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Bethe’s theory is applied to the optical transmission through an array of apertures in an infinitely thin perfect
electric conductor. This method shows that, in the small-aperture limit, the lowest-order TM evanescent mode
governs the transmission process, allowing for both 100% transmission at the passband wavelength and zero
transmission at the Wood’s anomaly. The applicability of this theory to total transmission in other systems is
discussed, and a specific example of a single aperture in a transverse screen of a rectangular waveguide is
given.
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I. INTRODUCTION

The study of arrays of small apertures in an infinitely thin
perfect electric conductor �PEC� sheet has received consid-
erable attention since the report of extraordinary optical
transmission through apertures in a metal film �1�. That work
claimed to have extraordinary optical transmission �EOT�
with respect to Bethe’s theory; however, Bethe’s theory was
formulated only for a single aperture and not an array �2�.
Compared with past results on the transmission through ap-
erture arrays, the extraordinary optical transmission is actu-
ally a reduction in transmission—total transmission is ex-
pected at the passband wavelength of the array structure
�3–5�. For large apertures, analytical approximations to the
transmission were presented, yet for the small-aperture limit
it has been claimed that “all simple formulas are no longer
reliable” �5�. Therefore Bethe’s theory, which replaces a sub-
wavelength aperture with an infinitesimal magnetic polariza-
tion current for normal incidence, is of interest for solving
for the transmission through aperture arrays.

A solution for the transmission through aperture arrays
was presented recently �6�. In that work, Babinet’s principle
was used to replace the aperture array with a disk array and
then the overall polarization of the disk array was derived by
an infinite summation over the mutual dipole coupling be-
tween the disks. The final analytic result was derived “from
the divergent terms of the sum over the reciprocal lattice
vectors” �6�. While it is clear from that work that the total
transmission comes from multiple scattering, the role of the
bound modes was not clear. Here, it will be shown that the
physical origin of this divergent component is simply from
the contribution of a single bound mode which governs the
transmission in the small-aperture limit.

In this work, a different approach is taken to derive an
analytic expression for transmission. The self-consistent-field
distribution is solved in the presence of the magnetic polar-
ization current excitation from the apertures. The electric
field at the surface is represented by a Fourier expansion.
This allows for a physical description of the total transmis-
sion phenomenon—the magnetic field at the surface is domi-
nated by the lowest-order bound mode and then rescattered

by the aperture array to allow for total transmission. As a
result, the previously derived transmission dependence for
the small-aperture limit is reproduced, showing clearly that
the divergent contribution is from the lowest-order bound
mode.

The main contribution of this work is to provide a physi-
cal mechanism for total transmission through an array of
small holes in a thin metal screen: it arises from only a single
TM bound mode that is near the cutoff. The TM bound mode
has a divergent magnetic field component at the cutoff, so
that all of the incident energy is coupled into that mode
through the magnetic polarization current of the aperture.
The energy is then reradiated on the other side of the screen.
With this understanding of the physics of total transmission,
it is possible to extend the study of total transmission to other
geometries. In this work, total transmission through a single
aperture in a transverse screen of a rectangular waveguide is
discussed.

II. BETHE’S APERTURE THEORY FOR AN ARRAY

Figure 1�a� shows the geometry of the aperture array. A
square unit cell of the array of apertures is considered with
side length a. The aperture is centered at the origin, and it
lies in a PEC in the x-y plane. A plane wave is normally
incident from the negative z direction, with unity electric
field linearly polarized in the x direction. The x component of
the electric field at the surface may be represented by a Fou-
rier expansion on the side of incidence,

Ex�x,y,z = 0−� = 1 + �
m,n

rmn cos�2m�x

a
�cos�2n�y

a
� ,

�1�

and on the side of transmission,

Ex�x,y,z = 0+� = �
m,n

tmn cos�2m�x

a
�cos�2n�y

a
� . �2�

These fields must equal one another. Furthermore, they
should be equal to zero on the surface of the PEC. Figure
1�b� shows a schematic of the field distribution at the sur-
face. By considering these boundary conditions in the con-
text of the transmitted plane wave, it is clear that the contri-*rgordon@uvic.ca
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bution for the nonconstant Fourier terms with m ,n not both
equal to zero must give

� �
h

Ex�x,y,z = 0�dx dy = a2t00, �3�

where h represents the region of the aperture. In the small-
aperture limit and for m ,n small enough that the cosine de-
pendence may be considered constant over the aperture, the
Fourier transform implies

tmn 	 4t00 �4�

for m ,n�0 and

tmn 	 2t00 �5�

for m ,n=0, m�n. This formulation shows that whatever
light makes it through the aperture is bunched up at the ap-
erture. Furthermore, the electric field in the aperture contrib-
utes to the evanescent modes equally, as long as their wave
vector in the x-y plane is small.

Since we are considering normal incidence, Bethe’s
theory requires knowledge of the magnetic field at the aper-
ture. For �→a+, a single component dominates the magnetic
field—that is, for m=1, n=0. For all other values of m ,n,
the field remains finite as �→a+ and the series converges for
finite apertures. Therefore, for ��a, only the lowest-order
bound mode at the surface need be considered in addition to
the incident, reflected, and transmitted plane waves. Based
on the Fourier description of the electric field at the surface,
it may be shown that the y component of the magnetic field
on the transmission side at the surface is given by

Hy�0,0,0+� 	
t00

Z0
−

i2t00

Z0
�2

a2 − 1

, �6�

where Z0 is the characteristic impedance of free space. Here
the plane-wave contribution is retained as an orthogonal
component to the evanescent waves; it is � /2 out of phase
with the rest of the field. Similarly, the magnetic field on the
side of incidence may be expressed as

Hy�0,0,0−� 	
1 − r00

Z0
+

i2t00

Z0
�2

a2 − 1

. �7�

In the derivation of Eqs. �6� and �7� Maxwell’s equations
have been used to provide a relation between the electric and
magnetic fields for the lowest-order TM bound mode, as out-
lined in the Appendix. It is clear that the divergent term

1/
�2

a2 −1 arises from the ratio between the electric and mag-
netic fields of the lowest-order TM bound mode. In particu-
lar, close to the cutoff of that mode, the magnetic field di-
verges for a finite electric field. As a result, that single mode
dominates the transmission process in the regime of applica-
bility of Bethe’s theory.

It is now possible to apply the aperture theory and replace
the aperture with an equivalent magnetic polarization cur-
rent. The equivalent magnetic polarization current is propor-
tional to the magnetic field:

pm�x,y,z� = �m�Hy�0,0,0−� − Hy�0,0,0+����x���y���z� ,

�8�

where �m is the magnetic polarizability and ��x� is the Dirac-
delta function.

Using the boundary condition 1+r00= t00 gives

pm�x,y,z� =
2�m

Z0 �1 − t00 +
i2t00


�2

a2 − 1���x���y���z� . �9�

The transmitted field t00 is now solved self-consistently as
coming from the excitation by an array of magnetic polariza-
tion currents, so that

t00 =
− i2�Zo

a2�
� � �

h

pm�x,y,z�dx dy dz . �10�

Using this result, we can find the total transmittance T
= 
t00
2:

T =
1

1 + � a2

2�k� �

2�m
−

4�k

a2
�2

a2 − 1��
2

, �11�

where k=2� /�. Here �m=D3 /6 for a circular hole with di-
ameter D and �m=�ld2 /16 for a rectangular hole where l
and d are the sides of the rectangle.

This result is accurate for small apertures and wave-
lengths ��a. While the truncation of the magnetic field ex-
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FIG. 1. �a� Geometry of aperture array for the case of circular
holes. �b� Schematic of transverse electric field distribution for y
=z=0. The PEC is shown with a thick black line, the constant
electric field of the transmitted plane wave is shown with a dashed
line, and the nonconstant field is shown with a gray line. The con-
stant and nonconstant field components cancel each other out over
the PEC. �c� Schematic of aperture in transverse PEC screen in a
rectangular waveguide.
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pansion of Eqs. �6� and �7� was only valid for wavelengths
close to the array periodicity, here we see that the passband
occurs in that regime. For other wavelengths, the dominant
term involves the magnetic polarizability, so that Eq. �11� is
valid for all ��a.

As �→a+, T→0, which is expected since this is the
wavelength of the Wood’s anomaly. The transmission goes to
zero due to the divergent large magnetic field buildup in the
lowest-order TM bound mode. In the small-aperture limit, it
is possible to obtain complete transmission for the wave-
length

�t =
128�2�m

2

a5 + a . �12�

III. DISCUSSION

A. Shape effect

Several experimental and theoretical works have consid-
ered the influence of aperture shape on optical transmission
through metals for single holes �7,8� and for arrays �9–11�.
For finite-thickness metal films, the Fabry-Perot �FP� reso-
nances play an important role in the transmission �8�. These
FP resonances are strongly influenced by the modes within
the aperture and thereby the aperture shape. The separation
of FP-related phenomena from phenomena that come from
coupling to the bound surface modes has been attempted by
considering double-hole and elliptical hole structures �11�.
For the theory presented here, however, the FP resonances
are naturally excluded since the metal is infinitely thin, and
therefore, it is interesting to see the origin of the shape effect
in this case. Furthermore, the metal is a PEC so that surface-
plasmon-related phenomena are excluded.

Figure 2 shows the transmittivity for various aperture
shapes of the same surface area within the small-hole limit of
Bethe’s theory. It is clear that a strong shape dependence
exists here that is the result of the magnetic polarizability of
the aperture, but is not the result of propagation within the

aperture since the screen is infinitely thin. Nevertheless,
some of the features of the shape effect in finite-thickness
apertures are reproduced, such as the redshift in wavelength
of the transmission peak for narrower rectangular apertures
�9�. In this work, however, the shape effect arises purely
from the polarizability of the aperture. The details of the
shape effect can be found in how the polarizability allows for
excitation of the lowest-order TM bound mode. More spe-
cifically, the shape of the aperture plays a role in scaling the
coupling between the lowest-order bound mode and the in-
cident plane wave, to cause the second term in the denomi-
nator of Eq. �11� to go to zero.

B. Comparison with past EOT theories

Most of the discussion in the literature is centered around
how much of a role the surface-plasmon character of the
metals plays in the EOT �e.g., �12–15��. In some cases, it is
argued that the surface plasmon polariton plays the most im-
portant role in EOT �13�, sometimes even a negative role
�14�, whereas in other works, diffraction from all the modes
is thought to be necessary �12,15�. Several works have also
discussed the importance of FP resonances to EOT �16–18�.

In this paper, it is shown that a single bound mode pro-
vides the dominant contribution, allowing for total transmis-
sion, even for an infinitely thin PEC screen. It is important
that the material be a PEC, because this means that no sur-
face plasmon phenomena are present. It is also important that
the PEC screen be infinitely thin because this means that no
FP resonances can be supported within the apertures, so
clearly these have no role in the present theory. The most
important contribution of this paper is to show that a single
TM bound mode near the cutoff dominates the transmission
process and allows for total transmission in the limit of
Bethe’s theory �i.e., small apertures�.

It is interesting to note that recent works have shown
closer to 100% transmission in experiments on subwave-
length hole arrays �19–21�, whereas past works only showed
1%–10% transmission �1�. These newer experimental studies
have been in longer-wavelength systems that are more
closely related to the conditions of this work. In particular, at
longer wavelengths the metal more closely resembles a PEC.
Furthermore, the films are thinner with respect to the wave-
length, and so the infinitely thin-film limit is better approxi-
mated by those experimental works �e.g., �20��.

C. Comparison with the dipole-scattering method

In the small-aperture limit of Bethe’s theory, Eq. �11� is
the same as was derived previously �6�. In that work, the
dipole-dipole interaction dyadics gave an infinite series with
a 1/
�

a −1 divergence. Here, the lowest-order evanescent

TM mode gives the dependence of 1 /
�2

a2 −1, which ap-
proaches 1/
2� �

a −1� for �→a+; therefore, it shows the same
divergence in the limit of Bethe’s theory.
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FIG. 2. Transmittivity for arrays of circles, holes, and rect-
angles, each with the apertures covering 2% of the total area. Rect-
angle A is half as wide in the direction of the electric polarization,
and rectangle B is twice as wide in that direction.
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It is clear that this common divergence is the result of the
lowest-order bound mode, which governs the transmission in
the small-hole limit. For the lowest-order TM bound mode,
the magnetic field diverges for a finite electric field when it is
near the cutoff wavelength, and therefore, that mode domi-
nates the transmission process in the small-hole limit near
the cutoff. The demonstration of the important role of this
single bound TM mode for the total transmission phenom-
enon is the main contribution of the theory presented here. In
the next section, the applicability of this theory to other sys-
tems is discussed.

D. Extension to other systems: Waveguides

The theory presented here provides a general mechanism
for total transmission through small apertures in a PEC
screen. The ingredients for total transmission are the exis-
tence of only a single propagating mode and a bound mode
at the surface. A further requirement is that the bound mode
have a divergent transverse magnetic field component near
the cutoff wavelength of that mode. It is interesting to con-
sider if other systems will allow for these conditions to be
met.

Figure 1�c� shows a schematic of an example system for
total transmission: a rectangular waveguide in a PEC with an
infinitely thin transverse PEC screen �perpendicular to the
walls of the waveguide� and a small aperture in the center of
the screen. The waveguide should be designed to allow
propagating modes TE10, TE20, TE01, TE11, TE02, and TM11
and to be just narrower than the cutoff of the TM12 mode. If
the TE10 field is incident on the screen, none of the other
propagating modes are excited by the aperture1 and they may
be neglected entirely. Thereby, the condition of having a
single propagating mode is met.

In this configuration, the TM12 mode will have a divergent
magnetic field component in the plane of the screen as the
wavelength decreases to the cutoff value. This TM12 mode is
excited by the aperture, and so it will dominate the transmis-
sion process within the Bethe limit. From these consider-
ations, it is expected that this system will show total trans-
mission too, albeit with a slightly different formulation than
the one given by Eq. �11� due to the differences between
waveguide modes and free-space propagation.

IV. CONCLUSION

In conclusion, Bethe’s aperture theory was applied to a
square array of apertures. This theory provides a simple

physical mechanism for the phenomenon of EOT through an
array of small apertures: the lowest-order TM bound mode
dominates the transmission process near its cutoff wave-
length. The formulation shows that an array of apertures has
a passband wavelength with 100% transmission, as well as
the Wood’s anomaly with zero transmission. Furthermore, it
agrees quantitatively with a previously derived result using
an infinite summation over dipole-dipole interactions. The
physical understanding of the total transmission phenomenon
provided by this theory allows for the application to other
small-aperture systems. One such system, proposed in this
work, is the rectangular waveguide with a transverse PEC
screen with an aperture in the center of the screen.

APPENDIX: MAGNETIC FIELD OF THE LOWEST-ORDER
TM BOUND MODE

The electric field of the lowest-order TM bound mode
above the surface of the screen �for z�0� may be expressed
as

E� �x,y,z� = �x̂ cos�2�x

a
� − ẑ

�

a�
sin�2�x

a
��exp�− k�z� ,

�A1�

where x̂ and ẑ are the unit vectors in the x and z directions,

k= 2�
� , with the free-space wavelength of �, and �=
�2

a2 −1.
Using Faraday’s law of induction in differential form

gives the corresponding magnetic field above the screen:

H� �x,y,z� =
iŷ

�0�
�k� −

2��

�a2 �cos�2�x

a
�exp�− k�z� ,

�A2�

where �=ck and c is the speed of light in free space.
Considering the situation of interest for Bethe’s aperture

theory for arrays, where �→a+, allows for the magnetic field
at the location of the hole, x=y=z=0, to be expressed as

H�0,0,0� 	
− i

Z0
�2

a2 − 1

, �A3�

where Z0=c�0. Since E�0,0 ,0�=1, the above equation is
also the ratio between the magnetic and electric fields, as
used in Eqs. �6� and �7�. Below the surface, the ratio changes
sign.

1It is important to note that electric field components perpendicu-
lar to the aperture may also excite waveguide modes at the aperture,
so that the geometry described here has been specifically designed
so that all of these components are zero at the center of the aperture.
The waveguide system is different from the main topic of this pa-
per; therefore, detailed analysis of the transmission phenomenon is
not provided.
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