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Excitation spectrum and phase separation of double Bose-Einstein condensates in optical lattices
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The excitation spectrum for symmetric two-component Bose-Einstein condensate (BECs) in optical lattices
is obtained, with emphasis on its quantitative dependence on intercomponent interaction parameter. The re-
sulting two branches of the excitation spectrum have a linear spectrum asymptotically in the low momentum
limit, which is expected as a behavior of superfluid. The critical superfluid velocity, depending on the inter-
component interaction parameter, is then obtained, which is quite different from the result obtained in other
reference. A requirement of real excitation spectrum also results in a condition on the interaction parameters,
which coincides with the phase separation condition. Hence in real spectrum excitation, it is proposed that
there should be two branches of superfluid with different critical superfluid velocities, while in the complex
spectrum it is predicted that there should be phase separation in the two-branch superfluid system. The

excitation spectrum for an asymmetric two-component BEC system is also presented and analyzed.
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I. INTRODUCTION

Alongside development of laser cooling techniques and
setups, the experimental research on the Bose-Einstein con-
densate (BECs) flourishes, and numerous phenomena have
been found. Principles of laser cooling and ideas about rel-
evant experimental setups for different cooling traps can be
found in Refs. [1,2]. Different phenomena of BECs are dem-
onstrated, such as superfluidity and quantized vortices [3],
quantum phase transition [4], dynamics of collapse and ex-
plosion [5], and dynamics of revival [6].

Experimentally, the interaction between two bosons of the
same kind, as measured by the scattering length a,, can be
tuned in a large range (from attractive to repulsive) by using
the Feshbach resonance [7], and different traps [1] and dif-
ferent optical lattices [8] can be formed and applied to cool
atoms. For two-component BECs systems, spin-dependent
optical lattices can also be used to control nonlinear interac-
tions between the BECs components [9]. All of these experi-
mental accessible controls of BECs systems make it conve-
nient to conduct various experimental research on BECs
systems.

For one-component BECs in optical lattices, the gapless
superfluid phonon spectrum is verified in experiment [4]. In
this paper, we concentrate on the superfluid excitation spec-
trum for two-component BECs in optical lattice. The phonon
excitation spectrum, which is expected as a behavior of su-
perfluid is obtained. Analysis on the excitation spectrum in-
dicates that there should be phase separation happening in
the two-component superfluid state.

II. THE MODEL

The general second-quantized model Hamiltonian for a
two-component boson gas in a three-dimensional (3D) opti-
cal lattice has the following form [10,11]:
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where the index i is summation in the range of A and B,
which labels the components of the bosons. ‘I’j(y) and its
conjugate denotes the boson field operators of component i,
and the s-wave scattering strength of intracomponent and
intercomponent bosons are, respectively,

gi= 47Taiﬁ2/m, i=A,B,

8AB=8BA = 27TaABh2/mAB, (2)

with my,p being the reduced mass of the two boson species.

Introducing the Wannier basis, after discretizing and
transforming the Hamiltonian into the quasimomentum
space, we get the Hamiltonian of the two-component BECs,
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(3)

where z=2 and k; are components of wave vector k and the
parameters for each component (indicating on-site energy €;,
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tunneling coefficients J;, and intracomponent interaction pa-
rameters ¢;) are similarly defined as those of one-component
BECs in an optical lattice [12,13], while the intercomponent
interaction parameter g, is [14]

27a,gh?
qap= ¢f (wa(y)Plws(y)[*dy. )
mMyp

By using the harmonic potential approximation to the optical
lattice potential similar to that used in the one-component
case [12,13],

1
Vi(y) = Em,-w?(yf +y3+)3), (5)
2k3Vi
w} = f (6)
m;w;
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with i=A,B, g, can be evaluated in an explicit form
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where
Al =al +as. (10)

Terms in the Hamiltonian are grouped into H,, Hiyy,, and
H; e, namely,
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For the two-body interaction terms, by retaining the interac-
tion between the zero quasimomentum mode and other non-
zero quasimomentum modes, H, and H;,,, can be similarly
processed as in the situation of one-component BECs in an
optical lattice, while H;,., can be simplified as follows:

ki =k; =k, =ky =0 — bj,boab{sbos = NoaNos.
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Collecting all of these interaction terms and assuming that
the interspecies and intraspecies interactions between par-
ticles are weak so that most bosons are not excited from the
zero momentum mode, we can replace ﬁ zero quasimomen-
tum field operators with a c-number VN, or VNyz (and then
use Ny;=N, ,-—El'(b:;ibk,- for both components and neglect all of
the terms of the four operators product of nonzero k modes),
and get the whole Hamiltonian as
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(13)

where n,=N,/N, and ng=Ny/N, are defined. For conve-
nience, here we use the band spectrum of a one-dimensional
optical lattice. For a three-dimensional optical lattice, we can
simply replace the one-dimension band spectrum €,=Jz(1
—cos kya;) by €,=Jz(3—cos k;a,—cos k,a;—cos kya;) and the
constant Jz term by 3Jz.

Before going into discussion about the excitation spec-
trum, we define a system of two-component BECs to be a
symmetric one when it preserves condition J,=Jp.
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FIG. 1. (Color online) The two-branch excitation spectra at
Jzl qapn=2.

III. THE EXCITATION SPECTRUM AND SUPERFLUID
VELOCITY

The Hamiltonian in (13) can be diagonalized and the ex-
citation spectrum can be obtained by following the diagonal-
ization method developed in [17]. First we would like to
define the following vectors of operators:

(b = (bl pobT 1 pobh s b o Brcnsb_xens s b))

b)Y = (bieas by b borcps bioas b yeas b bLap) T (14)

where T means transpose into column. The boson commuta-
tion of the complex conjugate operator vectors, as a gener-
alization of that of boson operators, can be expressed in
terms of a matrix Jp,

Lys 0

0 —14x4)7 (15)

[b)Xb] = ([p N =Tp = (
where [ is a unit matrix. The Hamiltonian of given +k modes
of both components in (13) can be expressed as follows (un-
important constants are neglected):

1
H= 5(b|HP|b),
w
H,,=( / ) (16)
fw
where w and f matrices are
E, O 0
0 E, O
w= ,
cC 0 Ez O
0 C 0 Ep
0 F, 0 C
F, 0 C O
=y , (17)
0 C 0 Fp
cC 0 Fz O

and the parameters in the matrices are defined by

Fo=quny, Fp=qgng,
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EA :JAZ(I — COS klal) +qAnA = 612 +FA7

Eg=Jgz(1 = cos kja)) + qgng = € + Fp,

C = qup\nang. (18)

To obtain the excitation spectrum, we should find out a sym-
plectic transformation (or a generalized Bogoliubov transfor-
mation) to diagonalize the Hamiltonian. The transformation
can be represented by a matrix 7 as follows:

(B|=(b

T, |By=T'|b). (19)

That the transformation 7 is a symplectic transformation or a
generalized Bogoliubov transformation means that the new
set of operator vectors (B| and |B) should preserve the boson
commutation relation as indicated in (15). This condition be-
comes a requirement on the matrix 7 [17],

T'JpT=Jp. (20)

When a transformation matrix 7 is found to make the Hamil-
tonian diagonal

1
H=—(B|Hy|B). 1)

namely, Hp is a diagonal matrix, the excitation spectrum (),
expected to be indicated in the diagonal matrix Hp, (also in
the HjJp), can be obtained. The mathematical discussion of
existence and uniqueness of a matrix 7 that satisfies the re-
quirement (20) and diagonalizes the Hamiltonian can be
found in [15,16].

A natural question arises about how Hj, is related to the
original Hamiltonian matrix Hp through the transformation
matrix 7. This can be found directly from above

THpT' =Hp, (22)
and it can be further transformed into
THpT ' Jp=Hplp. (23)

It is emphasized that the transformation matrix 7" should pre-
serve the above condition (20). By applying this condition in
an alternative way T7J,=J,T"! on (23), we can find a useful
relation

THpJ pT™" = Hplp, (24)

which means that HpJp is the eigenvalue matrix of HpJp as
they are connected by the similar transformation matrix (7
and T71).

For our purpose, we are only concerned with the excita-
tion spectrum, but not the exact form of 7. This excitation
spectrum () can be determined through evaluation of the
eigenvalues |[\|=Q of matrix HpJp or equivalently the roots
of the following secular equation [17]:

Det(HPJP— )\ISXS) =0. (25)

The reason is already shown above, as the two matrices HpJp
and HpJp are related by a similar matrix.
For the specific case J,=Jp or equivalently
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&=6=6. (26)

which is fulfilled by a system of symmetric two-component
BEC:s, the excitation spectra or the eigenvalues of the matrix
HpJp can be obtained in a concise explicit form

O, =\E+[Fyt Fyt (Fy—Fp)l+4C7e.  (27)

For the case when F,=Fz=¢gn and C=0, which in fact cor-
responds to a one-component BEC system, (27) does reduce
to the spectrum for the single-component case,

Q=€ +2gne,. (28)

The requirement of a real spectrum imposes a condition that
—_—

FA+FB_\"(FA_FB)2+4C2>09 (29)

implying that g,q5> ‘1/24 5> Which is proved to be the opposite
of the phase separation condition U,Up= Ui  introduced in
[11,18-21]. In the real spectrum case, the critical superfluid
velocity is obtained,

90,
dk k—0

“

v

T
= \/[CIA”A +qpng £ \(gans — qpng)* + 4%213”A”B]J Zalz/ 2.
(30)

The velocity depends not only on the intracomponent inter-
action parameter (g4, gg) but also on the intercomponent
interaction parameter q4p. This result is different from the
result obtained in [10]. The two components are coupled to
each other to exhibit a superfluid state and there are two
branches of superfluid with different critical velocities in the
whole BECs. Each branch is a combination of the two BECs
components. For the case when g n,=gzng=gn, the critical
superfluid velocity in the absence of intercomponent interac-
tion is given by

—
v(s) = \r’anza,z. (31)
When the intercomponent interaction is switched on, the

critical velocity is equal to
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v =\1+k, (32)
where k=q/q,p. By tuning physical parameters characteriz-
ing an optical lattice, the transition to superfluid state from
Mott insulator of one-component BECs in optical lattices has
already been experimentally accomplished. Therefore, we
expect that the superfluid state of two-component BECs and
the linear excitation spectra listed in (27) can be verified
experimentally in the near future.

Correspondingly, the critical superfluid velocity for 3D
optical lattices is obtained similarly,

a0,
. =
s ak K0

[
= \/[‘]A”A +qpnp = \(gan, — 613”3)2 + 4‘1/243’%”3]] za*/2
(33)

which, as expected, not only depends on the intracomponent
interaction parameters (g4, gp) but also on the intercompo-
nent interaction parameter g, 5. We emphasize that the super-
fluid state should be understood in a whole, which means
that the two components are correlated with the exhibit of a
superfluid state, due to the intercomponent interaction, and
such interaction refutes their individual division into two
components when they are in a stable or nonseparating su-
perfluid state.

On the other hand, when the complex excitation spectrum
is satisfied, which also corresponds to the phase separation
condition, it is then expected that there should be phase sepa-
ration occurring in the two-branch superfluid system. In or-
der to characterize such phase-separated two-branch excita-
tion spectra, we choose a ratio of interaction parameters
(ny=ng is assumed)

X= =2 (34)
qABh

and that of interaction parameters
qA:qAB:qBZO.l:l:O.l (35)

from which it can be directly verified that the phase separa-
tion condition is satisfied. The excitation spectra are then
obtained,

Q,= \/[Jz(l —cos ka) ? + [qan + qgn = \(gan — ggn)* + 4(q45n)* Vz(1 = cos ka). (36)

It can be found that one branch (the negative sign branch) of
the excitation spectra falls in the complex domain for a
certain region of k, which corresponds to the dashed branch
in Fig. 1. We shall call such a branch as the phase separation
branch, while the other as the phase amalgamation branch.
The instability in the phase separation branch, which arises
from the complex spectrum, can cause a redistribution of

bosons from k=0 mode together with the phase separating
process. Such a redistribution process is recommended to be
understood in an analogy to the context of the attractive
interaction model of “He [23]. Experimentally, there has
been a phase separating process reported in other kinds
of trap potential for the double-condensate system of ®’Rb
[22].
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To examine the excitation spectrum in experiment in the
case of phase separation, it comes to the question of whether
the whole excitation spectrum is still reasonable in physics as
it contains a branch of unstable excitation spectrum. We tend
to believe that the phase separation branch should be re-
placed by the stable single component BECs excitation spec-
trum in optical lattices, while the phase amalgamation branch
can still be kept.
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IV. EXCITATION SPECTRUM FOR ASYMMETRIC TWO-
COMPONENT BECs

The above analysis is in the case of J,=Jp or for a sym-
metric two-component BEC system. For an asymmetric two-
component BEC system, J, # Jp, by following the same di-
agonalization procedure, the excitation spectra can also be
obtained:

0= & (e +2F,) + &€ +2Fp) . VL6t +2F,) — ep(e) +2F )P + 4€nepa C2

* 2

which can be easily checked to reduce to (27) when €' =ep.
From the requirement for the reality of the excitation spec-
trum, we can find a condition

(2F, + €)2Fp+ &) > 4C?, (38)

which is a generalization of (29) and, however, depends on
the band spectrum ¢, (i=A,B). As =0, by setting €,=0, a
stricter condition on real excitation spectrum gives

FuFp> C?, (39)
or equivalently

4ads > dips (40)

which is the same as that of a symmetric two-component
BEC system. This leads to a conclusion that somehow the
asymmetry relaxes the condition of the real excitation spec-
trum compared with that of the symmetric systems. The criti-
cal superfluid velocity is also found,

—+ &ﬁi
v

o Jk k—0

= \/[FAJAZ + FBJBZ + \/(FAJAZ - FBJBZ)Z + 4JAZJBZC2]a12/2.
(41)

As pointed out previously, there should be two branches of
superfluid with different critical velocities in the whole
BECs, and each branch should be a combination of two
BECs components.

Finally, it is worthy to point out that the two-component
BECs systems considered so far are characterized by repul-
sive interaction in intracomponent, and hence the s-scattering
length between bosons in each component is positive,

ay,ag>0. (42)

However, the general excitation spectrum in (37) is an even
function of the intercomponent interaction (denoted by C),
and hence it should remain unchanged for the case where the
intercomponent interaction is attractive. Furthermore, in the

) (37

starting Hamiltonian, only interactions between the zero
mode and the nonzero k modes are kept, which is still in the
framework of the Bogoliubov approximation. Therefore, the
result obtained here should be valid only in the weak inter-
action regime (both the intracomponent and intercomponent
scattering lengths are small). We point out that such an ex-
citation spectrum can be generalized to the model of two-
component BECs in the free space, in which we just replace
€. in (27) with the following free space kinetic spectrum:

=, (43)
m

while the two-branch structure of the spectrum remains un-
changed. Such a spectrum can be treated as a generalization
of the original Bogoliubov spectrum for single component
boson gas in free space [24].

V. CONCLUSION

In conclusion, the excitation spectrum for two-component
BECs in the optical lattice is studied. A two-branch linear
spectrum is obtained, hence the critical velocity, which is
dependent on the intercomponent interaction. It is predicted
that there should be a two-branch superfluid composing of
the two correlated components when the system is stable in
the sense that the excitation spectrum is real. Also, it is pre-
dicted that there should be phase separation in the two-
component superfluid systems, when the excitation spectrum
becomes complex.
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