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We present a theory describing trapping of the normally dispersive radiation by the Raman solitons in optical
fibers. Frequency of the radiation component is continuously blueshifting, while the soliton is redshifting.
Underlying physics of the trapping effect is in the existence of the inertial gravitylike force acting on light in
the accelerating frame of reference. We present analytical calculations of the rate of the opposing frequency
shifts of the soliton and trapped radiation and find it to be greater than the rate of the redshift of the bare Raman
soliton. Our findings are essential for understanding of the continuous shift of the high-frequency edge of the
supercontinuum spectra generated in photonic crystal fibers toward higher frequencies.
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I. INTRODUCTION

Frequency conversion in optical fibers has been an active
research field already for a few decades �1�. The most strik-
ing and extensively studied recent advance has been genera-
tion of extremely broad optical spectra �supercontinua� in
optical fibers with small effective area, pumped by femtosec-
ond pulses with the carrier frequency close to the point of the
zero group velocity dispersion �GVD� �2,3�. Applications of
the supercontinuum include spectroscopy, metrology �4�,
telecommunication �5�, and medicine �6�.

Among problems posed by the observation of supercon-
tinuum, one of the most puzzling has been understanding of
the nonlinear processes leading to the generation of the high-
frequency wing of the supercontinuum continuously drifting
toward even higher frequencies �7–11�. Several experimental
and numerical observations explicitly demonstrated that the
radiation at the blue wing of the supercontinuum often
propagates in the form of nondispersive wave packets, local-
ized on the femtosecond scale and continuously blueshifting
�12–15�. Note that GVD at the blue edge of the continuum is
typically normal, therefore the dispersive spreading cannot
be compensated by the nonlinearity. Independently from the
supercontinuum generation the effect of the localization of
blueshifting pulses in the normal GVD range, coupled to the
Raman solitons propagating in the anomalous GVD range,
has been reported in the series of papers by Nishizawa and
Goto �16–18� and more recently by Cheng and co-authors
�19�. It has been proposed in Refs. �16–19� that the physical
mechanism behind the above effects is the cross-phase
modulation �XPM� �1,20�.

However, it is well-known that the XPM coupling be-
tween anomalously and normally dispersing components can
lead to dispersion compensation and formation of the bright-
dark soliton pairs only if one soliton component is a dark
pulse and the other one is bright, see, e.g., �21–23�. Thus the
XPM cannot be the sole reason for formation of the bright-
bright localized states across the zero GVD wavelength
�12–18�. Also, the redshift of the anomalously dispersing
component is readily explained by the intrapulse Raman
scattering �1,34�, while the blueshift of the normally dispers-
ing bright pulse coupled to it requires to be understood.

Reference �14� has explained formation of the blue edge
of supercontinua in fibers using the theory of four-wave mix-

ing between the solitons and dispersive waves �24,25�. It has
been demonstrated that for typical fiber dispersions the inter-
action between the soliton and the blue radiation happens
recurrently, so that every scattering event leads to the further
blueshift of the signal pulse �14�. Though this theory de-
scribes well the first stages of the blue edge formation it fails
to explain why the femtosecond pulses emerging there re-
main free of dispersive spreading. The latter is naturally ex-
pected because of the strong normal GVD and would lead to
a fast degradation of any nonlinear interaction between the
soliton and the blue radiation, which in practice continues
over long distances. In our recent work �26� we have ex-
plained the physical mechanisms behind existence of the
nondispersive and continuously blueshifting localized states
of light on the high frequency edge of the supercontinuum
spectra. The light is trapped by the refractive index changes
induced, on one side �front of the pulse�, by the redshifting
Raman solitons via the nonlinear cross coupling and, on the
other side �trailing tail�, by the inertial force originating from
the fact that the solitons move with acceleration. The nature
of the latter effect is analogous to the gravitylike inertial
force acting on an observer in a rocket moving with a con-
stant acceleration.

The aim of this work is not only to provide mathematical
details for the mostly qualitative description presented in
�26�, but also to extend the theory into the regime of suffi-
ciently strong intensities of the blue radiation. In this regime
the trapped blue component of the two frequency bound-
state starts to influence the soliton dynamics on the red edge,
which makes noticeable quantitative impact on the propaga-
tion dynamics of the bound state.

II. MODEL

The subject of this work is the explanation of the exis-
tence and detailed study of the previously reported �12–19�
two-frequency bright-bright solitonlike states in optical fi-
bers, with frequency of one component being in the anoma-
lous range and the frequency of the other being in the normal
GVD range. Thus the dispersion we need to use should in-
clude the sign change of the GVD. The simplest example of
the dispersion operator having this property is
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Assuming E=eikz−i�t, we find that the GVD is ��
2k=��. Thus

� measures the spectral deviation from the zero GVD point
at �=0. The third-order dispersion coefficient � is positive
for the telecom fibers and in the proximity of 800 nm for the
typical photonic crystal fiber �PCF� designs used for genera-
tion of a supercontinuum with femtosecond pulses �2,3�. �
can also be negative in the proximity of 1500 nm in PCFs
and tapered fibers with sufficiently small cores �27�. It is
important to note that the group index parameter ��k
=��2 /2 is symmetric with respect to �→−� and therefore
the group velocity is matched across the zero GVD point.
The matching, or near matching, of the group velocities is
important for the existence of the two-frequency bound
states because the pulses should not spatially separate before
the bound state is established. In the PCFs the third order
dispersion ��

3k usually changes its value and sign as fre-
quency varies, as can be seen from the change of slope of the
GVD curve in Fig. 1�b�. This eventually destroys the match-
ing of the group velocities across the zero GVD point, see
Fig. 1�a�. However, the fact that the matching is still
achieved over the wide bandwidth is the most important for
the effect of radiation trapping and for the formation of the
blue wing of a supercontinuum.

Taking into account the instantaneous Kerr nonlinearity
and the noninstantaneous Raman response, the light propa-
gation in a fiber is modeled by the dimensionless generalized
nonlinear Schrödinger �NLS� equation �1�.

�zE = ik̂�i�t�E + i�1 − ��E�E�2 + E�
−�

+�

R�t���E�t − t�,z��2dt�.

�2�

The dispersion operator in Eq. �2� is

k̂�i�t� � �
m=3

M
L��m�

�mm!
�i�t�m, �3�

where the coefficients ��m� are selected to fit the dispersion
profile of the fibers. The total electric field is given by

Eeikrz−i�rt+c.c., where the reference frequency �r is chosen
to coincide with the zero GVD frequency, that is why the
sum in Eq. �3� starts from m=3. R�t� is the standard Raman
response function of silica:

R�t� = �
�1

2 + �2
2

�1�2
2 ��t�e−t/�2 sin

t

�1
. �4�

Here ��t� is the Heaviside function and parameter �=0.18
weights the Raman nonlinearity relative to the Kerr one.
Characteristic times of the delayed Raman response are �1
=12.2 fs/� and �2=32 fs/� �1�. t is the dimensionless time
in the reference frame moving with the light group velocity
at �0 and measured in the units of �. z is the distance along
the fiber measured in the units of L, where L is any conve-
nient characteristic length. Field amplitude E is scaled to
1/		L, where 	 is the nonlinear parameter of the fiber �1�.
To get the feel for the real values of the parameters we
choose 	=0.02�Wm�−1 and L=8 m, which gives 1/ �	L�
=6.25 W. Choosing �=200 fs and ��3�=0.12 ps3 /km �cor-
responding to the dispersion slope at the zero GVD point
close to 800 nm in Fig. 1�b�� we have �=L��3� /�3=0.12.

III. NUMERICAL EXPERIMENTS ILLUSTRATING
RADIATION TRAPPING BY ACCELERATING SOLITONS

We proceed by describing two sets of numerical experi-
ments. First is when a supercontinuum evolves from a single
pump pulse. Second, is when the two-frequency bound state
is excited directly by the two pulses. In the first set we used
the realistic fiber dispersion, see Fig. 1. However, to explain
the effect of radiation trapping by solitons across the zero
GVD point it is sufficient to consider the simple cubic dis-
persion as in Eq. �1�, which simplifies the comparison of
analytical and numerical results and is used throughout the
rest of the paper.

Figure 2 illustrates supercontinuum generation with a
single pump in the fiber as in Fig. 1. The pump frequency
was chosen either in the range of anomalous GVD, Figs. 2�a�
and 2�b�, or in the range of normal GVD, Figs. 2�c� and 2�d�.
In both cases one can see that, after the initial stages of the
supercontinuum development �see, e.g., �14� for a detailed
description�, the blue tip of the spectrum starts its continuous
drift toward higher frequencies, see z
0.2 m in Fig. 2�a�
and z
1 m in Fig. 2�c�. This spectral shift appears to be
correlated with the soliton self-frequency shift at the oppo-
site �infrared� edge of the spectrum. Spectrograms showing
the signals simultaneously in the frequency and time do-
mains, see Figs. 2�b� and 2�d�, unambiguously demonstrate
that the high-frequency tip of the continuum is localized in
the time domain on the same femtosecond scale as the soli-
ton at the infrared edge. One can also see that not only the
soliton at the very edge of the spectrum, but all the redshift-
ing solitons have associated localized pulses on the high fre-
quency side of the spectrum in the normal GVD range.

To isolate the effect of formation of the two-frequency
bound-states across the zero GVD point we perform simula-
tions using the two pulse excitation. From now on we will
focus on the simple case of cubic dispersion as in Eq. �1�. We

FIG. 1. �Color online� Frequency dependence of the group ve-
locity normalized to speed of light in vacuum �group index� �a� and
of the GVD �b� in the photonic crystal fiber as in Ref. �14�. Fiber
dispersion like this is typical for numerous supercontinuum
experiments.
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start from the case �
0, see Fig. 3. The first of the pump
pulses is spectrally located in the anomalous GVD regime
and forms a redshifting Raman soliton. The second pulse is
delayed with respect to the first one and has a spectrum in
the range of normal GVD. In the course of the propagation
the latter pulse appears to be trapped on the trailing tail of

the soliton, while its frequency is continuously increasing,
see Fig. 3. Note that the Raman effect pulls the soliton to-
ward smaller frequencies and away from the zero GVD
point, therefore the GVD felt by the soliton is continuously
increasing. This leads to the noticeable temporal broadening
of the soliton and to the drop in its amplitude, which also
affects the shape of the trapped radiation, see Fig. 3�b�.
Clearly the group velocities of the two components within
the bound state are the same, which suggests that the fre-
quencies are changing along the dispersion curve in such a
way that the group velocity matching is preserved.

In the case of the negative third-order dispersion ���0�
the effect of the radiation trapping is also clearly observed,
see Fig. 4. The difference here is that the normally and
anomalously dispersing components of the two-frequency
bound state are now spectrally converging toward the zero
GVD point, see Fig. 4�a�. However, the direction of the spec-
tral evolution of each of the components is the same as for
�
0. Namely the Raman effect pulls the soliton component
in the anomalous GVD range toward smaller frequencies,
while the pulse in the normal GVD range shifts toward
higher frequencies. The GVD felt by the soliton is reducing
in this case, therefore the soliton is adiabatically compressed,
see Figs. 4�b� and 4�f�. When the soliton is pulled sufficiently
close to the zero GVD point, so that the significant part of its
own spectrum is in the normal GVD regime, it starts to emit
Cherenkov radiation �29–31�, see Figs. 4�a� and 4�e�. This
radiation creates a spectral recoil effect which counterbal-
ances the Raman self-frequency shift and stabilizes the soli-
ton frequency �27,32�. As the soliton loses its energy through
radiation, it broadens and so does the trapped wave packet.
Still, both spectral components of the bright-bright quasisoli-
ton pair remain fairly well-localized over propagation dis-
tances much larger than the GVD length. Spectrograms
showing the effect of the radiation trapping in this case are
shown in Figs. 4�c� and 4�d�. Note that the stabilization of
the frequency of the pure soliton, i.e., without the trapped
radiation, happens at longer propagation distances, cf. Figs.
4�a� and 4�e�. This suggests that the trapping effect boosts
the rate of the soliton self-frequency shift. We will discuss
this more in detail in Sec. VI.

IV. COUPLED NLS EQUATIONS IN THE ACCELERATED
FRAME OF REFERENCE

In order to explain the above numerical observations of
the two-frequency bound states across the zero GVD point,
we reduce Eq. �2� to the coupled NLS equations for the two
pulses on the opposite sides of the zero GVD frequency. We
assume

E = A1 exp�ik1z − i�1t� + A2 exp�ik2z − i�2t� , �5�

where A1,2 are the amplitudes of the two pulses, �1,2 are their
frequencies, and k1,2=k��1,2� are the wave numbers: k���
=ei�tk̂�i�t�e−i�t. We also assume that �1,2 are selected in such
a way that k1�=k2��k�=��k� and therefore the group velocities
of the two pulses are equal. Substituting Eq. �5� into Eq. �2�,
expanding �E�t− t���2 in Eq. �2� up to the first order Taylor

FIG. 2. �Color online� Left panel: spectral evolution along the
fiber length for the dispersion profile as in Fig. 1. Pump pulse pa-
rameters: �a� wavelength 850 nm is in the anomalous GVD range,
�c� 800 nm is in the normal GVD range. In both cases peak power
is 6 kW, duration 200 fs; the radiation at the short wavelength edge
of the continuum starts its continuous drift toward shorter frequen-
cies at z
0.2 m for �a� and z
1 m for �c�. Right panel: spectro-
grams showing simultaneous frequency and time domain images of
the supercontinua in �a� and �c� for z=1.5 m and z=3 m, respec-
tively. The function plotted has been calculated using the cross-
correlation frequency resolved optical gating �XFROG� integral
I�t ,��=
−�

� dt�Eref�t�− t�E�t��e−i�t�. Here Eref is the 2 ps Gaussian
pulse. See Ref. �28� for more details about the XFROG.

FIG. 3. �Color online� Spectral �a� and time-domain �b�
evolution along the fiber pumped with two pulses obtained from
the numerical modeling of Eq. �2� with ��m
3�=0 and �= +0.12.
Initial conditions are E�z=0, t�=	2q1 sech�t /�1�exp�−i�1t�
+	2q2 sech��t−T0� /�2�exp�−i�2t�. with q1=2000 �peak power
�24 kW�, q2=250 �peak power �3 kW�, �1=	−Ds� /2q1

=0.2��40 fs�, �2=	−Ds� /2q2�0.57��115 fs�, T0=0.25��50 fs�,
and �1=−80��964 nm�, �2=80��684 nm�. Results in �b� are pre-
sented in the accelerating frame of reference: t�= t−g0z2 /2, with g0

defined by Eq. �15�.
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term, and neglecting all the fast oscillating exponential terms
with frequencies �1,2 and their harmonics we obtain a pair of
the coupled NLS equations:

i�zA1 + d1�x
2A1 = − ��A1�2 + 2�A2�2�A1 + TA1�x��A1�2 + �A2�2� ,

�6�

i�zA2 + d2�x
2A2 = − ��A2�2 + 2�A1�2�A2 + TA2�x��A1�2 + �A2�2� ,

�7�

where x= �t−zk1�� /	�k1��, T= �k1��
−1/2�d is the effective Raman

time, �d=
tR�t�dt�0.0073, d1=1/2 �anomalous GVD�, and
d2=−�k2�� / �2k1���0 �normal GVD�. The most important re-
striction of Eqs. �6� and �7� relative to Eq. �2� is that the

FIG. 4. �Color online� Pulse propagation in the case of negative third-order dispersion, �=−0.12. �a�,�b� Two pulses pump similar to that
in Fig. 3. Parameters of the pulses are q1=200 �peak power= �2.4 kW�, q2=25 �peak power �0.3 kW, �1=	−Ds� /2q1�0.63��130 fs�,
�2=	−Ds� /2q2�1.8��360 fs�, T0=1.5��300 fs�, and �1=80, �2=−80. �c�,�d� XFROG spectrograms for the case of a two-pulse pump,
calculated at different propagation distances. �e�,�f� Soliton propagation with q=200 �peak power �2.4 kW�. All time domain results are
presented in the accelerating frame of reference: t�= t−g0z2 /2, with g0 defined by Eq. �15�.
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former do not include frequency dependence of the GVD,
see Fig. 6. However, this is not critical for understanding of
the trapping mechanisms.

If A2=0 then Eq. �6� has an approximate solution in the
form of the NLS soliton moving with constant acceleration g
�1�. So that its center in the �x ,z� plane follows the parabolic
trajectory x=gz2 /2 and its frequency is continuously red-
shifting with the rate g / �2d1�. For the single NLS equation it
has been demonstrated that there exists a transformation into
the accelerating frame of reference, which retains the struc-
ture of the NLS equation apart from adding a linear in x
potential �33�. g is a free parameter of this symmetry trans-
formation, whose value is fixed by assuming that the correc-
tions to the soliton induced by the linear potential are bal-
anced by the corrections due to the Raman term, see below.

Here we apply the analogous symmetry transformation to
the coupled equations

A1 = ��z,�expi
ẋ0

2d1
+ if1�z� + iqz� , �8�

A2 = ��z,�expi
ẋ0

2d2
+ if2�z� + i�z� , �9�

where

 = x − x0�z�, x0 = gz2/2, f1,2�z� = −
1

4d1,2
� ẋ0

2dz .

�10�

Parameters q and � are the shifts of the propagation con-
stants of the two components.

The resulting equations for � and � are

i�z� + d1�
2� = q� − ����2 + 2���2�� + T������2 + ���2�

+
g

2d1
� , �11�

i�z� + d2�
2� = �� − ����2 + 2���2�� + T������2 + ���2�

+
g

2d2
� . �12�

The prime difference of the coupled NLS equations �11� and
�12� with the textbook ones �1� is the presence of the linear 
potentials. The acceleration g has been the free parameter up
to now. Its selection will be discussed in the next two sec-
tions.

We should note here that the natural next step in our
analysis could be the setting up of a boundary value problem
for the z-independent version of Eqs. �11� and �12�. How-
ever, proper setting of the boundary conditions is a challeng-
ing problem due to presence of the linear potential. The main
reason for this is that working out asymptotic behavior of
solutions for →−� requires a delicate analysis going be-
yond the scope of this work. Indeed, if one simply neglects
the nonlinearity, then the tails of both components behave
like Airy functions, which was assumed in the prior works on
the similar problems �35–37�. However, the amplitude of the
oscillatory tail �→−�� of the Airy function decays only as

��−1/4, which makes some linear terms in Eqs. �11� and �12�
decay at the rates matching the decay rate of the nonlinear
terms, suggesting that equating the solution tails to the Airy
function is an approximation. This problem still waits for its
proper analysis even in the case of the single soliton equa-
tion. For the above reasons we rely in what follows on per-
turbation theory complemented by the numerical calculations
with zero boundary conditions for large ��, which correctly
describes the localized parts of the solutions, but gives only
qualitative answers at the oscillatory tails. The effects we
study below are, however, dependent most strongly on the
localized part of the solutions, and therefore our approxima-
tion is adequate in the given context.

V. LINEAR THEORY OF THE RADIATION TRAPPING

We proceed by considering the limit when the normally
dispersive component � is much weaker than the soliton
component �. In this limit we can assume that the field � is
not affected by � and neglect all the terms nonlinear in �.
Then Eq. �11� for � can be solved perturbatively. We assume
�=�0��+�1��+. . ., where

�0 = 	2q sech�	q/d1� �13�

solves d1�
2�0=q�0−�0

3 and �1 accounts for corrections due
to Raman effect and the linear potential:

d1�
2�1 − q�1 + 3�0

2�1 = T�0��0
2 +

g

2d1
�0. �14�

The operator d1�
2−q+3�0

2 is self-adjoint and singular. Its
null space is spanned by the single eigenfunction ��0. Pro-
jecting the right-hand side of Eq. �14� on the latter we find

g = g0 �
32Tq2

15
. �15�

Thus the linear potential indeed compensates for the Raman
shift, at least in the first order, providing g=g0. Note that this
approach neglects the nonexponential decay of the soliton
tail at →−�, see discussion at the end of the previous sec-
tion, and it is equivalent to the traditional considerations
�33,34�, where the oscillatory tail has been ignored.

The z-independent equation for � is simply a linear eigen-
value problem in our approximation

− �d2��
2� + V��� = �� , �16�

where the potential V�� consists of the localized soliton part
and of the linear potential induced by the acceleration with
an already determined value:

V�� = 2�0
2 − T��0

2 +
g0

2�d2�
. �17�

The superposition of the exponentially decaying soliton tail
and of the linear potential creates a local minimum of V on
the trailing tail of the soliton, see Fig. 5�a�, giving rise to the
effect of light localization in the normal GVD regime. The
soliton itself serves as a potential barrier for the normally
dispersive waves on one side of the well and the linear po-
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tential, obtained as a result of the transformation to the ac-
celerated frame of reference, and serves as a barrier on the
other side. Thus the accelerating potential creates an inertial
force acting on photons. It is analogous to the gravitylike
force acting on massive bodies in a closed container moving
with a constant acceleration. The soliton created potential
wall is not infinite, however. Therefore the light is expected
to tunnel through it. Hence only quasibound states embedded
inside the continuum are possible as solutions of Eq. �16�.

In order to locate these states we first replace the soliton
part of V by its asymptotic and find that

V � Vb � A exp�− B� + C ,

A = 16q, B = 2	 q

d1
, C =

g0

2�d2�
. �18�

The contribution to A due to the Raman term ��T� is small
as compared to 16q and is neglected. The potential Vb goes
to infinity on both sides and has the discrete set of true bound

states with eigenvalues �n
�b�. Equation �16� with V replaced

by Vb has been solved numerically and some of its eigen-
states are shown in Fig. 5 with dashed lines. Then we take
the finite potential V and for each n find few eigenvalues and
corresponding eigenstates in the spectral proximity of �n

�b�,
applying the zero boundary conditions at both ends. The lat-
ter implies that we reliably calculate only the states with
relatively small tail amplitude at →−�. Having attempted
more precise calculations would go beyond our original level
of precision anyway because the oscillations of the soliton
tail at →−� have been disregarded in the first place. Some
quasibound eigenstates of the true potential V are shown in
Figs. 5�b�–5�e� with the full lines, and the corresponding
eigenvalues are indicated in Fig. 5�a�.

The terms exp�ẋ0 / �2d1,2�� in Eqs. �8� and �9� explicitly
express the continuous frequency shifts of the two compo-
nents with the rates g /2d1,2. The anomalous GVD �d1
0�
corresponds to the expected red frequency shift �34�. How-
ever, the normal GVD �d2�0� implies the blue frequency
shift. The latter explains spectral dynamics of the trapped
radiation. Indeed, radiation is trapped by the soliton, and
therefore delayed together with it. However, the decreasing
group velocity implies increasing frequency, providing that
GVD is normal.

Equations �8� and �9� give, however, little physical insight
into which elementary wave scattering mechanisms lead to
these opposing frequency shifts. The physical process driv-
ing the redshift of the soliton component is the well-known
intrapulse Raman scattering �1,34�. The blueshift of the ra-
diation component is driven by the intrapulse four-wave mix-
ing described in detail in �14�. Briefly, it means that the scat-
tering of the radiation pulse on the soliton generates the
blueshifted pulse. The continuous frequency shift of the soli-
ton and the phase matching conditions work out in such a
way that the observable result of this process is the continu-
ous blueshift of the radiation pulse carrier frequency. Trap-
ping effect sustains this process over the long propagation
distances and results in existence of the stationary soliton-
radiation states.

In order to verify validity of our approximate eigenvalue
analysis we have initialized Eqs. �6� and �7� with the soliton
for A1 and the linear eigenstates of V for A2 and solved the
equations numerically. Figure 6 shows evolution of the first
three quasibound eigenstates. The amplitude of the eigen-
states has been kept small in order to ensure that we remain
in the regime, when �A2�2 terms are negligible. One can see
that, despite using the simplified boundary conditions, our
solutions satisfy well the coupled NLS equations. This simu-
lation also confirms that the propagation distances on which
the tunneling induced losses lead to noticeable effects are
much larger than the typical GVD length. So that for the
fiber length of order meters the dispersive spreading of the
high-frequency radiation is suppressed and it propagates as a
localized state of light. Note also that the characteristic fea-
ture of each quasibound state, apart from the lowest one, is
the presence of several spectral peaks. Such multipeak spec-
tral structures are typical for the blue wing of supercontinua
seen in Figs. 2�a� and 2�c�.

Approximation V�Vb is also useful because it allows us
to carry out explicit variational calculations of the eigenval-

FIG. 5. �Color online� �a� Full �dashed� line shows the potential
V �Vb� for the soliton with q=100 and T=0.0024. �b�–�e� Selected
quasibound eigenstates of the potential V, cf. horizontal levels in
�a�. Dashed lines show the corresponding modes of the potential Vb.
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ues and eigenfunctions, and thus to have analytical estimates
for the width of the trapped states. Let us consider the varia-
tional approximation for the ground state �n=0� only. As a
trial function we choose

�̃0 = exp�− � − 	�2/w2� , �19�

where 	 is the shift of the intensity maximum of the trapped
state with respect to the soliton one and w is the width of the
trapped state. One can suggest better trial functions account-
ing for the asymmetry of the profile of the ground. However,
our choice is best suited for getting transparent analytical
expressions for parameters 	 and w. The variational estimate

�̃0 for the true value �0��̃0 is

�̃0 =
� d�̃0�− �d2��

2 + Vb��̃0

� d�̃0
2

. �20�

Minimizing �̃0 with respect to 	 and w2 we find

w2 = 2	2�d2�
BC

=
�d2�
2q
	�d1/q�1/2 15

2T
, �21�

	 =
B

4
	2�d2�

BC
−

1

B
ln� C

BA
� , �22�

�̃0 =	�d2�BC

2
+

C

B
1 − ln� C

BA
�� . �23�

Thus the narrow solitons �large q� and large Raman effect
�large T� result, quite naturally, in stronger localization of the
radiation. Figure 7�a� illustrates comparison between the nu-
merically calculated linear mode �0 of the potential V��
�17� and the variational approximation. The numerically cal-
culated dependencies �0�q� and �0

�b��q� for potentials V and
Vb, respectively, compare well with the variational result
�23�, see Fig. 7�b�.

FIG. 6. �Color online� Numerical propagation
of the first three bound states within coupled
equations �6� and �7�. Initial conditions are soli-
ton for A1 with q=100 and linear eigenstate of V
for A2. Left column: spectrum of the total field E,
Eq. �5�, with �2=−�1=20. Right column: tempo-
ral profiles of �A1�2 �dashed lines� and �A2�2 �solid
lines�. Time domain results are presented in the
accelerating frame of reference: t�= t−g0z2 /2,
with g0 defined by Eq. �15�.

FIG. 7. �Color online� �a� Lowest trapped linear mode of the
potential V �solid line� and its variational approximation �dashed
line�, given by Eq. �19� with 	 and w2 defined through Eqs. �22�
and �21�, respectively. Soliton parameter is q=100. �b� �0

�b��q�, solid

line, �0�q�, circles, and �̃0�q�, dashed line.
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VI. NONLINEAR THEORY OF THE TWO-FREQUENCY
QUASISOLITONS ACROSS THE ZERO GVD

POINT

The theory presented above explains the nature of the
radiation trapping and is adequate in the regime when the
radiation is weak. In this regime the family of the soliton-
radiation bound states is continuously parametrized by q
only, i.e., by the amplitude of the soliton pulse. In particular,
this is expressed in the fact that the acceleration parameter
g=g0 and the eigenvalue � are fixed for a given q. In the
nonlinear regime one should expect that � will become a
continuously varying parameter, as it happens for other types
of localized solutions in incoherently coupled NLS equations
�23�. Thus the acceleration g is expected to be continuously
parametrized by both q and �, i.e., by the energies of both
fields � and �. In order to demonstrate explicitly that indeed
there is a problem to be addressed here, we compare the
propagation distance at which the spectral recoil from the
Cherenkov radiation stabilizing the soliton frequency takes
place with and without the blue detuned pulse seeded into
the fiber. One can see �Figs. 4�a� and 4�e�� that the sharp
transition to the regime without the self-frequency shift hap-
pens at a shorter distance with the blue radiation present.
This is because the spectral peak of the soliton reaches the
critical distance from the zero GVD point sooner, which in-
dicates that the rate of the self-frequency shift is faster for
the soliton-radiation bound state than for the pure soliton,
i.e., g
g0. Thus nonlinear in � corrections should be taken
into account to explain this effect.

One obvious small parameter in our problem is the Ra-
man time T, which enters both equations for � and �. The
linear  potential can be considered as a small perturbation
only in the equation for �. However, it plays a crucial role in
the localization of the � component at →� and therefore
cannot be neglected already in the leading order in the equa-
tion for �. As we have found above, see Figs. 5 and 6, the �
and � components overlap only by their tails. Therefore the
nonlinear coupling can be considered as a small perturbation
on the � component, which is self-localized. However, in the
� equation the term ���2� is the only localization mechanism
for →−� and hence cannot be neglected there. Now we
rewrite Eqs. �11� and �12� collecting all the leading terms in
the left-hand side, all the first-order corrections in the right-
hand side, and neglecting the rest:

i�z� + d1�
2� − q� + ���2� = − 2���2� + T�����2 +

g

2d1
�

+ ¯ , �24�

i�z� − �d2��
2� − �� + ���2� + 2���2� +

g

2d2
�

= T�����2 + ¯ . �25�

In order to calculate the deviation of g from g0, we assume
that �=�0��+�1��+¯, �=�0��+�1��+¯, where �1

and �1 have the same order of smallness as the right-hand
sides in Eqs. �24� and �25�. This leads to

d1�
2�1 − q�1 + 3�0

2�1 = T�0��0
2 +

g

2d1
�0 − 2�0

2�0,

�26�

where �0 obeys

− �d2��
2�0 + V�,g��0 = ��0 − ��0�2�0. �27�

Projecting the right-hand side of Eq. �26� on ��0. We find

g = g0 + 2	d1

q
�

−�

�

d��0�2�0��0. �28�

One should remember though that �0 itself is a function of g.
Therefore Eq. �28� is an equation for g, which needs to be
solved. Solving Eq. �27� numerically we find the set of func-
tions �0 parametrized by g and �, which are the direct con-
tinuations of the linear discrete set of eigenfunctions of the
potential V found in the previous section. The tail of the
solution for →−� is oscillatory and weakly decaying like
the tail of the linear solutions. However, despite the fact that
�0 is only semibound, it can be used in the integral �28�
because it is multiplied there by the exponentially localized
functions �0 and ��0. It reflects the fact that the tail of � has
only a negligible contribution into the selection of g. There-
fore, like in the previous section, we can replace V with Vb
and carry out calculations using the infinite potential well
and exponentially decaying solutions. Substituting �0 inside
the condition �28� and solving the latter numerically for g,
we find the corrected values of g. Figure 8 shows dependen-
cies of g on � for the first three bound states. One can see
that increase in the amplitude of the � component generally
leads to the larger values of g, which practically means stron-
ger negative accelerations and larger frequency shifts �the
redshift or blueshift for the � or � component, respectively�.

It is useful to derive an approximate analytical expression
for g, which can be done in several ways. First, the varia-
tional approach can be applied to the nonlinear problem �27�.

FIG. 8. �Color online� Numerically calculated acceleration g for
different branches of solutions of Eqs. �27� and �28� with the po-
tential V being replaced by its asymptotic Vb. Circles correspond to
the solutions in the full potential V. Approximate analytical solution
�30� is indicated by a dashed line. Insets illustrate solution profiles
�asymptotic potential� at different values of the parameter �.
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However, this leads to rather cumbersome and difficult to
understand expressions. A more elegant answer, which also
matches well our numerical calculations in Fig. 8, can be
obtained in the limit of the weak nonlinearity in Eq. �27�.
This is accomplished by solving Eq. �27� perturbatively. We
consider the ground state and assume that in the first order
�0 and � are given by their variational approximations A�̃0

and �̃0 found in the linear case, see Eqs. �19� and �20�. Here
A is the constant amplitude to be determined. We also intro-
duce correction to the eigenfunction, ��, and to the eigen-

value, ��=�− �̃0, induced by the nonlinearity. Taking � as a
dummy small parameter, we assume A2��, ����, and
����. Looking at the integral in Eq. �28� we see that it has
order �2 because its value is proportional to A2 and it ac-
quires an extra order of smallness due to a small overlap
between �0 and �0. It means that g=g0+O��2�. The resulting
equation for �� derived from Eq. �27� is

�− �d2��
2 + V�,g0� − �̃0��� � ��A�̃0 − A3�̃0

3. �29�

The operator in the left-hand side is self-adjoint and singular.
Its null space is given by the linear ground state. Therefore
projecting the right-hand side on �̃0 we find ��=	2A2. Sub-
stituting �0 in Eq. �28� with A�̃0 and taking into account that
inside the integral in Eq. �28� the �0 can be approximately
replaced with its asymptotic 2	2q exp�−	q /d1� we find a
relatively simple expression for g:

g � g̃ = g01 +
� − �̃0

q9/8T1/4

d1
5/8

2�d2�
	�

2
�15�d2�

32
�1/4� . �30�

One can see that the above assumption about smallness of
the overlap between �0 and �0 remains valid provided
q−9/8T−1/4��. With T1/4 being practically an order of 1, it
implies that q should be sufficiently large. Together with the

variational approximation for �̃0, see Eq. �23�, the above
equation agrees very well with numerically calculated depen-
dence of g on � for the ground states, see Fig. 8.

An ultimate method to confirm the validity of our ap-
proximate calculations is to take Eqs. �11� and �12� in the
reference frame moving with acceleration g=g0 and with g
= g̃ given by Eq. �30�, initialize them with the bound state,
and solve numerically. Then trajectories of the solutions on
the �z ,� plane should be straight lines in the case of the
exactly selected acceleration and parabolic otherwise. Figure
9 demonstrates the results of this numerical experiment,
where intensities of the two components A1 and A2 are plot-
ted separately. Since initial excitation was taken in a local-
ized form, i.e., without proper account of oscillating tails,
one can see that both components emit radiation during
propagation. The radiation leakage from the trapped compo-
nent, A2, is small �note logarithmic scale in Figs. 9�a�–9�d��
and does not considerably affect the acceleration of the
bound state. More important, however, is the initial outburst
of radiation from the soliton component, A1. As a result, a
noticeable drop in intensity of A1 ��5%� is observed during
initial stage of soliton propagation, see Fig. 9�e�, while the
intensity of the A2 component stays practically the same dur-

ing propagation, see Fig. 9�f�. In order to account for these
losses, in the initial condition for A1 we have increased the
soliton parameter q by 5% with respect to the value used in
the calculations of the acceleration g̃. Taking this into ac-
count, Eq. �30� gives a very good approximation for the ac-
celeration of the bound state and, hence, for the rate of the
self-frequency shift associated with it, see Figs. 9�c� and
9�d�.

VII. SUMMARY

In summary, we have presented the detailed theory of the
effect of radiation trapping by the Raman accelerated fiber
solitons responsible for formation of the blue wing of the
supercontinuum spectra. We demonstrated that the radiation
in the range of the normal GVD is subject to the inertial
force, which, together with the soliton induced refractive in-
dex change, forms an effective potential well prohibiting the
dispersive spreading of the radiation. We have found not
only the ground state of the radiation field, but also its

FIG. 9. �Color online� Numerical propagation of the lowest
bound state within coupled equations �11� and �12� with accelera-
tion g=g0 �a� and �b�, and g= g̃ �c� and �d�. Left column: anomalous
GVD component �A1�, right column: normal GVD component �A2�.
Intensities are plotted in logarithmic scale. �e� and �f�: Maximum of
the intensity of A1 and A2 components, respectively, along propa-
gation distance. Initial shape for A2 was calculated with the ap-
proximate potential Vb for the soliton parameter q=100 and �
=70����20�. A1 was initialized with the soliton �13� with q=105
in order to account for initial radiative losses, see text for more
details.
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excited states, whose relevance for the past and ongoing ex-
perimental observations is under current investigation. The
soliton-radiation bound states move with a constant accelera-
tion in the time-space, while in the spectral domain the peaks
corresponding to the two components move in opposite spec-
tral directions �soliton component always gets redder, while
the radiation component gets bluer�.

In the first part of our theoretical considerations we have
assumed that the radiation is linear. In this case we have
demonstrated that the continuous blueshift of its frequency
happens at the same rate as has been previously calculated
for the redshifting solitons �1,34�. Considering effects non-
linear in the radiation, we have found that the acceleration of
the soliton-radiation bound states increases with the radiation
amplitude, which corresponds to larger rates of the self-
frequency shift. We have also derived an approximate ana-
lytical expression for the latter.

The results presented above pave the way for design of
new fiber based soliton frequency converters, which allow
for efficient blue frequency shifts of the solitonlike state.
This removes the traditional restriction of the Raman soliton
based frequency conversion having been directed only to-
ward longer wavelengths. Our results also emphasize that
moving dielectric media can be created via nonlinear modu-
lation of the refractive index by the pulse propagating with a
speed of light. This creates an interesting testing bed for
studies of the effects of light propagation in moving dielec-
trics, which have generated significant recent interest, see
e.g., �38�.
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