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A wave-packet propagation method is developed and applied to investigate the quantum dynamics of scat-
tering processes of identical and distinguishable atoms in harmonic waveguides. The quantum dynamics of the
confinement-induced resonances (CIRs) for ultracold collisions of identical particles, s-wave CIRs for bosons
and p-wave CIRs for fermions, is explored in detail. Our multigrid approach allows us to fully take into
account the coupling between the center-of-mass (c.m.) and relative motions in the case of distinguishable
atoms. The latter includes, in particular, s- and p-partial-wave mixing, caused by the confining trap, which acts
differently on the different atomic species. Specifically, we explore in detail the recently discovered [J. I. Kim,
V. S. Melezhik, and P. Schmelcher, Phys. Rev. Lett. 97, 193203 (2006)] dual CIR, which is based on a
destructive interference mechanism leading to complete transmission in the waveguide, although the corre-

sponding scattering in free space exhibits strong s- and p-wave scattering.
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I. INTRODUCTION

Ultracold atomic collisions in tight optical and magnetic
traps represent a rapidly developing field of research with a
rich impact on ultracold many-body systems, whether of
bosonic, fermionic, or mixed nature. By employing optical
lattices [1] or atomic chips [2], it is nowadays possible to
confine an atomic system in the nanometer regime. One of
the seminal contributions in the theory of binary atomic col-
lisions in the presence of confinement was provided by Ols-
hanii [3]. In this work, cold atom-atom scattering under a
transverse harmonic confinement was reduced to a quasi-
one-dimensional (1D) scattering with the s-wave zero-range
pseudopotential g;,8(z), defined by the effective 1D cou-
pling constant g;p. This leads to the prediction of a so-called
confinement-induced resonance (CIR) for the ultracold atom-
atom scattering process. The CIR is accompanied by total
atom-atom reflection, thereby creating a gas of impenetrable
bosons. The properties of the resulting 1D system of fermi-
onized bosons—the Tonks-Girardeau gas [4]—have been
theoretically studied in detail [5], stimulated by its recent
experimental verification [6]. Part of the attractiveness of the
CIR phenomenon stems from the mere fact that it provides
us with a handle to tune the strength of the interacting atoms,
and, of course, varying this interaction leads to crossovers in
the qualitative behavior of the corresponding many-body
systems. Experimental evidence for the CIR for fermions has
been obtained recently in optical lattices [7]. So far, the
quasi-1D scattering under transverse confinement has been
analyzed mostly either in the pure s-wave approximation,
when the odd part f, of the scattering amplitude f=f,+f, is
equal to zero, f,=0 (see, for example, [3,8,9]), or in the pure
p-wave approximation [10], when the even part is equal to
zero, f,=0. Aiming beyond the pseudopotential approach, a
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more general analytical treatment that can include all partial
waves and their couplings among each other was first given
in Ref. [11], where, however, effects of the center-of-mass
(c.m.) were not taken into account. The framework of the
approximation f,=0 was also assumed in Ref. [12], where
effects due to the center-of-mass nonseparability for two dis-
tinguishable particles scattering in a cylindrical waveguide
were analyzed within the s-wave zero-range pseudopotential
approach and in the zero-energy limit.

In the present work, we employ a wave-packet propaga-
tion method in order to explore the scattering of two distin-
guishable particles at low collision energies in a transverse
harmonic trap forming a waveguide. Here we are not re-
stricted to only even or only odd scattering amplitudes, as is
the case for identical particles. Our computational scheme
also allows us to verify the well-known CIR effects for iden-
tical particles but now from a unified quantum-dynamical
point of view: the s-wave CIR for bosons [3,8,9] and p-wave
CIR for fermions [10]. The analysis for the general case of
two distinguishable particles demands a detailed study of
effects due to the coupling of the c.m. to the relative motion
of the atoms, including the resulting mixing of s and p partial
waves. Furthermore, we provide a detailed quantitative
analysis of the dual CIR, predicted originally in Refs. [13,14]
for the case of simultaneous near-resonant s- and p-wave
contributions for 3D scattering in free space.

The content of the paper is as follows. In Sec. I we for-
mulate the problem. Here we also introduce a unitary trans-
formation of the initial 5D Hamiltonian which reduces it to a
4D one. The computational scheme is presented in Sec. III,
which contains a discussion of specific computational as-
pects essential to the problem. In Sec. IV the modeling of the
interatomic interaction for scattering in 3D free space is con-
sidered. In Sec. V we present and discuss the results of our
investigations for two cases: first, the one-component atom-
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atom scattering in a harmonic cylindrical waveguide permit-
ting the separation of the c.m. and, second, a two-component
gas in a harmonic waveguide exhibiting c.m. nonseparability.
We analyze effects due to the rich spectral structure of the
interatomic interaction and due to the coupling of the c.m.
and relative motions induced by the trap confinement. We
demonstrate that comparable contributions of s- and p-wave
resonant behavior in the free-space two-body scattering pro-
cess can lead in cylindrical confinement to the so-called dual
CIR, for which one observes total transmission, i.e., suppres-
sion of the effective two-body interaction in the waveguide.
This is in contrast to the total reflection observed in the CIR
cases of pure resonant s-wave [3] or pure resonant p-wave
[10] scattering. The brief conclusions are provided in
Sec. VI

II. HAMILTONIAN AND TRANSFORMATIONS

Let us consider two different interacting atoms with
masses m; and m, under the action of a transverse 2D con-
fining trap represented by harmonic potentials with different
frequencies w; and w,. Since the confinement is only two
dimensional, this corresponds to a scattering process in a
waveguide. We will solve the resulting six-dimensional prob-
lem in the space (R,r) of the center-of-mass R=(Z,pg)
=(Z,pg, dr) and relative r=(z,p)=(z,p, )« (r,0, $) coor-
dinate variables. Due to the cylindrical symmetry of the con-
finement, the motion in the Z direction separates, and the
problem reduces to a 5D time-dependent Schrodinger equa-
tion (A=1)

J
igl/I,(pR’r?t)=H’(pR7r)‘//’(pR»r’t)s (1)

which we will integrate in time from #=0 to the asymptotic
region r— +02 with the following initial condition:

, , (z-20°) .
(ﬂ (PR"'J = O) = N(PO(pR’ ¢R’ P ¢)6Xp - 2612 eXP(lkZ) s

2)

representing a SD wave packet of two atoms with a maxi-
mum at z=zp——%, k>0 and with the relative interatomic
velocity vo=k/u=+2e/u. The asymptotic behavior reads
¥ (pg.r,1=0)— Nrvpg for pp—0, r—0. N is the normal-
ization constant with the volume element being
dpgdr sin 6 d0 d¢. The function ¢, represents the ground
state of two different noninteracting atoms in the harmonic
confinement potential:

2
' — P 1 1
®0(Pr> br- P D) =\ pg exp[— —R<—2 + _2)

2\a; a
_(MP)Z( b, 1 )
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The Hamiltonian takes on the appearance
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here the definitions a1=1/\s"m, a,=1/\ym,w, have been
introduced. M=m;+m, and pu=mm,/M are the total and
reduced masses of the atoms, respectively. The parameter a,
defines the width of the initial wave packet in the z direction,
and the interatomic potential V(r) depends exclusively on the
distance r=|r,—r,| between the atoms.

Following Ref. [15], we remove the dependence on the
angular variable ¢y of the c.m. by the unitary rotating-frame
transformation

1 2 2\ 2
+ —(myw] + myw -
2( 107 2 2)PR 2,ur2

U = exp(idgl,) (5)

with L,=(1/i)(d/d¢). This replaces ¢p—p by ¢ and 9/ dpg
by d/d¢pr—3d/d¢ in the above Hamiltonian, leading to the
new Hamiltonian UH'U*=H. The wave packet transforms
accordingly, Uy’ =. The resulting elimination of the degree
of freedom ¢y, is possible due to the conservation of the total
angular momentum (LZ+LZ), i.e., it commutes with H'. We
are therefore left with the 4D time-dependent Schrodinger
equation

ia%l/f(p;e,r,t) =[H(pp,r) + V() 1 pror.1), ©)

where the wave packet {pg,r,t) represents the time evolu-
tion of the relative and c.m. motions, and

H(O)( )_ L(i L) 1 (i i)z
PRU=" oM\ ot " 4p%) T 2MpR\ gk 99
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1 2 2\ 2
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2 2 2
mlo o
8 o os 4
my nmp
(7)

is the Hamiltonian of two noninteracting different atoms
moving in the trap. Our investigations focus on the case
M ¢R:O, the latter being the quantum number corresponding
to (1/i)(d/d¢pg). Note that for the case w,=w, the last term
of H” vanishes, and consequently the c.m. and relative mo-
tions separate. For this special case, the scattering problem
reduces to a two-dimensional one.

III. WAVE-PACKET DYNAMICAL TOOLS
AND COMPUTATIONAL METHOD

Our approach to solving the above-defined Schrodinger
problem was originally developed in Refs. [16] for the treat-
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ment of bound-continuum transitions of hydrogenlike ions in
a laser field. In subsequent works, it has been successfully
applied to a variety of different atomic and nuclear problems
[16]. Tt has therefore proven to be a very efficient and flex-
ible approach for studies of quantum dynamics in three di-
mensions. Here we extend this computational scheme in or-
der to describe continuum-continuum transitions in the four-
dimensional space spanned by (pg,r,0,¢), which is a
challenging task. Let us provide the main features of our
approach.

A. General scheme

The wave packet starts propagating at =0 with the initial
state
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RV
lzb(pR’r’t = O) = NQDO(pR’ P, ¢)6Xp(— (Z 2aZ20) )exp(lkZ)
= Neo(pr. p, P) x(z — z9)explikz), (8)

representing two different noninteracting atoms in the trans-
versal ground state of the waveguide. Initially we choose z,
to be far from the origin z=0, i.e., interaction effects can be
neglected. The wave packet moves with the positive relative
interatomic velocity vo=k/pu=v2e/u and has the initial lon-
gitudinal dispersion Dz(t=0)=af/ 2 given by the parameter
a,. In the course of the collision process the wave packet
splits up into two parts moving in opposite directions z
— 0, Asymptotically, we encounter the following behavior
[3,8,11]:

— () =[1+ (k) INeo(pg. p. ) X(z = (20 + vi))explikz),

7+

[t — +))

9)

— (07 = f()Ney(pr.p, ) X(— 2 — (2o + v1))exp(- ikz),

7——0

where

f2(k) =Re[f*(k)] + i Im[f*(k)]

are the atom-atom forward and backward scattering ampli-
tudes in the presence of the external confining potential. In
the special case w;=w, of interacting atoms experiencing the
same harmonic trap, the even and odd partial waves are de-
coupled and the forward-backward amplitudes f* can be
written as a sum

J2k) = fo(k) = f, (k)

of even-odd (gerade-ungerade) scattering amplitudes f, and
f.- X describes the motion and in particular the spreading of
the initial Gaussian wave packet in the z direction. In the
absence of scattering, it propagates according to

t
1- i—2> + iet},

where Dz(t)=(a?/ 2)[1+t2/(,u2ag)]. Employing the solution
to the scattering problem in the absence of atom-atom inter-

action [V(r)=0] at large times t— +o as
O — +))
— [ = Neo(pr.p. #)X(z = (29 + v1))explikz),

Z—+®

— |97 =0,

7——00

X(z = (z9+v1))

(Dz(t) )‘”4 [z— (zo+vD)] (
— > exp| - —4Dz(t)

Z

(10)

and additionally the fact that our computational scheme (see
below) is unitary, i.e., conserves the norm during propagation

WO [ PO1)y=(yt) | p(1))=1, we can extract the forward
scattering amplitude as follows:

WOln) — 1+ £ 0], (1)

which is valid in the asymptotic region t— +%. The ampli-
tude f*(k) is a fundamental scattering parameter and its
knowledge provides a complete description of the quasi-1D
scattering in the waveguide (note that, for the case of ener-
gies above the first transversal excited state, which are not
considered here, inelastic multichannel processes are pos-
sible and the scattering amplitude has to be generalized cor-
respondingly). Exploiting current conservation, one can rep-
resent the transmission 7 and reflection R coefficients as
follows [11]:

T(k) =1+ (0% Rk =1-1+f k)

The above expression for the reflection coefficient R(k) holds
for elastic scattering processes. In the case of inelastic scat-
tering, current conservation is in general violated, and one
has to replace the reflection coefficient by the expression R
=l (0.

For the special case f"=f", valid in the s-wave zero-range
pseudopotential approach when f,=0, the quasi-1D coupling
constant

kRe[f (k)] = kRe[f"(k)]
gp=lim— =lim—

TS A Ty B

has been introduced, together with the quasi-1D scattering
length a,p, in Refs. [3,8,9],
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Mdip

8ip=-—

It has also been shown [3,9] that in the zero-energy limit the
scattering under an isotropic 2D harmonic confinement can
be parametrized by a single scattering parameter (for f,=0),
e.g., a;p or g;p. The expression (12) holds also for the pa-
rameter k*g|;” introduced in Ref. [10] for the case f,=0 of
two spin-polarized fermions interacting via pure p-wave
scattering [here it needs the replacement Re(f,) =Im(f,) in
Eq. (12)].

The quasi-1D effective coupling constants g, and g\’
can be extracted from the amplitude f* by employing the
low-energy k— 0 and asymptotic limit according to Egs. (12)
and (11), respectively. This holds in particular for the case

that the interatomic interaction \>(r) scatters only even,

‘A/(r)=V(r)6,,2,,, or only odd, \A/(r)=V(r)6,!2,,+1, waves [ (I’
=0,1,2,...), which corresponds to the situation w,=w,, i.e.,
no gerade-ungerade mixing term u(wi—w3)ppg cos ¢ is
present in the Hamiltonian (7). Indeed, numerically solving
the Schrodinger equation (6) with the interaction operator
V(r)=V(r) 6,1, acting exclusively on even partial waves, in-
stead of employing the potential V(r), acting on all partial
waves, permits us to extract f,(k) directly from the calcu-
lated forward scattering amplitude Eq. (11) if w;=w,. In this
case there is no scattering of the odd waves, f,(k)=0, and
thus f*(k)=f,(k). In the zero-energy limit £ — 0, such a pro-
cedure models the pure s-wave approximation considered
earlier [3,8,9]. In our scheme, modeling the pure p-wave
approximation used in [10] works analogously to the above
procedure with V(r)=V(r) S0 41-

In the case w; # w, of gerade-ungerade partial-wave mix-
ing, it is not possible to parametrize the scattering process in
the low-energy limit with a single scattering parameter such
as a;p or g;p. The reason for this is that, even in the
asymptotic region r—oo, the term ~,u,(w%—w§)pRp cos ¢
~ w(wt—w3)pgrsin Bcos ¢ induces a strong gerade-
ungerade partial-wave coupling which modifies the partial
scattering amplitude f,(k) to possess the same dependence
on k as f,(k) for k— 0 (see, e.g., [17] and references therein).
Even in the zero-energy limit we cannot neglect either the
even or the odd partial waves in any case if w; # w,. As a
consequence, pure s-wave scattering does not occur for w,
# w,, and the effective 1D s-wave pseudopotential approach
g1p9(z) cannot be considered as an adequate description of
the scattering process.

Following the computational scheme developed in Refs.
[16], we treat the angular part of the scattering process with-
out using a partial-wave decomposition. Instead of spherical
harmonics we use a two-dimensional angular basis, con-
structed from the eigenfunctions of the angular operator
L*(0, ¢) and defined on the angular grid (6;, ;) in the spirit
of the discrete-variable representation (DVR) [18] and/or the
Lagrange-mesh method [19]. This yields a diagonal repre-
sentation for the angular part of the interaction between the
atoms and the harmonic trap in the Hamiltonian H©

X(pR,r,Gj,qﬁj,t). As a consequence, we arrive at a set of
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radial equations of motion coupled exclusively via the non-
diagonal angular part of the kinetic energy operator. These
equations are solved using a component-by-component split-
operator method, which permits a fast diagonalization of the
nondiagonal part [16]. Concerning the discretization with re-
spect to the radial variables r and pg, a sixth-order (seven-
point) finite-difference approximation on a quasiuniform grid
is used. This scheme has the same order of accuracy as the
conventional Crank-Nicholson algorithm. It allows a full 4D
quantum treatment of the atomic collision process.

B. Discretization of the angular subspace

We are seeking for the time-dependent solution ¢ pg,r,?),
employing the variables (pg,r,Q)=(pg,r, 0, P) according to
the expansion [16]

N
Wpr.r 1) = 2 (D¢ (pp.r1) (13)
J

with respect to the two-dimensional basis

N
Q) =2 Y Q0™ (14)

associated with a mesh Qj:(ﬁjg, ¢; ). For the @ variable, the
Ny mesh points ng correspond to ti/)le zeros of the Legendre
polynomial PNH(cos 01-3) =0. For the ¢ variable, the Ny mesh
points are chosen as ¢; =m(2j,~1)/Ny. The total number
N=NyN, of grid points .72(0.1'9’ g{gi¢) is equal to the number
of basis functions in the expansion (13) and the number of
terms in the definition (14), where the symbol v represents
the twofold index {l,m} and the sum over v is equivalent to
the double sum

N (Ng=1)/2 [m]+N 41

2= X > . (15)

v=1 m==(Ng=1)12  I=|m|

The [ and m indices show the number of zeros over the 6 and
¢ variables of the polynomials Y ,({)) which we specify in
the next paragraph. Due to the definition (15) the values N,
may be chosen only odd. N, can take on arbitrary values.
The coefficients (Y™!),; in the definition (14) are the ele-
ments of the N X N matrix Y~! inverse to the matrix given by
the values Y;,=Y,(€};) of the polynomials Y,({2) at the grid
points €);. It is clear that f;({;,)=6;; with this definition
[i.e., the basis (14) belongs to the class of Lagrange functions
[19]] and the coefficients ¢;(pg,r.?) in the expansion (13)
are the values of the required solution ¢ pg,r, 1) at the points
of the angular grid ;(pg,7,0)=4pg,7,;,1).
The polynomials Y,({)) in Eq. (14) are chosen as

Y Q) = ¥,,(Q) = "¢, €I PIN6), (16)
]!

where C5’=5Hr holds in general, and thus Y,({)) coincides
with the usual spherical harmonic with a few possible excep-
tions for large values of v such that we obtain the orthogo-
nality relation
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f Yi(Q)Y, (Q)dQ = 2 NYLY =8, (17)

Jt v

for all » and v" =<N. Here, the N weights \; are the standard
Gauss-Legendre weights multiplied by 27T/N¢, For most v
and »’, the above relation is automatically satisfied because
the basis functions Y ,({)) are orthogonal and the Gaussian

quadrature is exact. For these v we have Cf’= &y in Eq. (16).
However, in a few cases involving the highest / values, some
polynomials Y}" have to be orthogonalized in the sense of the

Gaussian quadrature (C,, # 6, for these specific values of /).
With this choice, the matrix S; —)\” %y, v 1s orthogonal.

The values of the wave functlon W pg,r,t) at the grid
points of the angular space y(pg.r,Q;,t)=t(pg.r,1) are uti-
lized in the spirit of the discrete-variable representation [18]
or Lagrange-mesh methods [19]. This procedure drastically
simplifies the calculations [16] as compared to the usual
partial-wave analysis.

C. Computational scheme

It is an attractive feature of our two-dimensional DVR
(14) that for the grid representation f,({2) the only nondiago-
nal part of the Hamiltonian in Eq. (6) is the angular part of
the kinetic energy operator [see Eq. (7)],

az
2
1(1+1) m? ) »
—E ( 2?2 (Y™,

which can be diagonalized by the simple unitary transforma-
tion Sj,,=)\Jl-/2YjV [16]. This property has been exploited for
developing an efficient algorithm with a computational time
scaling according to the number N=NyN, of unknowns in
the system of Egs. (6) [16]. As in previous works (see Ref.
[16] and references therein), we apply here for the propaga-
tion Ylpg,r,Q;.t,) = Wpg.7,Q;,t,,1) in time t,—1,,,=t,
+At the component-by-component split-operator method
[20]. The Hamiltonian (7) permits a splitting into the follow-
ing three parts:

0 0 1
Hy(pror) = 1) (pe) + H33)(r) + Wilprep) S (18)

where
1 (& 1
)
0= —| —+—
i (PR) 2M<&P?g 4P%g)
I N pE——
2MpR\/)\ i o Y K
a 1
(1) -1 _
W)= —— YO, A+ 1Y,
(1) pir 2 /TEV( ) l(l+ DY),
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1 u? w% w%
(mla)l +m2w2)pR+—(—+ p*

Wj(pR9P) 2 \m "y

+ @] — 3)ppg cos ¢;.

Subsequently, we can approximate the time step
Wpr.7r,Q;,t,) — Wpg,r, L), 1,,,) where t,—1,,,=t,+At ac-
cording to

lt, + Ar) = exp(— %At‘/i/) exp[— iN(hD + V)]

Xexp(— iAtﬁ@))exp(— észif) W(1,) + O(AP).

(19)

The time evolution proceeds as follows. For the first and
the last steps, according to the relation (19), we write the

function ¢ and the operators exp(—iArW/2) in our two-
dimensional DVR (14) on the grid {€);}={6, ¢>j }. Since the
potential W;(pg,p) is diagonal in this representatlon the first
and last steps represent simple multiplications of the diago-
nal matrices exp[—(i/2)AtW,(pg,p)]. Two intermediate steps

in (19) depending on 4 and ) are treated in the basis Y,

(16) where the matrix operators fz(o)(pR) and fz(l)(r) are diag-
onal with respect to the indices m and /. For that we approxi-
mate the exponential operators according to

. -1 .
exp(— iAtA) =~ (1 + éAtA) (1 - éAtA) +O0(AP),

(20)

which ensures the desired accuracy of the numerical algo-
rithm (19). Thus, after the discretization of r (or pg) with the

help of finite differences the matrix A possesses a band struc-
ture, and we arrive at the following boundary-value problem:

i - At i o«
(1 + EAtA> lﬂ(tn + Z) = (1 - EAIA)lﬂ(tn),

which can be solved rapidly due to the band structure of the

matrix A. This computational scheme is unconditionally
stable [20], preserves unitarity, and is very efficient, i.e., the
computational time is proportional to the total number of
grid points. The efficiency of the computational procedure is
based on the fast transformation with the help of the unitary
matrix §;,= A2y ;v between the two relevant representations:
the two-dimensional DVR (14) and the Y, representation
(16).

IV. MODELING FINITE-RANGE ATOMIC INTERACTIONS

In this section we introduce our finite-range two-body in-
teraction potential V(r) and analyze its scattering properties
in 3D free space. Subsequently, in the next section, we will
use this potential in order to explore interatomic collisions in
harmonic confinement. Naturally, the main interest focuses
on regions of resonant or near-resonant scattering. A first
approach to analyzing the CIR beyond the s-wave zero-range
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6l VO+1/ur) (a)

) y,(kr)

_12 1 sl L sl
0.1 1 10 100
r
(b)
Il
100

FIG. 1. (a) s- and p-wave scattering wave functions i ,(kr) and
p(kr) (normalized to unit amplitude — sin(kr—/21+ &)/ (kr) for
r—o), together with the corresponding interatomic potentials
V(r)+1(I+1)/(2ur?). Calculations are performed for V,=—1.136,
p=1, leading to a single bound state in the s-wave potential (the
scattering function possesses a single node as a function of r in the
region where the potential acts) and a completely repulsive interac-
tion for the p wave (no nodes with respect to r in the same region).
The collision energy is E=5X 107, Cases shown correspond to the
following s- and p-wave scattering parameters: a,(E)=+4.543 and
V,(E)==1.677. (b) The same as in (a) but now for a deeper inter-
atomic potential V(,=-8.45, leading to three bound states in the
s-wave potential (see the three nodes with respect to r in the region
where the potential acts) and one bound state in the p-wave poten-
tial (a single node with respect to r in the same region). Collision
energy is E=5X 107*. The resulting s- and p-wave scattering pa-
rameters are ay(E)=+4.799 and V,(E)=-48.20. All quantities are
given in units according to Egs. (6) and (7).

pseudopotential approach was undertaken in Ref. [8] for the
case w;=w,. It was shown that the CIR occurs not only for a
zero-range s-wave pseudopotential but also for finite-range
models of the interatomic interactions V(r): the spherical
square well and the “C4-Cj, potential” V(r)=—Ce/r®
+Cy,/r'2. Moreover, it has been shown that the scattering
amplitude is rather insensitive to the details of the inter-
atomic interaction potential in the region of the CIR. This is
why we choose a simple form for the short-range potential
which can be easily tuned in order to explore the variety of
possible effects occurring in a confinement due to changes of
the spectral structure of the potential. This should not ob-
scure the fact that investigations employing real molecular
interaction potentials are very desirable. Here we focus on
the interatomic interaction modeled by the screened Cou-
lomb potential

.
V(r) = Vo—2e ™, (1)
r

which has in the past been extensively applied for investiga-
tions of the quantum dynamics of various few-body prob-
lems (see, e.g., Refs. [21,22]). If the length scale r, is fixed
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TABLE 1. The dependence of the s- and p-wave scattering pa-
rameters ay(E) and V,(E) on the collision energy E, calculated for
the free-space scattering potential V(r)+[(I+1)/2ur?. Also pro-
vided are the values of the parameter a | /a, adopted for the chosen
coupling constant V|, in the single-mode regime of the harmonic
confining potential with frequency w=0.02. All quantities are given
in units according to Egs. (6) and (7).

Vo a,la, E ay(E) V,(E)

-1.136 1.56 0.0005 4.543 -1.677
0.001 4.526 -1.669
0.002 4.492 -1.652
0.004 4.426 -1.666

-8.45 1.47 0.0005 4.799 —-48.20
0.001 4.790 —49.05
0.002 4.773 -50.83
0.004 4.740 -54.81

in (21), the potential depends on a single parameter Vj,. It has
two remarkable advantages compared to the zero-range
s-wave pseudopotential: first, by varying V,, one can vary the
number of bound states, in particular those of s-wave char-
acter, and, second, we can create new bound and resonant
states of higher partial-wave character. It is evident that vary-
ing the length scale r( instead of V|, yields similar effects.
Beyond these important features, the smoothness of the
screened Coulomb potential allows for a numerically stable
and efficient integration of the corresponding time-dependent
Schrodinger equation. In conclusion, the model potential
(21) represents a generalization of the pure s-wave pseudo-
potential approach and exhibits a much richer spectral struc-
ture. This will, as we shall see below, permit us to explore
new regimes and effects of confined scattering processes.
Before starting the investigation of the scattering process
in the presence of confinement, it is instructive to analyze the
corresponding free scattering behavior of the potential (21).
We assume ry=1 and vary the “coupling constant” V. Let us
focus on two cases: (a) there is one s-wave bound state for
the potential (21) and a repulsive p-wave potential obtained
by choosing the coupling constant close to the value V=
—1.136; (b) there are three bound states of s-wave character
and one p-wave bound state for values of V|, close to —8.45.
These two cases are illustrated in Fig. 1, where the s- and
p-wave scattering functions are shown together with the cor-
responding interatomic potentials V(r)+I(I+1)/2ur>. The
dependence of the s-wave and p-wave scattering parameters

a®=-"2E 0, v m=-E Ly,
on the collision energy E for E—0 (k= \s"Z,U,—E—> 0) is pro-
vided in Table I. The calculation of a,(E) and V,(E) was
performed within a sixth-order finite-difference approach
[17] on a quasiuniform grid [16]. Due to the spherical sym-
metry of the interaction (21), the angular motion separates
for the free 3D scattering problem, resulting in numerical
integration of the radial Schrédinger equation only.
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The data presented in Fig. 1 and Table I demonstrate that
by decreasing the coupling constant V,; one can model a
near-threshold resonant or bound state of p-wave character,
and the corresponding scattering volume V), takes on very
large values, specifically, Vp| —474 for Vy=-8.45. The
p-wave scattering length is then ap:V}?/ 3=-3.6, which is in
absolute value comparable with the s-wave scattering length
a,=4.8. Thus, by varying the coupling strength V,, from V,
=—1.136 to —8.45, we can easily transform the standard
problem of pure s-wave scattering to the situation of simul-
taneous large s- and p-wave scattering lengths, i.e., both par-
tial waves are nearly resonant with respect to their free-space
scattering. In the following, we will explore, among other
topics, the impact of this combined resonant behavior on the
scattering properties under confinement, addressing both the
separable w;=w, and nonseparable w; # w, cases.

V. RESULTS AND DISCUSSION

We will first investigate collisions of two identical par-
ticles in the transversal ground state, i.e., the single-mode
regime, of a harmonic cylindrical waveguide with w;=w,.
The latter allows for a separation of the c.m. and relative
motions, and the corresponding partial waves are exclusively
either even or odd. Subsequently, we will explore the more
general case of heteronuclear collisions in the waveguide in-
volving two distinguishable atoms. In this case the c.m. and
relative motions are coupled via the term u(w?
—w3)pgp cos (¢), mixing even and odd partial waves if o,
# w,. The case of a single mode and scattering of a single
species is naturally divided into two subtopics, which were
addressed already in Refs. [3,8—10]. First, this is the sym-
metric case f,,=0 describing collisions of two bosons and,
second, it is the antisymmetric case f,=0 representing colli-
sions of two fermions. The latter is again divided into two
subsections. First, this is the case where both distinguishable
particles are in the same harmonic trap with equal trap fre-
quencies w=w;=w,, where, however, the scattering ampli-
tude f— f,#f, should not be (anti)symmetrized as for iden-
tical particles. The second case is the most general one where
the colliding distinguishable particles experience different
trap frequencies w; # w,, leading to the nonseparability of
the c.m. and relative motions and consequently to strong
partial-wave mixing.

A. Single atomic species in a harmonic waveguide
1. Bosonic scattering under harmonic confinement

This case has already been explored in the s-wave zero-
range pseudopotential approach both analytically and nu-
merically in Refs. [3,8,9,11,12]. We will use the correspond-
ing results for comparison and to analyze certain
computational aspects of our approach. In the case of colli-
sions of identical bosons under a harmonic confinement, the
frequency of the confinement is the same for all atoms, w,;
=w,=w. Consequently, the term proportional to ppg cos ¢
does not occur in our Hamiltonian H” [see Eq. (7)], the c.m.
and relative motions separate, and our scattering problem
reduces to a two-dimensional one involving the degrees of
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freedom (r, #). To fix the conditions analogous to the sym-
metric case (f,=0) of pure s-wave scattering approximated
in the s-wave pseudopotential approach, we choose the atom-

atom interaction operator in the form \7(r)=V(r) 6,0, where
the potential function V(r) has been defined in Eq. (21). This
interaction operator scatters only s waves, leading to f,(k)
=f*(k), and one can define the quasi-1D coupling constant
g1p in Eq. (12) by calculating the forward scattering ampli-
tude f*(k) given in Eq. (11). Following Refs. [3,8,9,11,12],
we analyze the dependence of the scattering amplitude on the
parameter a /a; near the resonant value a,/a,=1.4603...
found in [3] in the s-wave zero-range pseudopotential ap-
proach. Here, aiz\/2/,u(w1+w2)=v’l/,uw is the confine-
ment (oscillator) width and q, is the s-wave scattering length
describing the atom-atom collision in 3D free space in the
zero-energy limit. We choose the oscillator frequency of the
confining potential in the regime 0.005=F , =0 =0.02 and
comparatively low longitudinal relative energies according to
0.002=¢e=0.004, which are well below the energy of the
first transversally excited channel. We are therefore studying
collision processes in the single-mode regime w<E=E
+&<3w. The chosen interval of collision energies is in the
region where the approach employing just the scattering
length as a single parameter already provides a qualitatively
correct description of the scattering process (see Table I).
The longitudinal width of the initial wave packet in Eq. (8) is
chosen sufficiently broad according to a,=1/\uw,~30-40
to satisfy the demand of sufficient monochromaticity of the
wave packet along the z direction (w, is introduced here,
although there is no confining potential in the z direction, in
order to account for the energy uncertainty of the z motion of
the wave packet). Consequently, the spreading is

D(1) = ((0)|(z = 2*|y1)) — aZ/2[ 1 + rzf(uza;‘)]fo 5% 107
(22)

and the small dispersion of the longitudinal momentum reads
Dy=(y(0)|(k=k)*|{1)) — 1/(2a2) =5 X 107*. The variation in
time of the calculated dispersion D_(f) together with an ex-
pected estimate of it are presented in Table II and discussed
below [see the second paragraph after Eq. (23)]. The initial
localization of the wave packet is on the negative semi-half-
axis z<<0, out of the range of the interatomic potential, i.e.,
out of the scattering region. We choose z,=—60 and obtain
for ((t=0)|(t=0)) (integrating over the subspace z<<0) a
deviation from 1 which is less than 0.5%, corresponding to
the typical accuracy of our computations.

To model the conditions a | /a,~ 1.46 of the s-wave ultra-
cold atom-atom collisions in the harmonic trap near the CIR,
explored in Refs. [3,8], we fixed the oscillator width accord-
ingtoa, =1/Juw=7 (0=0.02), and the atom-atom s-wave
scattering length in free space a, was changed by varying the
interatomic coupling constant —1.3=V;=-0.85 in the vicin-
ity of the value V=-1.136, which provides an s-wave scat-
tering length a, such that a, /a,~1.46. We have calculated
the wave packet (r, 6,r) time evolution from t=0 up to ¢
=~ (10—15)t, (depending on the collision energy) in units of
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TABLE II. Calculated values of the mean wave-packet energy

E() (23) and the wave-packet dispersions D,(f) and D,(t) in z and
p directions together with the corresponding theoretical estimates
for these values: E''=w+w,+£=0.02+0.001+0.004=0.025. D;h
was evaluated from the free-space limit (22) and D:)h from the cor-
responding expression for the two-dimensional oscillator potential
DZ':azl(l —m/4)=1/w(1-m/4)=10.7.... Parameter values are V,
=-1, @=0.02, Ny=60, N,=200, and £=0.004, and consequently
a,/ag=0.907. All quantities are given in units according to Egs. (6)
and (7).

1/t E(1) £ D) DMty D,
0.1 0.02440  0.0250 500 500 107
1.0 0.02440  0.0250 447 534 10,6
2.0 0.02440 0.0250 299 637 11.2
3.0 0.02439 0.0250 365 808 10.4
40 0.02439  0.0250 856 1050 112
5.0 0.02439 00250 1580 1360 10,0
6.0 0.02438 00250 2490 1730 9.90

to=27/(w+¢). Within this time period, the wave packet
splits under the action of the interatomic potential but does
not reach the boundaries of the grid, which have been chosen
at z=+200. We compute the mean value of the interatomic
energy via

_ J
Hﬂ=<MﬁzmMﬂ> (23)

the dispersions D_(¢) and D7), and the scattering amplitude
St [see Eq. (12)]. The calculations were done on a radial grid
{r;} with the number of grid points N, varying in the interval
80=N,=200 to check the convergence of the computations.
For the same reason the number of angular grid points Ny
was varied according to 20=N,=60. E(r), D,(1), D (1),
f*(2), and the transmission coefficients T(¢)=|1+f*(¢)|* are
presented for a few values of a | /a, in Table II and in Fig. 2.

Figure 2 also shows the transmission coefficient f’(t), calcu-

lated by the integration of the probability density 7(7)
=/ T2 4(r, 0,1)|?dr sin @ d6 over the part of the semi-half-
space z>0 that is out of the action of the interatomic poten-
tial z>zy=r( cos 8= 1. Also provided in Fig. 2 is the effec-
tive 1D coupling constant g;,(¢) calculated via Eq. (12).
Table II shows for a certain set of time instants the evo-

lution of the mean value of the wave-packet energy E(7),
which is close to the sum of the transversal and longitudinal

energies, E"=w+ w,+¢. The time evolution of the longitudi-
nal dispersion D,(t) of the wave packet follows the expres-
sion (22) (valid for the wave-packet spreading in free space)
only for very short times < f,, where it does not overlap
with the scattering region. The evolution of the transverse
dispersion D,(t) qualitatively reproduces the corresponding
value for the two-dimensional oscillator for long propagation
times.
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Figure 2 demonstrates the convergence of the scattering
amplitude f*(¢) for r— o according to Eq. (11). We observe
that the amplitude f*(¢) reaches its asymptotic value f*(¢
— o) already for times 1= (3—4)¢, in the complete regime of
varying interaction strength, leading to 0.5a, <a;=<4a,.
Figure 2 also shows the effective quasi-1D coupling constant
g1p(?) [see Eq. (12)] and the transmission coefficient T(z)
=|1+f*(¢)|* as a function of time. Obviously, the most diffi-
cult task is to accurately evaluate the value of the quasi-1D
coupling constant g;p(a,/a,) in the region a,/a;,~1.46
close to the CIR because of the smallness of Im[f*(a  /a,)].
The relative accuracy of the computed value of g, decreases
near the CIR. However, the position of the CIR itself is pro-
vided quite accurately by calculating the position of the zero
of the function Im[f*(a , /a,)].

Figure 2 demonstrates that the transmission coefficients

T(r) and T(), calculated in the two different ways described
above, approach very similar values in the asymptotic re-
gion. This holds even in the region a,/a,~1.46... of the
CIR. Principally, the computational scheme for the coeffi-

cient T(¢) is more accurate since the definition of T contains
the uncertainty related to a not well-defined boundary of the
scattering region. The convergence of the calculated effec-
tive quasi-1D coupling g, (¢) to the asymptotic value g, ()
is considerably slower than the convergence of the transmis-

sion coefficients 7(¢) and 7(z). However, the results provided
in Fig. 2 demonstrate that by integrating up to r~ (7-8)z,
one can obtain also the coupling g, in the region near the
CIR. The oscillations in time of the calculated scattering pa-
rameters, especially amplified for the case of the g, (¢) func-
tion near the resonant region a,/a,~1.46, represent the
Fourier component related to the weakly bound molecular
state 2Ez~—1/ a?. The value of the binding energy Ejy de-
fines the period of the oscillations, TB~277/EB~47mf, in
g1p(1) and decreases considerably, as is qualitatively repro-
duced by the above simple estimate, as the scattering length
a, varies from a,/0.248 to a, /2.08.

For comparison with the literature [3,8], we have calcu-
lated the effective quasi-1D coupling constant g,p(a,/ay)
and the transmission coefficient T(a | /a,) as a function of the
ratio a | /a, in the region 1 =a,/a;=2 near the CIR. The
corresponding results are presented together with f*(a  /a,)
in Fig. 3. The CIR, originally predicted for a zero-range
s-wave pseudopotential [3] at a,/a,=1.46, is clearly ob-
served in our wave-packet dynamical simulation. However,
its position is shifted to slightly larger values: At £=0.004
we obtain a, /a,=1.48 for the CIR position. On decreasing
the longitudinal collision energy € to 0.002 and then 0.001, it
converges to a, /a;=1.47. A similar shift of the position of
the CIR, calculated for a spherical well potential as well as
for a Lennard-Jones C¢-C), potential, was also found in Ref.
[8]. The corresponding transmission coefficient T(a | /a,) ex-
hibits a well-pronounced minimum (total reflection of the
atoms) at the position of the CIR, where f*——1 and T=|1
+f*>—0 hold when approaching the resonance. The data
presented in Fig. 3 for the scattering amplitudes f*(a, /ay)
were evaluated near the point of the CIR by averaging over
time,
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(ffla,/ay)) = _t _ fHa,lagt)dt approach to the well-known case of the bosonic CIR, we
max asym©< t,

asym

in the asymptotic region t=t,,,=(7-8)t,. The functions
gipla, /a,) and T(a, /a,) were then calculated employing the
mean values of Re[(f*(a,/a,))] and Im[{f*(a,/a,))]. The
calculated scattering amplitude f*(a, /a,) is excellently fitted
by the expression f,(8,)=—(1+i cot 5g)‘1 (see [11,13,14]) in
the complete region 1 =a, /a;=2, employing the single fit-
ting parameter &,, which approaches J,(£=0.004)=m/2 at
the point a | /a;=1.48 of the CIR.

extend our investigation in the following sections to the case
of scattering of two identical fermions (f,=0) under a har-
monic confinement as well as to the effects of partial-wave
mixing due to the nonseparability of the c.m. and relative
motions in a harmonic confinement for distinguishable par-
ticles.

2. Fermionic scattering under harmonic confinement
In this section we analyze pure p-wave scattering of fer-
mions (w;=w,) under the action of the potential V(r)
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FIG. 3. (Color online) Scattering amplitude f*(a,/a,)
=fola,/ay), effective quasi-1D coupling constant gp(a,/a,), and
transmission coefficient 7(a | /a;) calculated for the symmetric case
f.=0 of bosonic scattering for V(r)8y in a harmonic confinement
w1=w,=0.02, for £=0.004. The coupling constant V|, is varied in
the region —1.3=V;=-0.85. The effective quasi-1D coupling con-
stant g,p is provided in units of 1/(ua ).

=V(r)8;,; in a harmonic trap analogous to the one discussed
in the previous section. By choosing the coupling constant V,,
close to the value V,=-8.45 indicating the appearance of a
bound molecular state in the p-wave [see Fig. 1(b)] we
model a resonant scattering of spin-polarized fermions (f,
=0) in a harmonic confinement [10,23]. In Fig. 4 we present
the calculated p-wave scattering amplitude f*(a,/a,) in a
region —4=a, /a,=2 including the position of the reso-
nance. Here also the calculated “mapped coupling constant”
g\l =limy_,o Im[f*(k)]/(Re[f*(k)]uk) [10] and the transmis-
sion coefficient 7 are illustrated. The position of the zero of
the mapped coupling constant for the fixed value £=0.004 is
at the point @, /a,=-1.97, close to the value a, /a,=-2 ob-
tained in Refs. [11,14]. Close to the position of the p-wave
resonance, the scattering amplitude f* behaves as f*— -1
and, as a consequence, T=|1+f">*—0, i.e., we obtain
strongly interacting and impenetrable fermions (see the cor-
responding panel of Fig. 4 demonstrating the transmission
behavior). The latter can be mapped on a system of free
bosons [10], as can be seen also from our wave-packet dy-
namical simulations, showing in Fig. 4 that g7’ possesses a
Zero at resonance.

As in the previous section devoted to pure s-wave scatter-
ing (f,=0) in a harmonic confinement, we also find here an
excellent fit of the calculated scattering amplitude f*(a,/a,)
for the case f,=0 of pure p-wave scattering in the complete
region —4=a,/a,<2 by the expression f,(5,)=~(1
+icot 8,)7! (see [11,13,14]), with one fitting parameter &,
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FIG. 4. (Color online) Scattering amplitude  f*(a, /a,)

=fula,/a,), mapped coupling constant g{7"(a, /a,), and transmis-
sion coefficient T(a l/al,) for the antisymmetric case f,=0 of fer-
mionic scattering defined by the interatomic operator V(r)&, in a
harmonic confinement w;=w,=0.02 for £=0.004. The coupling
constant V|, is varied in the region —9.5=V;,=-7.5. The mapped
coupling constant g}'s” is provided in units of 1/(ua k?).

approaching 8,(=0.004)=/2 at the point a , /a,=-1.97 of
the resonance.

B. Different atomic species in a harmonic waveguide

1. Scattering of distinguishable particles under harmonic
confinement w{=w,

In the case of two distinguishable particles colliding in the
same harmonic trap with w;=w,, the c.m. motion separates
but now s and p states both provide contributions to the
scattering amplitude f*=f,+f,. Such a case can be realized
in a magnetic trap if the distinguishable atoms possess the
same value for the product of their g factor and the projec-
tion of their total magnetic moment onto the magnetic field
axis. The computational scheme we follow here is analogous
to the one considered in the previous sections, with the only
difference that the interaction potential now acts on all pos-
sible partial waves and is defined by Eq. (21). The results of
the calculations of the scattering amplitudes f*(a , /a,) and
f*(a,/a,) are illustrated in Fig. 5 for the regions 1=a, /a
=2 and —4=a, /a,=2 analyzed before for the scattering of
bosons. In the first region 1 =a,/a;=2 (Vy~-1.14), with
one s-wave bound state and no bound states of higher partial
waves [see Fig. 1], the main contribution to the scattering
amplitude f* is provided by the s-wave partial amplitude f,
[see Fig. 5(a)]. However, the fitting formula with the param-
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FIG. 5. (Color online) (a) Scattering amplitudes f*(a, /a,) and f,(a,/a,) and corresponding transmission coefficients T(a, /ay)=|1
+f*(a, /ay)|* and Ty(a,/a)=|1+f,(a, /ay)|* for scattering of distinguishable and identical (bosonic) atoms in a harmonic confinement
®;=w,=0.02 for £=0.004. In both cases the interatomic interaction is described by the same potential function (21); however, the interaction
operator is acting on both even and odd waves for scattering of distinguishable atoms and exclusively on the s waves for scattering of
identical bosons. The coupling constant V;, is varied in the region —1.3=V;=-0.85. (b) Scattering amplitudes f*(a, /a,) and f,(a, /a,) and
corresponding transmission coefficients T(a, /a,)=|1+f*(a,/a,)[* and T,(a,/a)=|1+f,(a,/a,)|* for scattering of distinguishable and
fermionic atoms in harmonic confinement w;=w,=0.02, at £=0.004. In both cases the interatomic interaction is described by the same
potential function (21); however, the interaction operator is acting on both even and odd waves for the scattering of distinguishable particles
and exclusively on the p waves for scattering of identical fermions. The coupling constant V|, varies within the region —9.5=V,=-7.5.

eter 5, used previously must be replaced by the two-
parameter function [11]

1 1
1+icot5g_1+icot5u'

== (24)
This leads to a separation of the positions of the zero of the
function Im[f*(a,/a,)] and the minimum of the function
Re[f*(a /ay)] on the axis a, /a,. As a result, the position of
the minimum of the transmission coefficient T(a | /a,) is also
shifted when compared to its position in the case of pure
s-wave scattering, i.e., to [1+f,(a, /ay)|*.

Our second focus is the region —4=a l/aps2, corre-
sponding to values V;~-8.45, where we encounter s- and
p-wave contributions for the scattering in 3D free space [see
Fig. 1(b)] that are of the same order of magnitude [13,14]. In
this case, we have a combined resonant 3D scattering process
in free space where both partial waves significantly contrib-
ute to the total scattering cross section

4
o= /77272,: (21 + Dsin® &,

Surprisingly, it turns out that the corresponding scattering in
the presence of harmonic confinement can be completely
suppressed; this happens because of destructive interference
of the s and p waves in the effective 1D quantum scattering
process of the strongly interacting particles. This is the so-
called dual CIR predicted first in [13]. This effect is illus-
trated in Fig. 5(b) by showing the quantity 1+f*(a,/a,) to-

gether with the transmission coefficient T(a,/ a,). The
destructive interference of the s- and p-wave scattering pro-
cesses under the action of the confinement transforms the
total reflection of the pure p-wave scattering T=|1+f,|?
—[1-1]*—0 at the point of resonance a,/a,=-1.98 (see
Fig. 4) to the total transmission T=|1+f,+f,|*—[1-1-1|?
— 1 for the combined p- and s-wave scattering in the trap. In
conclusion, we obtain complete transmission through de-
structive interference of even and odd partial waves in the
guide.

In Fig. 6 we demonstrate how the 3D scattering cross
section o(V;) belonging to the potential (21) in free space is
transformed under the action of the harmonic confinement
into the reflection coefficient R(Vy)=1-T(V,) of the
quasi-1D scattering. In free-space scattering we encounter
two resonant regions of the coupling constant of the interac-
tion potential (21) near the points V;,=-0.78 and —8.85 [see
Fig. 6(a)], respectively. The first resonance at V,=-0.78 in
Fig. 6(a) is a pure s-wave scattering resonance in free space
[Fig. 6(b)], which transforms into complete reflection R~ 1
in the case of quasi-1D scattering in a harmonic confinement
corresponding to a | /a,=1.48; see Fig. 6(c). The correspond-
ing 3D scattering cross section exhibits a pronounced maxi-
mum near the position Vy=-1.12 of complete reflection. The
second resonance is a p-wave shape resonance of free-space
scattering which occurs at V,=-8.85 [see Fig. 6(a)]. At V,
=-8.45 both s- and p-wave scattering are strong, and the
corresponding scattering lengths are simultaneously large. As
a result we obtain complete transmission in a harmonic
waveguide or, as can be seen from Fig. 6(c), a zero of the
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FIG. 6. (Color online) (a) s- and p-wave scattering lengths
ay(Vy) and a,(Vj); (b) corresponding s-wave and total 3D scattering
cross sections a,(Vp) and o(Vy)=0,(Vp)+0,(Vy) in free space; and
(c) s-wave and total reflection coefficients R (V,) and R(V,) de-
scribing the scattering for the separable case w;=w,=0.02 and the
nonseparable case w;/1.35=w,=0.02 of harmonic confinement. All
quantities are given in units according to Egs. (6) and (7); &
=0.004.

reflection coefficient at V;=—-8.45. The corresponding total
3D cross section [see Fig. 6(b)] exhibits a maximum for this
value of V.

Let us discuss the aforementioned results in the frame-
work of the time evolution of the wave packet. Figure 7(a)
demonstrates the time evolution of the wave packet in the
waveguide for the case of nonresonant scattering in free
space (V,=-0.6 in Fig. 6). The wave packet is split by the
action of the interatomic potential into reflected and trans-
mitted parts moving in opposite directions after the collision.
The peak of the probability function |4z, p=0,)/r|* remain-
ing at the origin z=0 after the collision indicates a resonant
collisional behavior reminiscent of the considerations pro-
vided in Ref. [8]. At Vy=—-1.12, we are close to the s-wave
CIR and observe complete reflection of the wave packet for
the scattering process in the wave guide; see Fig. 7(b). Here
the resonant behavior mentioned above is even more pro-
nounced. In the case of the dual CIR [13,14], at V;,=-8.45
complete transmission is obtained [see Fig. 7(c)]. We there-
fore encounter an effective transparency in the atomic scat-
tering process in the case of the dual CIR. The resonant
behavior is quite strong here too.

2. Scattering of distinguishable particles in a waveguide w|# w,

Let us consider the most general case of a scattering pro-
cess of two distinguishable particles in a harmonic confine-
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ment with different trap frequencies for the two atoms. This
case, w;# w,, leads to nonseparability of the c.m. motion
of the colliding atoms due to the coupling term ,u,(w%
— w3)prp €08 = u(wi—w3)pgr sin O cos ¢ appearing in the
Hamitonian H” (7). It also leads to a strong mixing of par-
tial waves of g and u symmetry. To investigate this case, we
solved the corresponding 4D time-dependent Schrddinger
equation (6)—(8) for the time evolution of the wave packet
Wpg.p,0,¢,t) in the course of the collision. The numerical
grid for the variable pp was chosen equal to the one for the
variable r. The number of grid points N for ¢ was chosen
by varying N, within the limits 5=N;,=9, applying the
same criteria discussed above in the context of Ny and the
definition of the grid for the @ variable [see the paragraph
after Eq. (23)].

We apply our analysis to the case of a mixture of fermi-
onic **K and bosonic ®’Rb atoms with the mass ratio
my/m,=40/87. It is possible to obtain a considerable fre-
quency detuning o,/ w,=1.35 with different optical traps for
the atomic species [12], which results in a substantial cou-
pling of the c.m. and relative motions. Choosing the reduced
mass w=m;m,/(m;+my)=1, we obtain m,=(40+87)/40.
The trap frequency for the Rb atoms is then w,=0.02.

We have explored the effects of the confinement-induced
nonseparability of the c.m. motion and the partial-wave mix-
ing in the harmonic trap w;=1.35w, by calculating the de-
viation of the scattering amplitude f*(w; # w,) and the re-
flection coefficient R(w; # w,) from the corresponding
values at equal frequencies, defining the case of separable
c.m. and relative motions (w;=w,=0.02, w=1). The corre-
sponding results are illustrated in Fig. 6(c), where the reflec-
tion coefficient R(w, # w,) is shown as a function of V;. In
the region 0.5=-V,=1.5 of s-wave resonant scattering in
free space, the c.m. nonseparability induced by the harmonic
confinement leads to a shift of the position of the maximum
of the reflection coefficient from a, /a;=1.48 to 1.54. This
shift Ag=0.06 differs considerably from the corresponding
shift A,=0.02 of the position of the singular point of the
quasi-1D coupling constant g,p(a,/a;) obtained in the
s-wave zero-range pseudopotential approach and zero-energy
limit in Ref. [12]. There the approximation f,=0 was used
explicitly. In the region 7.5=<-V;=<9.5 of comparable reso-
nant contributions of s and p waves in the 3D scattering
cross section in free space, the effects of the c.m. nonsepa-
rability lead to a more substantial change of the reflection
coefficient R. The value of the minimum of the reflection
coefficient increases; see Fig. 6(c). The position of the mini-
mum of the reflection coefficient is also shifted considerably.

The time evolution of the wave packet illustrated in Fig. 7
appears to be qualitatively similar to the corresponding one
in the case of confinement-induced c.m. nonseparability.
Figure 8 shows the atomic probability distributions
[ pg.r, Q0> (r*p)dQ before, during, and after the colli-
sion for the same three cases of V|, shown in Fig. 7: nonreso-
nant scattering, s-wave resonant scattering, and simultaneous
s- and p-wave resonant scattering. Figure 8 demonstrates the
quantum dynamics with respect to both the relative and c.m.
motions.
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FIG. 7. Time evolution of the intersection of the probability density distribution |z, p=0,7)/r|?> of the wave packet in the harmonic trap
®;=w,=0.02 for two distinguishable particles for three cases: (a) nonresonant scattering in free space for Vy=-0.6, (b) s-wave resonant
scattering in free space for Vy=—1.12 (creating a CIR in a harmonic trap), (c) simultaneous s- and p-wave resonances in free space at V,,
=-8.45 (creating a dual CIR in a harmonic trap). Time 7 is given in units of #o=27/(w+¢) and other quantities in units according to Egs.

(6) and (7); £=0.004.

VI. CONCLUSION

We have developed a time-dependent 2D discrete-variable
approach for ab initio quantum-dynamical studies of atomic
scattering processes in waveguides. Our wave-packet propa-
gation techniques allow for the implementation of a finite-
range atomic interaction, and in particular they provide a
very natural approach to the dynamical as well as stationary
properties of the scattering process. First we studied the case
of scattering of two identical bosons that experience the
same harmonic transversal confinement. We observed block-
ing of the transmission due to the confinement-induced reso-
nance and derived the effective 1D coupling constant, which
agrees very well with the analytical results predicted by zero-
range s-wave interactions. Our second case study was that of
two identical fermions, where the mapping onto free bosons

in the resonant case was verified and the corresponding zero
of the transmission of the wave packet was observed.
Employing our wave-packet propagation scheme, we ana-
lyzed the case of distinguishable atomic species scattering in
a waveguide with different harmonic confinement for the dif-
ferent species. The latter leads to a coupling of the center-of-
mass and relative motions of the atoms and also to a mixing
of the different partial waves involved in the scattering pro-
cess. We explored the important case of confined scattering
with the ingredient that the corresponding 3D free scattering
involves both s- and p-wave near-resonant behavior. We
found that the interplay between the free-space s- and
p-wave resonant scattering states due to the confinement
leads to complete transmission in the scattering process: the
so-called dual CIR. The dual CIR occurs due to a destructive
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FIG. 8. (Color online) Time evolution of the probability density distribution in the harmonic trap w;/1.35=w,=0.02 averaged over the
angular variables W(pg,r,1)=[|(pg.7, 0., ¢,1)/|*(r*pg)sin 6 dO d¢ for two distinguishable particles m,/m,=40/87 for the same three cases
as in Fig. 7: (a) nonresonant free-space scattering V,=—0.6; (b) s-wave resonant scattering in free space for Vy=—1.12 (creating a CIR in a
harmonic trap); (c) simultaneous s- and p-wave resonant behavior in free space for V,=-8.45 (creating a dual CIR in a harmonic trap). Time
t is given in units of 7y=27/(w+¢) and other quantities in units according to Egs. (6) and (7); £=0.004.

interference between the s and p scattering waves in the
quasi-1D waveguide.

In the future, our wave-packet dynamical approach will
be employed to investigate quantum dynamics using realistic
molecular potentials for the atomic scattering. The most
promising candidates for new scattering properties are poten-
tials with a rich spectral structure. The anharmonicity effects
of the transversal confinement in the waveguide represent a
further challenging perspective to be explored in a forthcom-
ing study.
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