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In this paper we develop an analytic expression for the critical temperature for a gas of ideal bosons in a
combined harmonic lattice potential, relevant to current experiments using optical lattices. We give corrections
to the critical temperature arising from effective mass modifications of the low energy spectrum, finite size
effects, and excited band states. We compute the critical temperature using numerical methods and compare to
our analytic result. We study condensation in an optical lattice over a wide parameter regime and demonstrate
that the critical temperature can be increased or reduced relative to the purely harmonic case by adjusting the
harmonic trap frequency. We show that a simple numerical procedure based on a piecewise analytic density of
states provides an accurate prediction for the critical temperature.
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I. INTRODUCTION

Bosonic atoms confined in optical lattices have proven to
be a versatile system for exploring a range of physics �1–7�,
exemplified by the superfluid to Mott-insulator transition
�8,9�. In the superfluid limit a condensate exists in the system
and experiments have explored its properties, such as coher-
ence �6,7,10,11�, collective modes �12�, and transport
�2,13,14�. While several experiments have considered the in-
terplay of the condensate and thermal cloud at finite tempera-
tures �10,12�, the nature of the condensation transition itself
remains to be examined.

For the three-dimensional �3D� Bose gas, significant the-
oretical attention has been given to the condensation transi-
tion. The ideal uniform gas has the well-known critical tem-
perature Tc0��N /V�2/3, although it is only recently that
consensus has been reached on how s-wave interactions shift
this result �15–20�. In the experimentally relevant harmoni-
cally trapped case the ideal transition temperature scales as
Tc0� �̄N1/3 in the thermodynamic limit. Finite size �21� and
interaction effects �at the mean-field level� �22� give impor-
tant corrections, and including them is necessary to obtain
good agreement with experiment �23� �also see �24,25��.

While the occurrence of condensation in a lattice is hardly
surprising �when interactions are small�, there are few theo-
retical predictions for the condensation temperature or be-
havior. For the idealized case of a �uniform� translationally
invariant lattice, Kleinert et al. �26� have made predictions
that a re-entrant phase transition will be observed with vary-
ing interaction strength. Ramakumar et al. �27� have also
examined interaction effects in the translationally invariant
lattice, and have explored the critical temperature depen-
dence on lattice geometry.

In experimentally produced optical lattices the periodic
potential is always accompanied by a harmonic potential,
produced by the focused light fields used to make the lattice
and sometimes enhanced by magnetic trapping �e.g., see
�28��. We refer to this experimentally realistic potential as

the combined harmonic lattice potential �see Fig. 1�. We are
aware of two numerical studies that have considered finite
temperature condensation in the combined potential �29,30�.
Wild et al. �29� have considered a quasi-1D system and ex-
amined the effect of interactions on the transition tempera-
ture using a mean-field approach. Ramakumar et al. �30�
used numerical studies to examine condensation and thermal
properties for the ideal gas limit. All of these studies
�26,27,29,30� have used a tight-binding description �or Bose-
Hubbard model� that neglects the role of higher vibrational
bands, and can only be applied when the lattice is sufficiently
deep and the atoms are sufficiently cold. Going beyond the
tight-binding approximation Zobay et al. �31� have used
mean-field and renormalization treatments to consider the
effects of interactions in a uniform system with a weak one-
dimensional translationally invariant lattice �depth less than a
recoil energy�.

We also note several studies showing how adiabatic varia-
tions of the lattice depth might be used to prepare a conden-
sate or reversibly condense the system �32,33� and recent
papers debating the use of interference peaks as a signature
of condensation �28,34,35�.

The central difficulty in calculating the properties of a
quantum gas in the combined potential is that the spectrum
has a rich and complex structure. Several articles have con-
sidered aspects of this system �36–39� for the case of one or
two spatial dimensions. The first study we are aware of is a
tight-binding description of ultracold bosons by Polkovnikov
et al. �40�. References �36,38� have made detailed studies of
the combined potential spectrum �also within a tight-binding
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FIG. 1. Schematic diagram showing the combined harmonic lat-

tice potential considered in this paper.
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description�, and more recently closed-form solutions were
given by Rey et al. �39�. In Refs. �37,41� an ideal gas of
fermions in a 1D combined potential was examined without
making the tight-binding approximation. All of these studies
have confirmed that, for appropriate parameter regimes, parts
of the single particle spectrum will contain localized states.
This is in contrast to the translationally invariant system,
where interatomic interactions or disorder are needed for lo-
calization to occur �e.g., see �9,42��. Experiments with ultra-
cold �though noncondensed� bosons �43� have provided evi-
dence for these localized states.

In this paper we present a theory for an ideal Bose gas in
a three-dimensional combined harmonic lattice potential.
Our treatment includes excited bands, and is thus valid at
high temperatures where tight-binding descriptions fail. Cen-
tral to our approach is the division of the spectrum into
two regions: �i� a low energy region consisting of extended
oscillatorlike states, modified from those of the harmonic
potential by the low energy effective mass, and �ii� a high
energy region containing localized states that have an energy
related to the local potential energy, and also includes modes
in the first vibrational excited bands. The division between
these regions is made by the use of an effective Debye en-
ergy for the system.

In current experiments with optical lattices interparticle
interactions are typically important, at least in determining
the near zero temperature many-body ground state. Interac-
tion effects near the critical region have yet to be examined
for the combined potential �although the quasi-1D case is
examined in �29��, and our ideal gas results will be a useful
basis for comparison with future studies.

We begin in Sec. II by introducing relevant energy scales
and describe an approximate analytic spectrum and density
of states in the combined potential. In Sec. III we compare
our analytic density of states to the results of full numerical
calculations to justify the validity regime of our analytic ap-
proach. We then derive an analytic approximation to the
critical temperature in the combined potential and calculate
corrections resulting from the low energy spectrum and the
effects of excited bands. Those results are compared to full
numerical calculations to assess their accuracy and validity.
Finally in Sec. IV we present some general numerical results
for the condensation phase diagram in the combined poten-
tial. We show how varying the harmonic confinement can be
used to raise or lower the transition temperature relative to
the pure harmonically trapped case.

II. FORMALISM

A. Single particle Hamiltonian

We consider the case of a single particle Hamiltonian of
the form

H =
p2

2m
+ �

j=1

3 �Vj sin2�bxj

2
	 +

1

2
m� j

2xj
2
 , �1�

where b is the reciprocal lattice vector, and �V1 ,V2 ,V3� are
the lattice depths in each direction. It is conventional to de-
fine the recoil energy ER=��R=h2 /8ma2 as an energy scale

for specifying the lattice depth, where a=2� /b is the direct
lattice vector. Properties of the single particle spectrum have
been discussed by several authors, e.g., see Refs. �36–39,44�.
Here we use the results of these studies to suggest an ap-
proximate �piecewise� analytic density of states for the com-
bined lattice appropriate for determining the critical tempera-
ture.

We begin in the next subsection by defining a set of useful
quantities that will be crucial for developing approximations
to the spectrum in different regimes. These quantities can be
determined from solutions of the much simpler translation-
ally invariant lattice �i.e., Eq. �1� with all � j =0� or from
analytic approximations valid in the tight-binding regime.

B. Energy scales from the translationally invariant
lattice

A one-dimensional depiction of the important energy
scales is given in Fig. 2. There we show the one-dimensional
band structure �Fig. 2�a��, and indicate several energies that
we discuss further below.

1. Bloch state parameters

The quantity en refers to the minimum �Bloch state� en-
ergy of the band with n-vibrational quanta, and in the full
three-dimensional case we will use the notation enj to denote
the particular nth excited band by specifying additional
quantum number�s� j. Here we will only refer to a few of
these band minimum energies: e0 is the ground state energy
of the translationally invariant lattice and gives a lower
bound for the ground state energy when the harmonic trap is
added; e1j is the lowest energy of the first vibrational excited
state, with the quantum number j=1,2 ,3 used to indicate
that the vibrational excitation is directed along the xj direc-
tion; We use e2 to indicate the energy above which higher
excited bands become accessible �48�.

2. Wannier state parameters

We define w0 as the energy of a localized Wannier state in
the ground band. Wannier states are defined as a Fourier
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FIG. 2. Schematic diagram of important energy scales. �a� Band
structure of a translationally invariant 1D lattice of depth 4ER. En-
ergy scales e0 �black horizontal line�, w0 �gray dashed line�, and e1

�dash-dot line� identified �see text�. �b� Correspondence of these
energy scales to the combined potential. Small thick horizontal lines
indicate the energies of ground band localized states.
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transform of the ground band Bloch states �e.g., see �9,45��,
and as such its energy is the mean energy of all the ground
band Bloch states �see Fig. 2�a��. The tunneling between
neighboring Wannier states in the xj direction is character-
ized by the tunneling matrix element Jj. This is given by the
Fourier transform of the ground band Bloch dispersion rela-
tion along direction xj.

3. Effective mass

Intermediate between the extended Bloch states and local-
ized Wannier states we will need to describe finite extent
wave packets in the ground band. A convenient quantity for
doing this is the effective mass at zero quasimomentum, mj

�,
defined as

1

mj
� =

1

�2� �2e0�q�
�qj

2 	
q=0

, �2�

where e0�q� is the dispersion relation of the ground band and
q is the quasimomentum. We note that the effective mass
may be different along each direction.

4. Tight-binding expressions

All of the above quantities are easily obtained from cal-
culations of the translationally invariant lattice or equiva-
lently from the well-known properties of the Matthieu func-
tions. However, the tight-binding limit, which should be
applicable when Vj �5ER, yields several simple analytic ex-
pressions for these quantities. In the appendix of Ref. �44�,
an approximation for the energies of the excited bands is
developed using a harmonic oscillator approximation. Using
those results we obtain e0�� j

�VjER�− 3
4ER, e1j �2�VjER

−ER�+e0, and e24�min�Vj�ER−3ER+e0. The tunneling
matrix element can also be calculated using the
harmonic oscillator approximation, giving Jj �4 /����Vj /
ER�3/4 exp�−2�Vj /ER�ER. In the tight-binding limit the
ground band dispersion relation is approximately given by
e0�q�=� j4Jj sin2�qja /2�+e0, where q is the quasimomen-
tum. From this we obtain expressions for the Wannier energy
w0=e0+� j2Jj, and the effective mass mj

�=�2 /2Jja
2.

C. Spectrum and density of states in the combined harmonic
lattice potential

1. Low energy spectrum „��ELE…

The low energy states in the lattice are extended wave
packets, with a harmonic oscillator envelope. Indeed, the
spectrum is that of a harmonic oscillator but with the fre-
quency modified by the effective mass, � j

�=�m /mj
�� j �39�,

i.e.,

�LE�n� = e0 + �
j=1

3

�� j
��nj +

1

2
	 , �3�

where the �nj� are non-negative integers. This low energy
description is valid for quantum numbers in the range 0
�nj �N j where

N j � 4�Jj/m� j
2a2 �4�

�see �39�� as for values of nj greater than N j the states be-
come localized �see below�.

The density of states for these modes is given by

gLE��� =
�� − e0�2

2�3��3 , e0 � � � ELE, �5�

where ��=�3 �1
��2

��3
� is the geometric mean of the effective

trap frequencies. The boundary of the rectangular region of
�nj� space, where the low energy description is valid, does
not correspond to a well-defined energy cutoff. We introduce
an effective Debye energy, ELE, such that a total of N1N2N3
low energy states would lie below this energy. A simple cal-
culation yields

ELE = 4�3 6�� J̄

m�a2 + e0, �6�

where J̄ and m� are the geometric means of the tunneling
matrix elements �Jj� and effective masses �mj

��, respectively.

Since ELE depends on J̄ it is exponentially suppressed toward
e0 as the lattice depth increases.

The ground state energy of the combined potential, corre-
sponding to the state in which the condensate forms, is given
by Eq. �3� with n1=n2=n3=0, i.e.,

�g = e0 +
1

2�
j

�� j
�. �7�

We see that the effect of the harmonic confinement is to shift
the ground state energy upward from that of the translation-
ally invariant lattice, i.e., e0. However, �g will still be less
than w0 if the harmonic potential is less confining than a
single lattice site.

2. Localized spectrum „�	ELE…

The next part of the spectrum consists of localized states,
arising because the offset in potential energy between lattice
sites near the classical turning point exceeds the respective
tunneling matrix element. The nature of these states and the
derivation of their respective density of states is treated fully
in Ref. �44�, but we briefly summarize those results here.

The energies of the localized states are given by the local
potential energy

�L0�n� =
1

2
ma2��1

2n1
2 + �2

2n2
2 + �3

2n3
2� + w0, �8�

where �nj� are �positive and negative� integers that specify
the site where the state is localized. As these states localize to
approximately a single lattice site, their energy offset from
the lattice site minimum �i.e., 1

2ma2� j� jnj
2� is given by the

Wannier energy w0. Schematically these states are indicated
in Fig. 2�b� as horizontal rungs in each lattice site �recalling
that for �L0�n�
ELE tunneling delocalizes these states�.

This description is valid for all energies above ELE, how-
ever, for sufficiently high energy scales additional vibrational
states become available. Here we will also approximate these
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excited band states using a localized description, i.e.,

�L1j�n� =
1

2
ma2��1

2n1
2 + �2

2n2
2 + �3

2n3
2� + e1j, j = 1,2,3,

�9�

where we have approximated the zero point energy of these
states as e1j. Note that because the vibrational excitation may
be directed along any coordinate direction we have three first
excited bands to include.

The density of states for the spectra given in Eqs. �8� and
�9� is

gLoc��� = g0�� − w0� + �
j=1

3

g0�� − e1j�, ELE � � � e2,

�10�

where

g0��� =
16

�2� �R

��̄2	3/2
������ , �11�

�̄=�3�1�2�3 �e.g., see �44,46��, and ���� is the unit step
function. We also note that the case of a general �nonsepa-
rable lattice� has the same density of states if we instead
identify ER=h2 /8mVc

2/3, where Vc= �a1 · �a2�a3�� is the unit
cell volume and �a1 ,a2 ,a3� are the direct lattice vectors.

The localized states description of the first excited band is
the most severe approximation we make for the combined
potential spectrum, particularly because the lowest energy
states of the excited bands will also be harmonic-oscillator-
like. For deep lattices the tunneling rates for the ground and
excited bands are small and the localized description im-
proves. For the theory we develop here, the first excited
bands are assumed to be a rather large energy scale com-
pared to the critical temperature and this approximation
should be adequate.

3. Bare oscillator states „�Ebare…

At sufficiently high energy scales the lattice has only a
small effect on the energy eigenstates and the spectrum
crosses over to bare oscillator states. This crossover occurs
when the single particle energies exceed the lattice depth
which in three dimensions we can take as the sum of the
lattice coefficients Ebare=� jVj. The bare oscillator spectrum
is of the form given in Eq. �3� but with the bare trap frequen-
cies, i.e.,

�bare�n� = �V + �
j=1

3

�� j�nj +
1

2
	 , �12�

where nj are non-negative integers. The constant �V

= 1
2� j=1

3 Vj is the spatial average of the lattice potential and
gives the shift of the high energy spectrum. The density of
states is given by

gbare��� =
�� − �V�2

2�3�̄3 , �  Ebare. �13�

For the parameter regimes of interest �lattices with depths
greater than a few recoils� Ebare is sufficiently large that the
bare oscillator states do not play an important role in deter-
mining the condensation properties for the system.

4. Intermediate energy region

In sufficiently deep lattices many excited bands may be
bound by the lattice, and will contribute to the density of
states. In this case for energies greater than e2 and less than
Ebare, the various density of states we have already outlined
above will be inadequate. It is difficult to provide a reliable
analytic description of these excited band contributions for
several reasons: �i� Anharmonic effects of the lattice make
predicting the locations �i.e., enj� of these bands difficult. �ii�
The tunneling between sites in excited bands is much larger
and worsens the localized state approximation. This necessi-
tates an effective mass modified harmonic oscillator treat-
ment �cf. Eq. �3�� that crosses over to localized states at
higher energies. Furthermore, large asymmetry between di-
rections can occur depending on the orientation of the vibra-
tional excitations of each band, making any form of Debye
approximation of limited use.

Here we do not treat these higher bands analytically. For
typical experimental parameters the energy scale of these
modes �i.e., e2� is well above kTc, and a complete description
is not required �49�.

D. Full numerical solution

To test the predictions of this paper we have made a full
numerical solution for the single particle eigenstates of Eq.
�1�. To do this we use the separability of the Hamiltonian to
convert this eigenvalue problem to a set of three 1D prob-
lems. Because the harmonic potential is quite weak �typically
� j �0.01–0.05�R in experiments�, a large number of lattice
sites need to be represented to find eigenstates up to a con-
venient maximum energy �usually Emax�g+25ER�, chosen
so that the density of states we construct will be useful for
temperatures up to about T�5ER /k. We use a plane-wave
decomposition to represent the eigenstates of the combined
potential, chosen because it provides an efficient representa-
tion of the rapidly varying lattice potential. Typically of or-
der 104–105 plane-wave modes are used to represent the
several thousand eigenstates in the energy range of interest.

For the purposes of comparison to our analytic results, it
is useful to construct a smoothed density of states, defined as

ḡ��� =
1

2��
�

�−��

�+��

d��
ijk

��� − ��i
�1� + � j

�2� + �k
�3��� , �14�

that gives an average number of eigenstates per unit energy
with energies lying within �� of �, where ��i

�j�� are the �1D�
single particle energies �i=0,1 , . . .� in the xj direction ob-
tained from the numerical diagonalization.
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III. RESULTS

A. Density of states

Here we investigate the accuracy and applicability of our
combined density of states �5� and �10� by comparison with
the smoothed density of states obtained from the full numeri-
cal solution �see Fig. 3�. For definiteness, the analytic density
of states we use is constructed piecewise from results �5� and
�10�, as

g̃��� = � gLE��� e0 � � � ELE,

gLoc��� ELE � � .
� �15�

Of course this result can only be expected to furnish a good
description for �
e2. In the context of current experiments
this energy range should be sufficiently large that this piece-
wise density of states will be useful over a broad parameter
regime. E.g., for 87Rb in a 10ER deep lattice �a=425 nm�,
we have that �e2−e0��10ER�k�1.5 �K.

We make a few observations regarding the results in Fig.
3:

�i� For shallow lattices Ebare may be sufficiently small that
the transition to bare oscillator states occurs before ELE is
reached. Indeed, the density of states is mostly harmonic-
oscillator-like �i.e., ḡ��2� for lattice depths less than 4ER,
and for this reason the analytic result is only shown for
depths greater than this.

�ii� For lattice depths less than 10ER the onset of the lo-
calized excited band states in g̃��� for ��e1j is too rapid
compared to the numerical results, arising because the lowest

energy states in the excited band are harmonic-oscillator-
like. However, agreement is observed to improve with in-
creasing lattice depth, such that for V0�20ER the numerical
and analytic results are almost indistinguishable.

�iii� The energy scale e2 increases quite rapidly with lat-
tice depth, justifying our neglect of additional excited bands
in the analytic density of states.

B. Analytic prediction for the critical temperature

As is apparent from Fig. 3, for lattices with Vj �4ER, the
majority of the low energy spectrum is well described by the
first term of the localized density of states �10�, and thus we
use this term to estimate the critical temperature. The total
number of particles in the ground band localized states, as a
function of inverse temperature ��=1 /kT� and chemical po-
tential ���, is given by

NLoc��,�� = �
w0

�

d�
g0�� − w0�
e���−�� − 1

, �16�

=
16

�2� kT�R

��̄2 	3/2
��3

2
	g3/2�e���−w0�� ,

�17�

where gs�z�=�k=1
� zk /ks is the polylogarithm function.

Following the usual procedure �47� we identify the critical
temperature for condensation by taking the gas to be satu-
rated ��→w0� and setting NLoc��c0 ,w0�=N �the total num-
ber of atoms�, giving

Tc0 
0.4141

k
���̄2

�R
	N2/3, �18�

where �0c=1 /kTc0 and we have used that g3/2�1�=��3 /2�
2.612, with ��s�=�k=1

� 1 /ks the Reimann zeta function.
This expression has the same N2/3 dependence as the critical
temperature for the uniform Bose gas.

C. Corrections to analytic critical temperature

Expression �18� for Tc0 is based solely on the localized
ground band states. The effects of the low energy states �5�
and excited band states �10� are in general significant. We
now consider the effect of these on Tc0 under the assump-
tions that �ELE−e0� /kTc0�1 and �e2−e0� /kTc0�1.

1. Low energy correction

The first correction we consider is to account for the low
energy spectrum, described in Sec. II C 1. To do this we
replace g0��−w0� in Eq. �16� for ��ELE by the low energy
density of states �5�. This changes NLoc��c0 ,�� by an amount

�NLE = �
�0

ELE

d�
gLE���

e�c0��−e0� − 1
− �

w0

ELE

d�
g0�� − w0�

��c0��−w0� − 1
,

�19�

FIG. 3. Comparison of numerical smoothed density of states
ḡ��� �dots� to analytic density of states g̃��� �black lines� for a 3D
combined harmonic lattice potential. The lattice depth parameters
are the same for each direction, i.e., Vj =V0 for j=1,2 ,3. For refer-
ence, the characteristic energy scales ELE, e1j, e2, and Ebare are
shown as gray curves. Isotropic harmonic trap taken with �̄
=0.01�R. All energies are measured relative to �g.
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kTc0� �ELE − e0�2

4�����3 −
32

�2� �R

��̄2	3/2
�ELE − w0
 ,

�20�

where we have assumed that �ELE−e0��kTc0 to arrive at the
last line �50�.

2. Chemical potential correction

Associated with the change in the low energy density of
states is the change in ground state energy from w0 �for the
localized spectrum� to �g �for the low energy spectrum �7��.
Replacing the saturated chemical potential by the ground
state energy, i.e., setting �→�g. In Eq. �17� we obtain

�N� =
− 32

�3/2 � �R

��̄2	3/2
�w0 − �g�1 +

�� 1
2�

2
�w0 − �g

�kTc0
	kTc0.

�21�

In deriving this result we have assumed that �w0

−�g� /kTc0�1, so that we can approximate the argument of
the polylogarithm as 1− �w0−�g� /kT0c, and use the expan-
sion g3/2�1−x���3 /2�−2��x−��1 /2�x. We note that �� 1

2
�

−1.460 and the square root term accounts for the infinite
slope of g3/2�z� at z=1.

3. Excited band correction

As discussed in the derivation of Eq. �10�, at an energy
scale of e1j excited band states become accessible to the
system, and contribute additional states described by the den-
sity of states g0��−e1j�. The additional atoms accommodated
in these states at Tc0 is given by

�NEB = �
j=1

3 �
w1j

�

d�
g0�� − e1j�

��c0��−w0� − 1
,

�
j=1

3
8

�3/2� kTc0�R

��̄2 	3/2
e−�e1j−w0�/kTc0,

�22�

where we have taken �e1j −w0��kTc0. Note that in calculat-
ing this term we have summed over all contributing first
excited bands.

4. Corrected critical temperature

Combining all the above results we arrive at a new esti-
mate for the transition temperature. To do this we set

N = NLoc��c1,w0� + �NLE + �N� + �NEB, �23�

where �c1=1 /kTc1 is the corrected transition temperature.
Assuming that �Tc1−Tc0��Tc0, we obtain

Tc1  Tc0�1 −
2

3
��NLE + �N� + �NEB�/N
 , �24�

to first order in the �N corrections. The validity conditions
are, as stated above, that �ELE−e0� /kTc0�1 and �e2

−e0� /kTc0�1. This will ensure that all the changes ��N� are
small compared to N, however, we caution that sometimes
due to cancellation a particular �N can be small even when
the validity condition is not satisfied.

We make the following observations on these corrections:
�NLE: The low energy density of states tends to increase

much more slowly from its zero point than the localized
density of states does. Thus in replacing g0��� by gLE��� in
Eq. �16�, the number of states at low energy and hence the
number of atoms in the saturated thermal cloud both de-
crease. This leads to an increase in the critical temperature.

�N�: The downward shift of the chemical potential when
we change the saturated chemical potential from w0 to �g
leads to a decrease in the number of atoms in the saturated
thermal cloud, and hence an increase in the critical tempera-
ture.

�NEB: Including higher bands brings additional states and
hence increases the number of atoms in the saturated thermal
cloud. This has the effect of decreasing the critical tempera-
ture.

Interestingly the dominant corrections at low temperatures
��NLE and �N�� both lead to an increase in Tc, whereas the
dominant correction at higher temperatures ��NEB� shifts Tc

downwards.

D. Numerical calculations of Tc

While the analytic calculation provides a useful critical
temperature estimate, the complexity of the spectrum in the
combined harmonic-lattice potential necessitates a numerical
solution. Here we discuss our procedure for calculating the
critical temperature using the spectrum determined by full
numerical diagonalization of Eq. �1� and give a simple nu-
merical scheme that makes use of the piecewise density of
states we have developed in Secs. II C 1 and II C 2.

1. Full numerical calculation

From the results of our full diagonalization we determine
the one-dimensional energy spectrum ��i

�j�� over a large en-
ergy range, typically including all states up to energy 25ER
above the 1D ground state energy �as discussed in Sec. II D�.
The thermal properties of the system are then calculated over
a temperature range by iterating the chemical potential �
to find the desired total number of atoms, i.e., root, finding
the expression f���= ��ijk�exp���i

�1�+� j
�2�+�k

�3�−�� /kT�
−1�−1−N� for each T. From this calculation we hence evalu-
ate the condensate population as a function of temperature,
i.e., N0�T�= �exp��� j=1

3 �0
�j�−�� /kT�−1�−1, and determine the

condensation temperature as that at which ���N0 /�T� /N0�
�i.e., the relative change in the ground state occupation� is
maximized.

2. Simple numerical calculation

The critical temperature can also be estimated by per-
forming a simple numerical integral using the piecewise ana-
lytic density of states �15� under the saturated thermal cloud
condition �i.e., �→e0�,
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N�T� = �
e0

Emax

d�
g̃���

e��−e0�/kT − 1
. �25�

This result can then be numerically inverted to give a critical
temperature estimate TcN=TcN�N�. The energy Emax appear-
ing in the integral has to be chosen such that Emax�kT, in
which case the result will be independent of Emax.

This approach is significantly simpler than the full nu-
merical calculation because it does not require a full numeri-
cal diagonalization. Indeed, the information needed for g̃���
can be obtained from results of the uniform lattice or tight-
binding approximations, as discussed in Sec. II B.

E. Comparison of analytic and numerical critical temperatures

In Fig. 4�a� we show analytic and numerical results for
the critical temperature. To relate these parameters to those
in experiment we note that for 87Rb in a lattice with a
=425 nm, the trap frequency corresponds to �2�
�31 s−1 while the temperature scale is ER /k152 nK.
These results show the general behavior we have observed
over a wide parameter regime. Tc0 provides a useful critical
temperature estimate, though is noticeably shifted relative to
the full numerical result. Including first order corrections Tc1
provides a quantitatively much more accurate result, al-
though its agreement with the full numerical result worsens
for large N. Interestingly, the simple numerical result TcN
outlined in Sec. III D 2 provides an accurate description over
the full range considered.

In Figs. 4�b� and 4�c� we explore the validity conditions
for our derivation of the critical temperature. Note that for
the potential parameters used for the results in Fig. 4 we
have that ELE−e0=0.304ER, ELE−w0=0.123ER, e1j −w0
=3.83ER, and e2−e0=6.7ER. The relative size of the param-
eters �ELE−e0� /kTc0, �ELE−w0� /kTc0, and kTc0 / �e1j −w0� are
shown in Fig. 4�b�. We require all of these parameters to be
small for our analytic calculation to be valid. These results
show that for small N the critical temperature is sufficiently
low that a first order treatment of the low energy spectrum
is not appropriate �i.e., both �ELE−e0� /kTc0 and �ELE

−w0� /kTc0 are large�.
At larger atom numbers �N� the term kTc0 / �e1j −w0� tends

to grow reflecting the increased importance of excited band
states. In Fig. 4�c� we show the related values of �NLE, �N�,
and �NEB. At small N �and hence small Tc0� the expansions
we have used to obtain �NLE and �N� are not valid. As N
increases these contributions become less significant relative
to N, however, as �N� scales like ��ELE−w0� /kTc0 it de-
creases rather slowly with increasing Tc0. Finally, the excited
band contribution becomes gradually more significant with
increasing number.

FIG. 4. Comparison of analytic and numerical critical tempera-
tures. �a� Full numerical results for Tc �squares�, analytic results Tc0

�dotted�, Tc1 �dashed�, and simple numerical result using piecewise
analytic density of states TcN �solid�. �b� Energy scales compared to
Tc0. �c� �N corrections. Calculation parameters: isotropic harmonic
trap with �̄=0.025�R, and lattice depth parameters Vj =8ER for j
=1,2 ,3.

FIG. 5. Bose-Einstein condensation in a combined harmonic
lattice potential. �a� Critical temperature as a function of lattice
depth �all Vj =V0� and total atom number for an isotropic harmonic
trap with �̄=0.025�R. Isothermal levels spaced by 0.2ER /k shown
as contour lines. �b� As for �a� but with �̄=0.05�R. �c� Condensate
fraction vs temperature for the same parameters as �a� and N=1
�105 atoms.
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IV. GENERAL BEHAVIOR OF CONDENSATION
IN THE COMBINED POTENTIAL

In Fig. 5 we show the results of our full numerical calcu-
lation �as discussed in Sec. III D 1� for the critical tempera-
ture and condensate fraction over a wide parameter regime.
For the case of �̄=0.025�R in Fig. 5�a� we see that as the
lattice depth increases the critical temperature of the system
decreases. While for the case of �̄=0.05�R shown in Fig.
5�b� the critical temperature instead tends to increase with
increasing lattice depth �for N sufficiently large�.

To understand these results we recall the critical tempera-
ture for a harmonically trapped gas,

Tharm =
��̄

k
� 2N

��3���3�	
1/3

. �26�

In comparison to our analytic result given in Eq. �18�, we
note that the critical temperature for the combined potential
scales with mean trap frequency and total atom number at
higher powers, i.e., �̄2 and N2/3, respectively. Locating the
trap frequency at which the critical temperatures for the har-
monic and combined potentials are the same determines a
critical mean trap frequency ��̄c�N��:

�̄c�N�
�R

=
4

�
� �� 3

2�2

��3�
	1/3 1

�3 N
. �27�

For �̄�̄c the critical temperature is higher in the com-
bined potential than for the pure harmonic trap, whereas for
�̄��̄c the pure harmonic potential has a higher critical tem-
perature. For N=105 atoms we find that �̄c�0.049�R, which
is consistent with Figs. 5�a� and 5�b� which lie on either side
of this value. Since �̄c is based on the simple critical tem-
perature estimate �18�, it will only be valid for cases where
the critical temperature is not too high or low �as given by
the validity conditions in Sec. III C�.

In Fig. 5�c� we show the condensate fraction versus tem-
perature for a system of 105 atoms in a combined potential
with �̄=0.025�R. As the lattice depth increases the critical
temperature shifts downwards �as can also be discerned from
Fig. 5�a��, and the characteristic shape of the condensate
fraction dependence on temperature, N0��1− �T /Tc���,
changes from ��3 to ��3 /2. These predicted features
should be verifiable by current experiments.

V. CONCLUSION

We have performed a comprehensive study of the critical
temperature for an ideal Bose gas in a combined harmonic
lattice potential. We have described distinctive regions of the
spectrum and have shown that a simple piecewise density of
states provides an accurate characterization of this system for
lattice depths greater than about 4ER. We have developed an
analytic expression for the critical temperature in the com-
bined potential. The corrections to this result are typically
significant, and we have shown that including them provides
a useful estimate for the critical temperature obtained by a
full numerical calculation. Additionally, we give a simple
numerical procedure based on piecewise density of states
that provides an accurate prediction for the critical tempera-
ture. Finally we have presented results over a wide parameter
regime appropriate to current experiments and have shown
that the critical temperature in the combined potential can be
increased or decreased relative to that of the pure harmonic
trap.
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