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Enhancement of entanglement for two-mode fields generated from four-wave mixing
with the help of the auxiliary atomic transition
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The entanglement properties of two mode fields generated from four-wave mixing are discussed in the
system of an ensemble of V-type three-level atoms embedded in a two-mode cavity, in which the atomic
transitions from the two excited states to the ground state are driven by one strong and one relative weak laser
field, respectively. The nondegenerate four-wave mixing process occurs in the strong laser-driven transition,
which is also coupled by the two cavity modes. With the help of the auxiliary atomic transition driven by the
weak laser field and adjusting the frequency difference of the two modes, highly squeezed and entangled light

with high intensity can be generated.
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I. INTRODUCTION

How to generate Gaussian-entangled light is one of the
energetic research fields in quantum optics, because it is
widely applied in continuous variable (CV) quantum infor-
mation processing such as quantum teleportation [1], quan-
tum telecloning [2], and quantum dense coding [3]. It is well
known that the two-mode squeezed electromagnetic state is
capable of exhibiting Einstein-Podolsky-Rosen (EPR) corre-
lations [4] and now becomes a basic resource of CV quantum
information processing [5]. The optical nondegenerate para-
metric down-conversion (NPD) which has long been envis-
aged as a source of two-mode squeezed states is proved to be
one of the effective ways to produce two-mode entangle-
ment. The experimental observation of the two-mode en-
tanglement produced from NPD with nonlinear optical pro-
cesses and linear elements has been reported in Refs. [6]. In
order to improve the strength of the NPD, engineering the
NPD Hamiltonian within cavity QED has also attracted
much attention [7]. For example, Prado et al. recently
showed how to construct the NPD Hamiltonian through the
interaction of a single driven two-level atom with two cavity
modes [8]. Guzman et al. proposed to generate such a NPD
Hamiltonian with a A-type three-level atomic ensemble in a
two-mode cavity [9].

Besides NPD, it is proved theoretically and experimen-
tally that nondegenerate four-wave mixing (NFWM) is an-
other effective way for the generation of the two-mode
squeezed field [10-12]. Comparing to the broadband paired
photons (squeezed and entangled) from NPD, the narrow-
band entangled beams can be produced via NFWM, which
may have potential applications in long-distance communi-
cation [13]. Tt is well known that four-wave mixing (FWM)
in a strongly driven two-level system can result in four-wave
parametric interactions to produce correlated photons
[14,15]. However, it is experimentally difficult to obtain a
large amount of squeezing and high generation rate by use of
the FWM in atomic vapors [12,16]. This is because in the
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strongly driven two-level system, there are two FWM chan-
nels which destructively contribute to the third-order nonlin-
ear susceptibility x'¥, proportional to the product of the
population difference between the two dressed states and
1/y/1+(A3/2Q4)%, where Aj is the frequency detuning be-
tween the driving laser field and the two-level atom and ()4
the corresponding Rabi frequency [17]. Therefore, only
when the two-level atom ensemble is interacted off-
resonantly with the strong driving laser can the correlated
photons be obtained with low generation rate and with a
small amount of squeezing [18], as proved experimentally by
Slusher et al. [19]. In the limit of a large pumping detuning
A;, the third-order nonlinear susceptibility ) is propor-
tional to 1/ Ag. In order to increase the paired-photon genera-
tion rate, Du et al. [12] recently proposed and proved a new
scheme by using a single retroreflected pump beam. In this
scheme, the two FWM processes occur with different time
ordering so that their associated third-order nonlinear suscep-
tibility is proportional to I/Ag. Here, we focus on the gen-
eration of bright two-mode entangled fields in the NFWM
system. We present a different scheme to increase x> in the
NFWM system with the help of an auxiliary atomic transi-
tion. Our idea is that by use of the auxiliary atomic transi-
tion, the atom is selectively trapped into one of the two
dressed states which are related to the NFWM processes, so
that one of the two NFWM channels is closed and only one
NFWM channel survives. Consequently the pumping field
for the NFWM can be resonant to the relevant atomic tran-
sition which can greatly increase the third-order nonlinear
susceptibility. Thus the two-mode squeezing and the en-
tanglement can be enhanced significantly as compared with
those obtained in the two-level NFWM system.

In this paper, we consider an ensemble of V-type three-
level atoms embedded in a two-mode cavity, in which the
two excited states are coupled to the ground state by one
strong and one relative weak laser field, respectively. Mean-
while the strong laser-driven transition is also coupled by the
two cavity modes, so that the NFWM process occurs. By
adjusting the frequency of the laser field which drives the
atomic transition between the another excited state and the
ground state, the steady dressed-state population difference
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between the two dressed states which are relevant to the
NFWM processes can be approximately achieved to unity
even when the atom-pumping interactions are in resonance.
This means that one of two NFWM channels, which interfere
each other destructively, is closed. Only one channel is open
for the NFWM processes so that no destructive interference
happen and the third-order nonlinear susceptibility can be
thus increased. This causes the degree of the squeezing and
entanglement of the two-mode cavity field to be improved
greatly. Meanwhile, through adjusting the frequency differ-
ence of the two cavity modes, we can effectively eliminate
the ac Stark shifts, which causes the total photon number of
the two-mode cavity field to be large. The intracavity en-
tanglement in our modified NFWM system can exceed the
entanglement limit of an intracavity NPD at its threshold.
This paper is organized as follows: In Sec. II, the model is
introduced and the master equation of the cavity field is de-
rived. The variance matrix of the Wigner characteristic func-
tion of the two-mode cavity field is given in Sec. III. Section
IV is devoted to a discussion of the two-mode squeezing and
entanglement of the cavity field. In the last section, we give
a summary.

II. MASTER EQUATION OF THE TWO-CAVITY FIELD

We consider an ensemble of V-type three-level atoms with
two excited states |3) and |1) and one ground state |2) [see
Fig. 1(a)] embedded in a two-mode optical cavity. The
dipole-allowed transition |3)«|2) is pumped by a strong la-
ser field 3 with frequency »; and Rabi frequency 2();. This
transition is also coupled to two quantified cavity modes de-
noted by annihilation operators a; and a; with frequencies
w; and w3;. The NFWM process occurs in this two-level
driven transition. An auxiliary transition |1)«|2) is driven
by a relative weak laser field 1 with frequency »; and Rabi
frequency 2(); <2();.The interaction Hamiltonian of the
system is given by

Vint=V1+V2’ (1)
where
Vi=A0y + A3033 = Q (015 + 091) = Q3(023 + 035), (2)

i5,1

V,=(g1a,€"" + gya;¢ %" o3, + Hoc. (3)

Here o, (m,n=1,2,3) are the atomic population operators
for m=n and transition operators for m # n. The detunings
A=wp-v; (I=1,3), §;=r3—w;, and &=w;— 13, where wp
being the atomic transition frequencies from the excited
states |/) to ground state |2). g; are the coupling constants
between the cavity fields and the atoms. The density operator
p of the atom-field system is governed by the following mas-
ter equation:

d , .
Ep=_ l[an;,P]+LaP+LfP, (4)

with

L,p= 2 7’1(20’21130'12 — OpOYP — PORTY),
=13
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FIG. 1. (a) The atomic configuration. The two-level transitions
|2)-|3) are coupled to a strong pumping field with Rabi frequency
2Q); and two quantum fields with frequencies w; and w;, respec-
tively. The auxiliary transition |2)-|1) is driven by a weak pumping
field with Rabi frequency 2€);. (b) The configuration of the dressed
levels in the representation of the strong driven atomic transition.
(c) The configuration of the doubly dressed levels.

Lipy= 2 i(2aipaj - ajap- pajay), (5)
=13

where 7y, are the damping rates of the atomic excited levels
|I) to the ground state and k; represent the dissipation rates of
the cavity modes. By tracing out the atomic variables, one
can get the dynamics of the cavity field:

4=y (Ulpl1). (6)

dt dt ;215
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For convenience, we will derive the master equation (6) in
the picture of the dressed states which are the eigenstates of
the Hamiltonian H,3=A3033—03(023+03,). The pair of the
eigenstates are

|12) = cos ¢|2) +sin @|3), |3)=sin ¢|2) —cos ¢|3), (7)

with
& /1 N o in ¢ 1 o
COS = —_ -, Sin = e N
2 2V8+1 2 2V8+1

(8)

and 8=A,/20);. The dressed states |2) and |3) have the cor-
responding  eigenvalues  N\,3=(A3;FQ)/2  with
= \r’A§+4Q§. The bare state |1> remains unchanged, and it is
denoted by |T>. In the dressed-state representation, the master
equation (6) reduces to

d TP
P i[V33,p55 = p33] = il V33,0351 = il V35, p33] + Lyp,.,

)
where
V55 =g sin ¢ cos dla,e + aze™ + aje " + aje’™),
Vi3 =g sin’p(a e + aze™'%') — g cos’P(ale O + ale'®).
(10)

Here we have taken g, =g3=g for simplicity. We assume that
the driving field is very strong so that |[N,—\;|> 7y, vs;
therefore, the secular approximation can be adopted [20].
Without loss of generality, we assume that the state |1~> is far
detuned with the dressed state |§) but may be resonant with
|2~> as shown in Fig. 1(b). Following the standard procedure
in the theory of the NFWM [14,15], under the condition of
|8,| > |8, - 8|, we can obtain the following master equation
governing the dynamics of the two-mode cavity field as

d .
d_tpc == E Aj(pcaja; —a; pcaj) - 2 (Bj + Kj)(a;ajpc
j=13 j=13

—a;p.a)) + Cylajalp, - alp.a)) + Dy (p.ala]
- a\p.a}) + Cs(akaip. — a\p.a3) + Ds(p.ajaj
—alp.al) —id(ajap, + dlasp.) + Hee., (11)
where 6;3=(8,—383)/2 and
A, =4Ng?[sin*@R(~ 8,) + cos* T (- 8,)1/D(- 8,)
— Ng*sin¢p cos?F " (- 8,),

B, = 4Ng2[cos4¢R*(51) +sin* ¢T(- 8,)1/D(- &)
— Ng? sin’¢ cos>pF(6,),

C, =4Ng?sin’p cos®P{[R" (= 8)) + T (= 8,) D" (- 8,) + F(
- )},
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D, = 4Ng? sin*¢ cos2p{[R(8,) + T (= 8)/D” (= &)
+F(5). (12)

The parameters A, B;, C;, and D5 have the same expres-
sions as A, By, Cy, and D; by the replacement of §; with
—0;. The parameter N is the total number of atoms, and the
four functions D(x), R(x), T(x), and F(x) are defined as

D(X) = [bl + b2 - 21()( + ﬁ)][bl + b2 - 21()6 - Q)],
R(x) = bip35 + (2 cos & piz—xp3s),
T(x) = pislby - iv),

Fx)=- Pg* 2(x) - (p(232~+ Pg‘g)fzz(x) + ipgffzs(x) - pgffm(x) )
(13)

where

Fo1(0) = 23 (g + ix) + pral (e + %)% + (A = \p)*VUx),

far(x) = 4#%(,% +ix) + (g + ix)[ (ug + ix)z + (4,
- M) VU,

F23(x) == (pe + ix) (py p3 = 2papy + ips3x)/U(x),
Soa(x) = (Ay = No) (w3 = 2 s pag + it x)/ U(x)

Ux)=[(A, - 7\2)2 + (e + ix) [ (x - i) (x = ips) + pops]
+ 203 (g + ix) (24t — o + 2ix),

1 =2[21(1 + cos’ ) — y; cos(2¢)]/3,
p2=2[= y1(1 + cos® §) + y3(sin* ¢ +2)1/3,
== cos d,  uy=4(y; - y3)cos(2¢)/3,
s =2[— v, cos(2¢p) + 2y;(sin*p + 2 cos* ) 1/3,
e =1+ s[4 sin*p+ y; sin*(2) /4,
by = pe+i(A1=\3),

by = yy[sin*¢ + cos*dp +sin(2¢p) |+ i\, — N3), (14)

in which Q=19 cos’¢—(b,—b,)?/4 and ng’ ng’ and p(l%
are the steady solutions of the elements of atomic density
operator in the dressed-state picture in the absence of the
interaction between the atom and the quantized fields (i.e.,
g=0), which can be easily obatined [21-24]. The master
equation (11) can be solved by use of the characteristic func-
tion method in the Wigner representation [20].

III. WIGNER CHARACTERISTIC FUNCTION

Assuming the cavity modes initially in vacuum, the state
of cavity field governed by Eq. (11) in phase space should be
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a two-mode Gaussian state since the master equation (11)
only contains the quadratic terms of the bosonic operators a;
and ak (j=1,3). For a two-mode Gaussian state, the quantum
statlstlcs properties of the two-mode field are completely de-
termined by the covariance matrix of its Wigner characteris-
tic function which is defined as [5]

M;;=Tip(AEAE, + AEAE)2] = ((£& + £,E)12),
(15)

where é:()f 1,);1,)?3,);3) The quadrature operators are de-
fined as_ XI—(a,e"‘91+a ¢)/\2  and Y,=—i(aei
-a, Telf)/ \2 with 6, being the phase angles of the modes. By
applylng local phase rotations to eliminate the dependence of
6,, which do not change the entanglement and the maximal
two-mode squeezing of the two-mode field, the covariance
matrix of the cavity field can be obtained as

n 0 ¢ O
0 n 0 -c
M= , (16)
c 0 m O
0 —¢c 0 m

where n={(aja,)+1/2, m=(aia3)+1/2, and c=|(a,a3)|. From
the master equation (11) we have[26]

d—t<a1a1> = E(xl +x1)(ala1) +y1(a{a£> +e)/2+c.c,
i ! Y it
E<a3a3> = 5(}53 +x3 ) (asas) + yslajal) + es/2 + c.c.,

d
d_t<ala3> = y3(a}LaI> + y1<a§a3) + (xy + x3)(aaz) + ey,

(17)

where x,=A;~Bj—K—=i8y3, y)=C=D, e)=A+A, (I=1,3),
and e,=C;+C;. Since the expressions of the time-dependent
solutions of the above equations are too lengthy, here we
only present the steady-state solution. It is easily found that
when the system obeys the condition Re[x;+x,
+1/(x;=x3)*+4y,y;]<0, the system can approach its steady
state in the long-time limit. The steady-state solutions of the
above equations are obtained as

% ES *
(aja,)D == e x3]x) + x5 + (x) + x3)[y 1€, (3 + x3) + 1 (3¢

* * ES
—yie3)]+y1y3(yea—yiey) +cc., (18)

(ayaz3)D = (x5 + x;){(xik + x:)[(xl +x>1k)/2 - yies]+ )’1()’35;k
—y3e2)} = yies(iys = y1ys) +[1 3], (19)
where the denominator D is
D ={(x; +x) (1 +23)[(x3 +3) (3, +63)/4 = y13]
+ 1330y —ys)2+[1 = 3] +ce.

Here the quantity (alas) is given by Eq. (18) with 1 inter-
changed with 3.
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After obtaining the characteristic function of the system,
we can discuss the squeezing and entanglement of the two-
mode cavity field.

IV. ENTANGLEMENT PROPERTY OF THE SYSTEM

The separability of a two-mode Gaussian state is well
established by Duan er al. [25]. Defining the operators i

=aX 1~ Xz and 0= aY1+aY2 and the sum of the variance 2
=((Ad) >+((Av)2> we can find

(20)

where a is a state-dependent real number. In fact, if we
choose a=1, then the sum of the variances reduces to the
variance characterizing the normal two-mode squeezing:

V=((X, - X)) =((Y| + Y ) =n+m=2|c|. (21)

The variance V<1 indicates that the cavity field exhibits
two-mode squeezing. According to the criterion Duan et al.
[25], the cavity field is entangled if and only if the quantity 3,
meets

1
z<f+;. (22)

Then, the entanglement condition of the cavity field can be
given by

1 1
Y=E—a2——2:2na +2m/a® —4|c|-a ——2<0,
a
(23)

where a’=/(2m—1)/(2n—1). It is evident that the entangle-
ment condition, Eq. (23), reduces to the following inequality:

V(aja,Xajas) - [(a1a5)| <0, (24)
which indicates that, for the appearance of the entanglement
of the cavity field, the nonclassical correlation should be es-
tablished between the two cavity modes. It should be noted
that the two-mode field with Y=-2 (or V=0) corresponds to
the original EPR entanglement.

In order to gain insight into how the auxiliary transition
[1)«|2) improves the entanglement of the two-mode field
generated from the NWFM processes, we first consider the
case of turning of the auxiliary transition [1)«[2) (i.e., Q,
=0). In this case, the system reduces to the two-level NFWM
system and the parameters A;, B;, Cs, and D5 in Eq. (11)
become

0
PR sin2¢h cos2 ¢ pi« sin*¢ P35 cos*e
= + + ,
Y T s, TTL-iQ-6)  TL+i(Q+d)
_ . -
B = Na? sin®¢ cos’ ¢ b33 cos'e p 77 sin'¢
= + + ,
Y T s, T +i Qs T—iQ-5)
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0
1 P33
+
T —is T,+i(Q-5)

C;=Ng?sin’¢ cosz¢|:—

0
N P33
[,-iQ+6) ]’

0
1 )
D = No? sin? 2 [_
FENGTSIC oS’ D)~ T 0t 6y
6|
33
|, 25
T+ Q- 5y 25

where T, =vy;[sin*¢p+cos*¢p+sin?(2¢p)] and I'_=21;(sin*¢p
+cos*¢p). Now if assuming |8j3|>[813],7; and
Q=+ 51(3)| > y,—that is, the coupling between the two quan-
tized fields and the dressed atom is far from resonance—the
master equation (11) is approximately reduced as

d Qg’(cos*p+sin*d) o o .
O3+ [aja,

P 0 (p35=p3)
. 2iQg?* cos’ ¢ sin’ ¢(P(33§ - Pg‘g .
+ajas,p.]+ aas
c 02 - 5%
+a,a3,pc ]+ Lyp,.- (26)

The above equation shows that the NFWM system can be
effectively treated as a nondegenerate parametric amplifier
with detuning. This detuning arises from the ac Stark shifts
of the two cavity modes due to the coupling between the
dressed atom and the two cavity fields being far off reso-
nance. This detuning can be canceled by choosing the appro-
priate detuning difference ;3 because it decreases the two-
mode squeezing. Hence the system reduces to a
nondegenerate parametric amplifier and its Hamiltonian is

. 0 0
QQgZ COSZ¢ Slll2 (f)(p%~ - pﬁ)
0’ -

Vef =— a1a3+a1a3).

(27)

We can see that the strength of the nondegenerate parametric
amplifier resulting from the NFWM processes is proportional
to the zeroth-order population difference of the two dressed

states |§> and |§>. This is because there may exist two chan-
nels to realize these processes. For example, the dressed

. A e C 0 ., 0
atom starting from |3) (|2)) with a weighting factor P33 (pﬁ)
emits one photon in mode 1 (or in mode 3) jumping to |2)
(|3~>), then, because these one-photon processes are far off
resonance, the dressed atom immediately emits another pho-
ton in mode 3 (or in mode 1) to |3) (|2)). In these cascaded
emission processes, two laser photons are absorbed. Because
the nondegenerate two-photon cascaded processes for the
two cavity modes obey two-photon resonant condition and
one-photon far-off-resonance condition, these cascaded two-

photon processes for the two cavity modes resulting from the
NFWM mixing processes are dominant. Unfortunately, these
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two channels interfere destructively with each other so that
the strength of the nondegenerate parametric amplifier in Eq.
(27) is proportional to the population difference between two
dressed states. It is well known that for the case of a two-
level atom resonantly driven by a very strong field, the atom
is nearly balanced in its two dressed states—i.e., pg;ngi.

Therefore, due to the NFWM signal vanishing as a result of
the destructive interference between two channels [17], the
nondegenerate parametric amplification processes disappear.
As a result, the large detuning between the two-level atom
and the pumping field is necessary for obtaining the popula-
tion difference between two dressed states. However, the de-
tuning A; will in turn decrease the value of the factor
sin¢ cos’¢ containing in the strength of the nondegenerate
parametric amplification processes, which takes its maximal
at A;=0—i.e., the resonant interaction between the two-level
transition |3)«|2) and the relevant pumping field. Therefore,
in the two-level NFWM system, the strength of the paramet-
ric amplification processes could not be large, which result-
ing from the correlated photons can be obtained with low
generation rate and with a small amount of squeezing, as
proved experimentally by Slusher et al. [19].

However, if the atom can be set into one of the two
dressed states when A3;=0, the coupling strength of the non-
degenerate parametric amplification can be increased greatly
as shown in Eq. (27); consequently, the two-mode squeezing
and the entanglement can be enhanced significantly. This is
because one of the two NFWM channels is closed and only
one channel is open for the NFWM processes so that no
destructive interference happens. Therefore the pumping
field for the NFWM can be resonant to the relevant atomic
transition which can greatly increase the third-order nonlin-
ear susceptibility. In the following we will prove that by
applying the auxiliary transition |1)«[2) driven by laser
field 1, the atom can be selectively populated in one of the
two dressed states so that the population difference | p(313~

- p(235| ~1 even when the atomic transition |3)+«|2) is reso-

nantly driven by the pumping field—i.e., A;=0. Therefore,
the highly squeezed and entangled cavity field can be ob-
tained in the present system, compared to the result given in
the standard two-level NFWM system [15,18].

In Fig. 2 we plot the dependence of the steady-state vari-
ance V and the function Y which, respectively, characterize
the steady two-mode squeezing and entanglement of the in-
tracavity field on the detuning A, of the auxiliary atomic
transition |1)«<|2) driven by the laser field 1. From the inset
we can see that the dressed-state populations Pg‘g and pgi

approach about 0.997 and 0.0026, respectively, at the value
A=\, and for >, v;>> y;. Physically, when ;> y;
[for example, in atomic barium [23] in which the states
656p 3Pl, 6s 2I(S,, and 6s6p ]P1 are denoted by the states |3),
|2), and |1) as shown in Fig. 1(a), y3/79,=1/400] and the
A;=0, the decay rates 73, and 7,3 for the dressed state decay

|f> |3 are equal to each other. The decay rates 3, and 3
are much smaller than 7y;, and 7y;5. So the atom is hardly

populates the state 1). When A=\, [22,23], the coherent
coupling between states |1) and |2) driven by laser field 1 is

resonant and the coupling between |1~> and |§) is far from
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FIG. 2. The steady variances V and the quantity Y characteriz-
ing the entanglement vs A; for y;=1.0, y3=1/100, Q;=1.0, Q3
=50.0, g=10.0, ;= 8;=50.0, A3=0.0, and k;=k3=0.67 (all these
parameters are scaled by 7). The insets are the total mean photon
number N of the cavity modes and the dressed-state population Pg;

resonance, so the last coupling can be neglected as compared
with the first one. Therefore, an additional two-step channel

from |2) to |1) through resonance interaction and from |1} to
|§) through spontaneous decay results in that the atom being
trapped in the dressed state |3~). Therefore, the population
difference p%—pgi% 1. If we choose A;=\;, the coherent

coupling between the states |1) and |3) driven by laser field 1

is resonant and the coupling between |1) and |3) is far from
resonance, which can be neglected. In this case, only the

additional two-step channel from |3) to |I) through reso-

nance interaction and from |1~> to |§> through spontaneous
decay results in that the atom being trapped in the dressed

state |§> (here the results in this case are similar to those for
A;=X\,, which are not shown in here). As a result, together
with the resonant condition A;=0, we can have the maximal
strength for the effective nondegenerate parametric amplify-
ing processes as described in Eq. (27), which leads to maxi-
mal squeezing and entanglement of the steady cavity field at
A;=\, (shown in Fig. 2). Additionally, the equivalent ac
Stark shifts, which are caused by terms proportional to the
imaginary parts of A; and B; in Eq. (11) and harmful to the
squeezing and entanglement, can be eliminated by adjusting
the frequency difference J;5 of the two cavity modes. In Fig.
2 the optimal J;3 has been chosen for the different detuning
values of A;. By using v, as unit and, henceforth, for a
special detuning A;=\,=50.0 we can obtain the optimal
613=0.644. Evidently, here if 853 departs from this optimal
value, the squeezing and entanglement and the photon num-
ber of the cavity field will decrease, as shown in Fig. 3. As
shown in Fig. 2 or 3, a highly squeezed and entangled field
with V=0.49 and Y =-0.99 can be generated. The gener-
ated paired-photon number approaches easily more than 20.
It is well known that for a nondegenerate optical parametric
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FIG. 3. The steady variances V and the quantity Y characteriz-
ing the entanglement vs A3 for A;=-=50.0. The other parameters
are the same as in Fig. 2. The insets is the total mean photon
number N of the cavity modes.

oscillator in a cavity, the two-mode squeezing and entangle-
ment of the field produced in the cavity near threshold ap-
proach V=0.5 and Y=-1.0 [27]. In Figs. 2 and 3 the coop-
erativity parameter is chosen as c=Ng?/ky;~1.5X10%
which can be experimentally achievable. In fact, the cooper-
ativity c=1.2 X 10* has been demonstrated in a recent experi-
ment [28].

Now we proceed to study the squeezing and entanglement
properties when the detuning &) is in the vicinity of the
Rabi frequency (). That is, the two cavity modes are nearly
in resonance with the left and right sidebands of the well-
known Mollow triplet [29] in the resonance fluorescence
spectrum from the strongly driven two-level atom system
(i.e., ,=0), respectively. Because the quantity 8,5 which is
used to cancel the ac Stark shifts for the two cavity modes is
much  smaller than the  detuning S3—i-e.,
|6)3] < &) (3—without loss of generality we neglect the dif-
ference between o, and &5 in the parameters A;, B;, C;, and D;
in Eq. (11) to simplify the calculation. With A;=\, and
A;<2Q);, the atom is selectively nearly trapped in the
dressed state |§) with the aid of the appropriate auxiliary
transition |1)«[2) driven by the relative weak laser field 1.
That is, the zeroth-order populations in the two dressed states

|2) and |3) obey p2~5<< pg;. In this case, the master equation
(11) approximately reduces to

dp P
d_; =- (B(1R) + Kl)(a}Lalpc - achaD + AéR)(Pc%as - a;pca3)

- K3(a§a3pc - 03Pa§) + C(IR)(aIagpc + pcaiag
—2alp.al) + iC(ll)(aia;f +aa3)p.+H.c., (28)

4Np33(b+id))g? cos* 4Np33(b,+i))g” sin*

where A;= = l:] , By= = 1:] , and Cj
4Np§§(b1+i6])g2sin2</)co?¢> . — - . —

= = with ;:=[b]+b2+21(51+9)][b|+b2

=
=
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FIG. 4. The quantities V and Y vs &; with y;=1.0, y3=1/400,
0,=20.0, 0;=100.0, g=1.0, and «;=x3=0.20 for A;=0.0 (solid
line) and A3;=20.0 (dashed line). The inset is the total mean photon
number N of the cavity modes.

+2i(8,-Q)]. Here the markers R and I denote the real and
imaginary parts, respectively. Note that in the above master
equation the equivalent ac Stark shifts have been eliminated
with the choice of the frequency difference ;3. When
0, <« Q3, due to the resonant interaction of pumping field 1

with  the  dressed-state  transition |1}« [2)—i.e.,
A;=\,—both states |1} and |2) are split into a doublet of
doubly dressed states |+) [30] in the superposition of |2) and
|1~), separated approximately by Q for (), >, as shown in
Fig. 1(c). This gives rise to the two peaks of the radiated field
(the two-mode cavity field) around the frequency +(), as
shown in Fig. 4. Figure 4 displays the steady-state squeezing
and entanglement versus the detuning 6;. Under the condi-
tion 8, =0=Q, the cavity fields resonantly interact with the
transitions between the |§) and |+) and hence two dips ap-
pear at ;=0 =Q. If pumping field 1 meets Q;>>Q;> v,
we find that the parameter C(ll) is negligible, compared to the
parameters BER)(%EgZ;—Oﬁé), A;R)(%Ng%‘é), and C(IR)
X (= \/AgR)B(IR)). Immediately, we can find that the above mas-
ter equation (28) is identical to the one of a nondegenerate
three-level cascade laser with the injected atom prepared in
the coherent superposition of its lower and upper states [31].
For A;=0 we have sin ¢p=cos ¢ and B(lR)=AgR), which is the
same as the case in Ref. [31] of the atoms with maximal
coherence. In this case, at the two dips &=~ 187.587 and
214.133 as displayed in Fig. 4, the cavity field exhibits en-
tanglement but no squeezing. For A;<0 (in Fig. 4 we set
A3;=-20.0; in this case, p(235<< p% still holds) we have sin ¢

>cos ¢ and hence B(IR)>A(3R). We can find that squeezing
and entanglement can be achieved at the two dips, which are
shifted to 6, =~ 185.867 and 214.408, coincident with Q0.
More interestingly, shown in Table I, near the resonant peaks
6,~185.867 and 214.408, by adjusting the appropriate the
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TABLE I. The variances V and Y and the mean photon number
of the two-mode cavity near the resonant peaks in Fig. 4 (dashed
line) with different cooperativity parameter c.

] c Vv Y N
187.5700 1.14x10° 1.0035 —-1.0812 4.4850
187.5767 2.00X 103 0.9243 -1.1164 4.5310
187.5867 0.89 %X 103 0.8367 —-1.1961 5.100
187.6000 0.80% 103 0.6697 -1.3515 6.1567
214.4000 1.43x10° 0.7875 -1.3514 7.3860
214.4083 1.33x10° 0.9562 -1.2627 7.1634
214.4100 1.00x 10° 0.9648 —1.2425 6.8426
214.4200 2.00x 10° 1.0574 -1.1541 5.9826

cooperative parameter ¢, the quantity Y can be smaller than
—1.0, which means that the entanglement produced in our
system can exceed the entanglement limit of an intracavity
nondegenerate parametric amplifier at threshold with Y=
—1.0. Additionally, from Table I one can find that near the
peaks, the quantity V characterizing the two-mode squeezing
of the cavity field is still larger than 0.5. This is because the
two-mode squeezing is sensitive to the difference of the
mean photon number of the two cavity modes [32], which
can be seen from the equivalent expression of the two-mode
squeezing condition V<1 as

(a9l >\ M) - alad P + alaialas. @9)

Because in Eq. (11) the gain and the absorption of the two
modes are asymmetric near the two resonant dips, the mean
photon numbers in two cavity modes are unequal. The mean
photon difference <aia1>—<a§a3> damages the two-mode
squeezing so that near the resonant dips we have only small
squeezing. Nevertheless, we can still have high entanglement
with tens of photons since the entanglement is independent
of the mean photon difference, according to the entangle-
ment condition, Eq. (24).

Finally, we can see, from Fig. 4, that the variance is split
into two peaks near each dip. This is because when the two
cavity are detuned far away from the resonant dips, the sys-
tem behaves as a nondegenerate parametric amplifier as de-
scribed in Eq. (27). When the two cavities are exactly de-
tuned at the two resonant dips, the behavior of the system is
similar to that of a nondegenerate three-level cascade laser
with injected atomic coherence [31] below threshold. Near
the two resonant dips, these two processes contribute to the
two-mode squeezing simultaneously. Unfortunately, the two-
mode squeezing directions from these two processes are not
coincident with each other; this leads to a destructive inter-
ference for the squeezing as pointed out by Agarwal [33]
who revealed this quantum interference effect in the
squeezed spectrum for a degenerate optical parametric oscil-
lation in a cavity which is coupled to a broadband squeezed
bath. As shown in Eq. (28), although the strength C(ll) for the
nondegenerate parametric amplifying processes is very weak
as compared with C ER) when the detuning &, departs from the
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resonant peaks, the effect of the nondegenerate parametric
amplifying processes could not be neglected and play the
role of degrading the squeezing of the system. Therefore two
peaks which reflected the deterioration of the two-mode
squeezing appear near each resonant dip.

V. CONCLUSIONS

The entanglement properties of two mode fields generated
from four-wave mixing are investigated in the system of an
ensemble of V-type three-level atoms embedded in a two-
mode cavity, in which the atomic transitions from the two
excited states to the ground state are driven by one strong
and one relative weak laser field, respectively. Meanwhile,
the strong laser-driven transition is also coupled by the two
cavity modes, so that the NFWM processes occur. Through
the appropriate auxiliary transition, the steady population
difference of the two dressed state of the two-level driven
atom even in the presence of the atom-pumping resonance
can be improved to be unity, which leads the degree of
squeezing and entanglement of the two-mode cavity field to

PHYSICAL REVIEW A 76, 053827 (2007)

be improved greatly. Meanwhile, by adjusting the frequency
difference of the two modes, the equivalent of Stark shifts
for the two cavity modes can be eliminated, which leads to
the total photon number of the two-mode cavity field increas-
ing significantly. Consequently, a strong two-mode cavity
field, which is highly entangled, can be produced. We also
find that when the cavity modes are tuned to nearly reso-
nantly interact with the dressed atoms, the entanglement of
the two cavity modes can exceed the entanglement limit of
an intracavity nondegenerate parametric oscillator at its
threshold.
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