where x,,, is interpretted to be in units of A. The energies would then be determined by multiplying all values of E, by #%/ma? with
a=10"""m (1 A). In this case, the energy is in units of 1.2X 1073 J or about 7.6 eV.

Function TE)%O) A78)

V(x) Bs  Bsos  PBor Bxp (X107 (X107 Ey Ey Xoo X19 X0 Xy Xp1 Xy ﬁ
0 0 0.7089 0.7089 0.7089 3.78 5.33 0.0817 0.168 15362 1951 0.658 10.923 2.840 9.283 0.789
30 tanh(x) 0.67 0.7084 0.6918 0.7083 77.9 11.8 5474 11.217 0.510 0.2387 0.077 1.051 0.332 1.447 0.790
X 0.66 0.7088 0.7072 0.7088 7.87 8.79 14575 2983 0.997 0462 0.155 2.049 0.671 2.477 0.789
X2 0.57 0.7089 0.7085 0.7088 1.86 703 0.6643 1.364 1.522 0.684 0.321 3.079 0.996 3.646 0.789
X172 0.68 0.7087 0.7049 0.7087 19.0 9.76 22948 4.677 0.783 0.368 0.122 1.621 0.533 2.011 0.789
x+sin(x) 0.67 0.7088 0.7073 0.7088 7.50 8.46 13080 2.673 1.044 0.488 0.163 2.154 0.708 2.625 0.789
x+10sin(x) 0.04 0.7085 0.7085 0.7085 0.165 7.78 1.734 3.576 4463 0424 0.143 3.501 0.613 3.126 0.790

053831-5



ZHOU et al.

% V/\V/\V/\v/\/\ PN
30} AN A\
NN\ V\/I \
25.V \/vv\//\/\l \ I
’>—<‘ yaN AL o~ 4 I/ \ J
X WIS\ ] \—/
< A A VN | \/
9- 15 b= \_A_A\ [ \ T
~= N AM N\ ]
SEYARAS B &
S | N \/
Ny N
XY K |
N — Ve 1]
O v (%) (]
0 5 10 15 20
(a)
V(x)
v, (%)
80./\VAV/‘\V/\
SN
60 N A A ~
= NV VvV ¥
G \//\
. A0 N\
=3 A~ X
> 4 /\
20 A\
1\/Iv ]
N—X
0 Vv
0 5 1‘0 1‘5 20
(b) X

FIG. 7. (Color online) Potential energy function and first 15
wave functions before (top) and after (bottom) 3000 iterations. The
starting potential is of the form V(x)=x+10 sin(x), using the non-
perturbative hyperpolarizability for optimization.

wave functions are accurate and all of the values of 8 have
converged to the same value, suggesting that this calculation
may be the most accurate of the set.

Our results bring up several interesting questions. First,
all of our extensive numerical calculations, independent of
the starting potential, yield an optimized intrinsic hyperpo-
larizability with an upper bound of 0.71, which is about 30%
lower than what the sum rules allow. Since numerical opti-
mization can settle in to a local maximum, it is possible that
all of the starting potentials are far from the global maximum
of B;=1. Indeed, since most starting potentials lead to sys-
tems that require more than three dominant states to express
the hyperpolarizability, this may in itself be an indicator that
we are not at the fundamental limit precisely because these
systems have more than three states. Indeed, the original re-
sults of Zhou and co-workers frames the problem in a way
(i.e., a 15-level model in a potential limited to about 20
wiggles) that allows a solution to the optimization problem
to lead to three dominant states. So, while it may be argued
that this system is contrived and unphysical, we have found
value in trying such toy models when testing various hypo-
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theses. This toy model leads to a three-level system as the
three-level ansatz proposes, has the same qualitative proper-
ties as more precise methods, and has given insights into
making molecules with record-breaking intrinsic hyperpolar-
izability. Given the complexity of calculating nonlinear-
susceptibilities, our semiquantitative method may be a good
way of generating ideas.

The three-level ansatz proposes that at the fundamental
limit, all transitions are negligible except between three
dominant states. There appears to be no proof of the ansatz
aside from the fact that it leads to an accurate prediction of
the upper bound of nonlinear susceptibilities, both calculated
and measured. To understand the motivation behind the an-
satz, it is useful to understand how the two-level model op-
timizes the polarizability o without the need to rely on any
assumptions. This is trivial to show by using the fact that the
polarizability depends only on the positive-definite square of
transition moments (0 |x|n)(n|x|0), the same parameters that
are found in the ground-state sum rules [21].

For nonlinear susceptibilities, the situation is much more
complicated because the SOS expression depends on quanti-
ties such as (0|x|n){n|x|m)(m|x|0), where these terms can
be both positive and negative. Furthermore, the sum rules
that relate excited states moments to each other allow for
these moments to be much larger than transition moments to
the ground state. So, it would seem plausible that one could
design a system with many excited states in a way that all of
the transition moments between excited states would add
constructively to yield a larger hyperpolarizability than what
we calculate with the three-level ansatz. None of our numeri-
cal calculations, independent of the potential energy func-
tion, yield a value greater than 0.71. Since our potential en-
ergy functions are general one-dimensional potentials (i.e.,
the potentials are not limited to Coulomb potentials nor are
the wave functions approximated as is common in standard
quantum chemical computations), our calculations most
likely span a broader range of possible wave functions lead-
ing to a larger variety of states that contribute to the hyper-
polarizability.

However, there appear to be local maxima associated with
systems that behave as a three-level system and others with
many states, and, the maximum values both are 0.71. It is
interesting that so many different sets of transition moments
and energies can yield the exact same local maximum. To
gain a deeper appreciation of the underlying physics, let us
consider the transition moments and energies in the sum-
over-states expression for the hyperpolarizability as adjust-
able parameters. For a system with N states, there are N—1
energy parameters of the form E,—E,. The moment matrix
X;j has N? components. If the matrix is real, there are (N?
—N)/2 unique off-diagonal terms and N diagonal dipole mo-
ments. Since all dipole moments appear as differences of the
form x,,—xq, there are only N—1 dipole moment param-
eters. Therefore, the dipole matrix is characterized by (N?
—N)/2+N-1=(N+2)(N-1)/2 parameters. Combining the
energy and dipole matrix parameters, there are a total of
(N+2)(N-1)/2+N-1 parameters.
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The N-state sum rules are of the form

x ;
S (£,- 20 £ Jonisttalep) =5, 1)

n=0 2m

so the sum rules comprise a total of N? equations [i.e., an
equation for each (m,p)]. If the sum rules are truncated to N
states, the sum rule indexed by (m=N,p=N) is nonsensical
because it contradicts the other sum rules. Furthermore, if the
transition moments are real, then x,,=x,,, so only (N?
—N)/2 of the equations are independent. As such, there are a
total of (N>-N)/2+N—-1=(N+2)(N-1)/2 independent
equations.

Since the SOS expression for the nonlinear-susceptibility
has (N+2)(N—1)/2+N-1 parameters and the sum rules pro-
vide (N+2)(N—1)/2 equations, the SOS expression can be
reduced to a form with N—1 parameters. For example, the
three-level model for the hyperpolarizability, which is ex-
pressed in terms of seven parameters, can be reduced to two
parameters using five sum rule equations. In practice, how-
ever, even fewer sum rule equations are usually available
because some of them lead to physically unreasonable con-
sequences. While the (N,N) sum rule is clearly unphysical
due to truncation, sum rule equations that are near equation
(N,N) may also be unphysical. In the case of the three-level
model, it is found that Egs. (2) and (1) allow for an infinite
hyperpolarizability, so that equation is ignored on the
grounds that it violates the principle of physical soundness
[12,21,26]. This leads to a hyperpolarizability in terms of
three variables, which are chosen to be E,, E=E;y/E,,, and
X=x0/x]5". The expression is then maximized with respect
to the two parameters E and X, leaving the final result a
function of E\j,.

We conclude that the SOS expression for the hyperpolar-
izability can be expressed in terms of at least N—1 param-
eters so it would appear that as more levels are included in
the SOS expression, there are more free parameters that can
be varied without violating the sum rules. As N— o, there
are an infinite number of adjustable parameters. So, it is in-
deed puzzling that the three-level ansatz yields a fundamen-
tal limit that is consistent with all of our calculations for a
wide range of potentials, many of which have many excited
states. It may be that we are only considering a small subset
of potential energy functions or, perhaps the expression for
the hyperpolarizability depends on the parameters in such a
way that large matrix elements contribute to the hyperpolar-
izability with alternating signs so that the big terms cancel.
This is a puzzle that needs to be solved if we are to under-
stand what makes 3 large.

The matrix elements and energies, as summarized by
Table II, may hold the key to explaining the puzzle. First, we
note that the energy ratio E=E,,/ Eyy=1/2.05 and that the
ratio X=x,y/ X =~ 0.789 for the optimized potential for ev-
ery starting potential. The three-level ansatz, which is used to
calculate the fundamental limits reduces to the simple rela-
tionships [14]

Bin=fE)G(X), (8)

where
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fE)=(1 —E)3’2(E2+ %E+ 1) 9)

G(X):‘{f’EX\/%(l — x4, (10)

Using the results from Table II, we get f(1/2.05)=0.722
and G(0.789)=0.995 yielding B;,,=0.72. The optimized po-
tentials for all starting potentials, yield S3;,,=~0.71. So, we
find that the matrix elements are all optimized according to
the three-level ansatz, and, the energy spacing is not opti-
mized, but reminiscent of the spacing in a clipped harmonic
oscillator (CHO). So, it seems that when the hyperpolariz-
ability is calculated from a potential energy function, the
energy level spacing appears to depend on the dipole matrix
elements. When the dipole matrix is optimized, the energy
level spacing cannot get larger than what is found for the
CHO. That is, when the potential energy is tuned to optimize
Bine» the energy level spacing cannot be increased while
keeping X optimized.

Since the optimized values of 3, of all the systems stud-
ied are so well characterized by Eq. (8), it would imply that
all potentials lead to a three-level system. The top part of
Fig. 8 plots the matrix elements for the optimized potential
with starting potentials of V(x)=x+10sinx and V(x)=x>.
The former leads to an optimized potential with wiggles and
well-separated wave functions while the latter leads to a
smooth potential with highly overlapping wave functions.
Note that in these plots, the diagonal elements x,, have been
set to zero for clarity. (These elements are normally much
larger than the off-diagonal ones, and overshadow the struc-
ture in the off-diagonal elements.)

To study the significance of the contributions of the ex-
cited states, we define f3,,,,, the contribution from states n and
m to the SOS sum [27]

and

xOnfnmme
=—, 11
Bun="p (n

where X, =x,,,—X000, - The bottom portion of Fig. 8
shows a plot of S,,. The sharp positive peak in each plot is
the contribution of the diagonal term of the dominant state n
while the smaller negative peaks correspond to the off diag-
onal term that includes coupling between the dominant state
and the subdominant one. The contributions of all other
states is negligible.

We find similar behavior for all other potentials: While
the dipole moments and transition moments are large for
many states, only three states (two excited states and the
ground state) contribute to the hyperpolarizability. Thus, all
optimized potentials are distinct functions with associated
wave functions that are very different for the various poten-
tials leading to very different transition moments and ener-
gies, but they all share the common property that they lead to
a three-level model for the hyperpolarizability. So, the opti-
mized hyperpolarizability is a three-level model, confirming
the three-level ansatz.
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FIG. 8. (Color online) (Top) The x,,, matrix elements for the optimized potentials using V(x)=x+10 sin x and V(x)=x as the starting

potentials. (Bottom) f,,, for each of the plots above.

One might argue that perhaps our numerical methods are
in violation of the sum rules. However, Table II shows that
both the ground-state sum rule (75)80)) and the deviations from
all the sum rules combined (A 1'(8(%) are negligible.

The intriguing conclusion from these sets of observations
is that while the set of optimized potential energy functions
are all very different from each other, they all share the same
energy ratio £ and the same normalized transition moment X.
Furthermore, the hyperpolarizability is well approximated by
the three-level ansatz. So in a sense, from the perspective of
the intrinsic hyperpolarizability, all of these potentials are
intimately related.

To investigate whether the limiting behavior is due to our
use of one-dimensional potentials, we have also optimized
the intrinsic hyperpolarizability in two dimensions. In this
case, we focus on the largest tensor component S, and
describe the potential as a superposition of point charges. As
described in the literature [19], we solve the two-dimensional
Schrodinger eigenvalue problem

ﬁZ
- — VW 4+ VW =EV, (12)
2m

for the lowest ten to 25 energy eigenstates, depending on the
degree of convergence of the resulting intrinsic hyperpolar-
izability. We use the two-dimensional logarithmic Coulomb
potential, which for k nuclei with charges ge,...,q.e lo-
cated at points sV, ...,s% is given by

5 k
V(s)=e—2 q; ln||s—s(i) , (13)
LS

where L is a characteristic length. With L=2 A, the force due
to a charge at distance 2 A is the same as it would be for a
3D Coulomb potential.

We discretize the eigenvalue problem given by Eq. (12)
using a quadratic finite element method [22,28] and solve the
resulting matrix eigenvalue problem for the ten to 25 small-
est energy eigenvalues and corresponding eigenvectors by
the implicitly restarted Arnoldi method [23] as implemented
in ARPACK [29]. Each eigenvector yields a wave function WV,
corresponding to energy level E,. The moments

xmn:J f 51V, (s1,52) W, (s1,50)ds ds,

are computed, and these and the energy levels E,, are used to
compute B.

Figure 9 shows the intrinsic hyperpolarizability of a two-
nucleus molecule plotted as a function of the distance be-
tween the two nuclei and nuclear charge ¢;. The total nuclear
charge is ¢, +¢g,=+e, and is expressed in units of the proton
charge e. Three extrema are observed. The positive peak pa-
rameters are f3;,,=0.649 for ¢;=0.58 and d=4.36 A. The
negative one yields f;,,=—0.649 for ¢;=0.42 and d
=4.36 A. The local negative peak that extends past the graph
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FIG. 9. (Color online) The intrinsic hyperpolarizability of two
nuclei as a function of the distance between them and the charge of
one nucleus ¢, where g;+¢g,=+e.

on the right reaches its maximum magnitude of p;
=-0.405 at ¢;=2.959 and d=2.0 A.

Applying numerical optimization to the intrinsic hyperpo-
larizability using the charges and separation between the nu-
clei as parameters, we get B,,=0.654 at d=4.539 A, and
q1=0.430 when the starting parameters are near the positive
peak and B.,=—0.651, d=4.443 A, and ¢,=0.572 when op-
timization gives the negative peak. The peak parameters are
the same within roundoff errors when optimization or plot-
ting is used, confirming that the optimization procedure
yields the correct local extrema.

Figure 10 shows the intrinsic hyperpolarizability of an
octupolarlike molecule made of three evenly-spaced nuclei
on a circle plotted as a function of the circle’s diameter and
charge fraction €. ¢g=e€e is the charge of one of the nuclei and
the charge on each of the other two nuclei is e(1—¢€)/2. The
positive peak at €=0.333 and diameter D=6.9 A has a hy-
perpolarizability S;,,=0.326, while S3;,,=—0.605 for a charge
fraction €=0.44 and a diameter D=6.8 A.

Intrinsic Hyperpolarizability
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g 02
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FIG. 10. (Color online) The intrinsic hyperpolarizability of three
evenly spaced nuclei on a circle as a function of the circle’s diam-
eter and the charge € (in units of ¢) on one of the nuclei. The charge
on each of the other nuclei is e(1—€)/2.
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When the positions and magnitudes of the three charges
are allowed to move freely, the best intrinsic hyperpolariz-
ability obtained using numerical optimization is S;,=0.685
for charges located at 7;=(0,0). r,=(-4.87 A,0.33 A), and
F3=(-9.57 A,-0.16 A); with charges ¢;=0.43¢, ¢,=0.217e¢,
and g3=0.351e. There are only small differences in the opti-
mized values of §;,; depending on the starting positions and
charges; and the best results are for a “molecule” that is
nearly linear along the x direction. So, the xxx component of
Bine 18 optimized when the molecule is one dimensional. This
suggests that one-dimensional systems may have the largest
intrinsic hyperpolarizability.

The two-dimensional analysis illustrates that numerical
optimization correctly identifies the local maxima (peaks and
valleys) and that the magnitude of maximum intrinsic hyper-
polarizability (0.65 vs 0.68) is close to the maximum we get
for the one-dimensional optimization of the potential energy
function (0.71). All computations we have tried, including
varying the potential energy function in one dimension or
moving around point charges in a plane all yield an intrinsic
hyperpolarizability that is less than 0.71.

An open question is the origin of the factor-of-30 gap
between the best molecules and the fundamental limit, which
had remained firm for decades through the year 2006. Sev-
eral of the common proposed explanations, such as vibronic
dilution, have been eliminated [14]. Perhaps it is not possible
to make large-enough variations of the potential energy func-
tion without making the molecule unstable. Or, perhaps there
are subtle issues with electron correlation, which prevents
electrons from responding to light with their full potential.
The fact that the idea of modulation of conjugation has lead
to a 50% increase over the long-standing ceiling—reducing
the gap to a factor of 20—makes it a promising approach for
further improvements. Continued theoretical scrutiny,
coupled with experiment, will be required to confirm the
validity of our approach.

IV. CONCLUSIONS

There appear to be many potential energy functions that
lead to an intrinsic hyperpolarizability that is near the funda-
mental limit. These separate into two broad classes: One in
which wiggles in the potential energy function forces the
eigenfunctions to be spatially separated and a second class of
monotonically varying wave functions with small or no
wiggles that allow for many strongly overlapping wave func-
tions. The smooth potential functions may be better imple-
mented in stacked structures that are made using molecular
beam epitaxy while the wiggly potentials may be more easily
reduced to practice in molecules with modulation of conju-
gation.

When the potential energy function is optimized, the
maximal hyperpolarizability is found to be dominated by two
excited states. While many of the wave functions may be
strongly overlapping, the proportion of the oscillator strength
allocated between the two dominant states is such that all
other excited states contribute negligibly. Furthermore, the
ratio of energies between the two dominant states are the
same for all optimized potentials, suggesting that once the
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transition moments are optimal, the energy levels cannot be
arbitrarily adjusted so that the largest intrinsic hyperpolariz-
ability is 0.71.

Our calculations suggest that one-dimensional molecules
have larger values of B than two-dimensional ones. Per-
haps, one-dimensional systems are the best. Interestingly, all
these one-dimensional “molecules” have the same maximal
intrinsic hyperpolarizability of 0.71 while the 2D systems are
all below about 0.68. A second open question pertains to the
origin of the long-standing factor of 30 gap between the
fundamental limit and the best molecules. The idea of con-
jugation modulation may be one promising approach for
making wiggly potential energy profiles that lead to mol-

ecules that fall into the gap. Given that there are so many

PHYSICAL REVIEW A 76, 053831 (2007)

choices of potential energy functions that lead to maximal
intrinsic hyperpolarizability, it may be possible to engineer
many classes of exotic molecules with record intrinsic hyper-
polarizability. However, we caution that all of our calcula-
tions consider only single-electron systems, and electron cor-
relations may lead to behavior that is different than what we
have found here.
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