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The phase of the mean-field wave function of a Bose-Einstein condensate can be recovered from a time
series of images. We adapt an iterative retrieval method that has been successful in linear electron and optical
imaging systems to solve the nonlinear Gross-Pitaevskii equation. We address a number of issues related to the
successful application of this method to the nonlinear system, including the retrieval of wave functions with
nonzero net topological charge �i.e., containing vortices� and the effects of repulsive and attractive interactions
in the condensate on the convergence properties of the method. Recovering the phase from the continuity-of-
density equation is also investigated. An understanding of these issues is of importance for the practical
implementation of phase retrieval to Bose-Einstein condensates.
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I. INTRODUCTION

In several experiments on Bose-Einstein condensates
�BECs�, knowledge of the phase of the mean-field wave
function is important in understanding the dynamics of the
system. Examples include the first observation of a vortex in
a BEC �1�, understanding the stable dynamics of bright soli-
tons in an attractive BEC �2�, and investigations of rotational
and irrotational condensates �3�. If both the density and the
phase are measured in an experiment, the mean-field wave
function for the condensate can be constructed. Using the
mean-field wave function and the Gross-Pitaevskii equation,
the dynamics of the condensate can be explored. The prob-
lem of recovering the phase of a wave function has been well
studied in the optics, x-ray, and electron microscopy commu-
nities using both interferometric and noninterferometric tech-
niques �4–13�. Research has recently explored how these
techniques might be applied to BECs �14–16�. In particular,
the prospect of noninterferometric phase recovery from a
time series of density measurements appears promising �14�.
In the approach of Ref. �14�, an iterative method is used to
solve for the phase of a wave function obeying the Gross-
Pitaevskii equation. We investigate how the iterative method
performs on wave functions with nonzero net topological
charge and how its performance is affected by repulsive and
attractive interactions.

In optical and electron imaging the phase of a wave func-
tion has also been obtained from the transport-of-intensity
equation �9,10�. It has been proposed that this equation can
be solved to obtain the phase of a wave function in the pres-
ence of nonlinear interactions �17,18�. The equivalent equa-
tion for a condensate expresses the continuity of density. We
demonstrate a successful phase retrieval using this equation
and show that errors in the solution appear when the time
step between density measurements is greater than the corre-
lation time.

A solution to the phase problem using a series of intensity
measurements was first proposed by Gerchberg and Saxton
�4�. Their approach was iterative and variations of this
method have been successfully applied in both electron, op-
tical, and x-ray systems �7,8�. Other methods have also been
developed for these systems, including a direct solution

based on the transport-of-intensity equation �9,10� and least
squares minimization methods �12,13�. These methods find
the phase of a wave function satisfying a linear first-order
differential wave equation,
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This equation describes the propagation in the z direction of
the wave function of a photon or fast electron, ��r� ,z�, with
wave number k, in the paraxial approximation. The wave
function can be written in the form ��r� ,z�
=���r� ,z�ei��r�,z�, where ��r� ,z� is the intensity of the
wave and ��r� ,z� is the phase. The wave function is recov-
ered in the two dimensional r� plane from intensity mea-
surements taken at different values of the defocus parameter
z.

In the mean-field approximation a BEC can be described
by a complex scalar function and its time evolution is gov-
erned by the nonlinear Gross-Pitaevskii equation,
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where g=4��2a /m, with a the s-wave scattering length and
m the mass. The term Vtrap�r�� is an external trapping poten-
tial which in this study is assumed to be parabolic:
Vtrap�r��= 1

2m�2r�
2 , where � is the trap frequency. Notice

that if the strength of the nonlinear term is zero and the
trapping potential is removed, the nonlinear equation reduces
to the form of Eq. �1�, with the identification z=vt and k
=mv / �2���. The quantity ��r� , t� is now interpreted as the
density of the condensate. The phase problem for a BEC is to
recover the phase from density measurements recorded at
different times. Although a condensate is three dimensional,
we will only consider condensates that have a density which
can be effectively projected onto a two-dimensional �2D�
plane. For example, under tight harmonic trapping in one
dimension the dynamics along this dimension can be sup-
pressed, producing a quasi-2D condensate �19�. It is also
possible to remove a two-dimensional slice from a three-
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dimensional condensate and image it separately �20�. When
the condensate is effectively 2D, the density of the conden-
sate can be inferred from an image of the condensate. The
most common method of imaging condensates is absorption
imaging, but this is destructive �21,22�. To use this technique
for phase retrieval would require images of multiple conden-
sates prepared under the same conditions and imaged at dif-
ferent times. Two condensates prepared under identical con-
ditions will share a common phase, ��r� ,z�, up to an overall
constant. Since this overall constant does not affect the dy-
namics of the condensate, it is possible to retrieve a phase
from images of separately prepared condensates. There are
several sources of noise for a time series of images. For
instance there are technical difficulties associated with repro-
ducing condensates under identical conditions, such as varia-
tions in the number of trapped atoms. Another source of
noise is fluctuations in probe light intensity. Even in an ex-
perimentally ideal situation, quantum fluctuations of the con-
densate density during time evolution present a noise level
on these images of 5–10 % �23� which is uncorrelated be-
tween images. It has been shown previously that the iterative
method is robust in the presence of noise levels up to 10% on
the brightest pixel �7�. Hence if the noise present in the im-
ages from all sources is less than this level, phase retrieval
should be possible. As an alternative to absorption imaging,
the nondestructive technique of phase-contrast imaging can
take multiple images of a single condensate �22,24,25�. This
technique avoids the issues associated with reproducing
identical condensates. Currently the main limitation of ap-
plying phase contrast images to phase retrieval is the signal-
to-noise ratio that is currently achievable.

Phase vortices are a topological feature found commonly
in condensates and optical waves. Single charged vortices
can be produced in BECs by mechanical rotation of an asym-
metric trap �26� and by direct optical phase imprinting �27�.
This technique has also been used to produce a vortex lattice
�28�. Vortices with nonzero topological charge can be created
in laser fields �29� and in x-ray fields using phase plates �30�.
Iterative methods have successfully retrieved the phase of
wave functions containing vortex-antivortex pairs which
have a net topological charge of zero �14,31,32�. When the
net topological charge of the wave function is not zero a
further issue arises. If an iterative method cannot alter the net
topological charge of the trial wave function, then the correct
charge must be known a priori for a successful retrieval. We
use an iterative method of phase retrieval, similar to that in
Refs. �7,14�. We investigate whether it is affected by the
issue of net topological charge, and, if so, how.

Using a Feshbach resonance, the sign of the interaction
can be changed to produce a condensate with attractive in-
teractions �33�. Tan et al. �14� have suggested that the pres-
ence of repulsive nonlinear interactions improves the conver-
gence of their iterative method of phase retrieval. This is
explored here systematically. The analysis is then extended
to show that convergence is slower with attractive interac-
tions and that when the interaction is strongly attractive the
method can fail.

As an alternative to iterative methods, the phase of a wave
function can also be solved directly from the continuity-of-
density equation. The continuity-of-density equation is

m

�

�
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��r�,t� = �� · ���r�,t�����r�,t�� . �3�

This equation applies equally to wave functions that obey
either Eq. �1� or Eq. �2�, up to an appropriate choice of
constants. For electron or optical wave functions, it is more
commonly known as the transport-of-intensity equation
�9,10�. The continuity-of-density equation can be inverted to
find the phase if the density and the time derivative of the
density are known. These techniques utilize as few as two
density measurements to estimate the derivative of the den-
sity with respect to time. The variations in these densities
caused by the nonlinear interaction introduce an error in the
solution. In this paper it is demonstrated that the phase of a
BEC can nevertheless be obtained from the continuity-of-
density equation provided that the time step between density
measurements is less than the correlation time for the con-
densate.

II. ITERATIVE LOOP METHOD OF PHASE RETRIEVAL

Iterative methods retrieve the phase from a number of
density measurements: ���r� , t1�, ���r� , t2� , . . . ���r� , tN�. In
this paper an iterative loop method is used. To begin a trial
wave function is formed using the first measured density and
a guessed phase. This trial wave function is evolved to the
time of the next density measurement, where the density of
the time-evolved wave function is replaced with the mea-
sured density. This new wave function is then evolved to the
next time where the density is replaced again and so on.
Once this is performed for the final measurement, the process
is repeated in reverse. This constitutes one full iteration. Be-
fore the density is replaced, the density of the trial wave
function, ��r� , t�, is compared to the measured density,
���r� , t�, using the sum-squared error �SSE�,

SSE =
	 �����r�,t� − ���r�,t��2

	 ���r�,t�
. �4�

At the end of each iteration, the SSE at each time is averaged
to estimate the overall convergence of the algorithm.

It will be helpful for the discussion below to also describe
the iterative loop method mathematically. The evolution of a
wave function according to the Gross-Pitaevskii equation,
Eq. �2�, can be written as

��t + t0� = U�t,t0���t0� �5�

and the replacement of density operation, in which the den-
sity of a trial wave function is replaced with the measured
density, can be written as

���r�,tn� = Tn���r�,tn�� = Tn����r�,tn�ei��r�,tn��

 ����r�,tn�ei��r�,tn�, �6�

where ��r� , tn� has been evolved from the previous time and
���r� , tn� is the measured density at time tn. In this notation
the wave function at the �i+1� iteration of the method can be
written as
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N
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n=N

2

TnUtn,tn−1
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�7�

The replacement of density operation, Tn, can be interpreted
as applying a constraint at time n. The N density measure-
ments provide N constraints which we require our wave
function to satisfy. The iterative loop method applies these
constraints consecutively and repeatedly. When applied to
electron or optical systems, the unitary evolution operation,
U, is interpreted as free space propagation and the time pa-
rameter is replaced by a spatial propagation parameter.

There are also iterative methods that are more sophisti-
cated than the loop method, such as the iterative wave func-
tion reconstruction �IWFR� method �8�, which can also be
applied to BECs. The loop method has been used here as it is
computationally faster.

III. CONSERVATION OF TOPOLOGICAL CHARGE IN
THE ITERATIVE LOOP METHOD

In two dimensions a phase vortex is a topological feature
that can occur wherever the density of the wave function is
zero at a point. At this point the phase is undefined. For a
continuous and differentiable wave function, the integral of
the phase over a closed loop � encompassing this point can
be any nonzero integer multiple of 2�:

�
�

����r�� · dn̂ = 2�l , �8�

where n̂ is a unit vector tangential to the loop �. The integer
l is the called the topological charge and the sign of l indi-
cates the orientation of the vortex. The net topological charge
of a wave function is defined by the integral of the phase
over a closed loop that encompasses all the singularities.

The iterative loop method has successfully retrieved the
phase of wave functions with vortices when the net topologi-
cal charge of the wave function is zero �14�. When the net
topological charge of the wave function is not zero, it is
important to know whether the method is capable of chang-
ing the net topological charge of a trial wave function. If the
method conserves the charge of the trial wave function, then
the correct net charge must be known a priori for a success-
ful retrieval. Recall that the iterative loop method consists of
two kinds of operation, unitary evolution U and replacement
of density Tn. Do these operations conserve the net topologi-
cal charge of a wave function?

Since unitary evolution constitutes a continuous deforma-
tion of the wave function, the topological charge must re-
main fixed within a closed loop unless a singularity crosses
the loop �34�. As a consequence unitary evolution can intro-
duce vortex-antivortex pairs or a single charged vortex can
come “from infinity,” entering via the edge of the conden-
sate. This is how the rotation of an asymmetric trap can
introduce vortices into a condensate �26�. In our simulations,
time evolution will correspond to the free expansion of a
condensate after the trapping potential has been turned off.

Since there is no external source of angular momentum, only
pairs of vortices will enter or leave the condensate during
time evolution, but not single vortices. Thus time evolution
will not change the net topological charge of a wave func-
tion.

The replacement of density operation, Tn, only modifies
the density and leaves the phase of the wave unaltered.
Hence this operation should leave the topological charge of
the wave function unchanged. However, there is an excep-
tion when the measured density contains an extended region
of zero density. If after time evolution a vortex is located in
this region, the density around the vortex core will be set to
zero when the density is replaced, as discussed in Ref. �35�.
Hence, the vortex is removed from the trial wave function
and the net topological charge is changed. Since in an ex-
periment a BEC is situated within a trap, an image of a BEC
will include an extended region of zero density. However,
this mechanism of vortex removal depends on the dynamics
of the vortices during time evolution. There is no guarantee
that a particular vortex which we would like removed from a
trial wave function will move into the region of zero density,
and thus we do not expect this to happen routinely.

To illustrate this, we investigate the performance of the
iterative method for two different starting guesses for the
phase. In particular, we compare guesses that do and do not
have the correct net topological charge. We also wish to
know whether the nonlinear interaction potential affects con-
vergence in these cases. To test the iterative method a steady
state solution to Eq. �2� was found for a trapped condensate
with a first-order vortex. This was achieved with the imagi-
nary time method �36�. The density and phase of this solu-
tion in the absence of interactions are shown in Figs. 1�a�
and 1�b�, while the density and phase shown in Figs. 1�c� and
1�d� are for a 23Na condensate with a scattering length of a
=2.9 nm. A trap frequency of 2��3.3 rad s−1 was used.
This value of the trap frequency represents a typical value
used in current experiments �37�. Note that with a=0 the
condensate, in a steady state in the parabolic trap, is smaller
in size. The condensate was normalized to a value of
50 atoms nm−1, which represents a density in the third spa-
tial dimension. To form the time series the trap was turned
off and the condensate allowed to expand. The time series
consists of five densities at 5 ms intervals. When the phase
guess is zero, shown in Fig. 1�e�, the retrieved phases after
100 iterations do not show a vortex, Figs. 1�g� and 1�i�. The
iterative method failed to change the topological charge of
the wave function irrespective of the interaction strength.
Inspection of the convergence curves shown in Fig. 2 indi-
cates that the method stagnated at the outset.

Next we see that the method is successful when a guess
for the phase with the correct net topological charge is used.
If the iterative loop method is robust, it should be capable of
converging to the correct solution from any guess for the
phase with the correct net topological charge. To randomly
select a function with a net topological charge of one, we can
combine an ideal first-order vortex with a smoothly varying
random function. The requirement that the function is
smoothly varying �i.e., contains no vortices� is satisfied if the
smallest features of this random function are greater than the
width of a pixel. Such a function was obtained by generating
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a random number for each pixel between zero and 2� and
then smoothing this random distribution with a Gaussian
with a 1/e width of 5520 nm. This width was chosen to
produce a random distribution whose smallest features are
5–8 times wider than the width of a pixel. This function was
added to the ideal phase vortex in Fig. 1�d� to produce the
phase guess shown in Fig. 1�f�. The correct phase has been
retrieved by 100 iterations in both the case where the inter-
action term was omitted, Fig. 1�h�, and where it was in-
cluded, Fig. 1�j�. Figure 2 shows that the convergence of
these phase retrievals is steady and rapid. The test was re-
peated starting from several other randomly selected guesses
for the phase with the correct charge, which also varied the
location of the underlying vortex, and each time the retrieval
was successful. Hence if the topological charge is correctly
specified in the phase guess then the iterative method is suc-
cessful.

Tests were conducted on wave functions containing a
single vortex with a charge greater than one. The results were
consistent with the first-order case. A phase guess with the
correct topological charge converged but a phase guess of
zero stagnated without introducing vortices into the wave
function.

We also considered the case where there were several
vortices of charge 1, so that the net topological charge was
greater than 1. The greatest success was achieved when the
phase guess contained vortices located at the density zeros.
When the vortices in the guess for the phase were located
elsewhere, interaction between the vortices prevented the
method from relocating all the vortices correctly and conver-
gence was not achieved. While it is simple enough to place
vortices at the density zeros in practice, the sign of each
vortex �and thus the net topological charge� must still be
guessed. The signs of the vortices can be identified by the
retrieval that achieves the greatest level of convergence.

Variation of the parameters such as the density, scattering
length, and the trap frequency will effectively alter the
strength of the interaction potential. Further tests over a
range of interaction strengths were consistent with the results
shown in Fig. 1. Hence, we regard our conclusions concern-
ing the retrieval of wave functions with nonzero net topo-
logical charge by the iterative method to be applicable to
condensates generally, irrespective of trap frequency, scatter-
ing length, or density. We do expect that the interaction
strength will have a significant effect on the convergence of
the iterative method, and this will systematically be studied
in Sec. IV.

It is also possible to use a guess for the phase which has a
random value on each pixel. This guess for the phase may
lead, after iteration, to a trial wave function with the correct
net topological charge. However, this guess may also lead to
a trial wave function with the incorrect net topological
charge. Hence we do not consider the use of a random start
to be a reliable approach to the retrieval of wave functions
with a nonzero net topological charge. The most reliable
implementation of the iterative method is when the guess for
the phase has the correct net topological charge.

These results are also important for the application of
phase retrieval to singular optics �35�. The case where a=0 is
analogous to the propagation of an optical field. As a conse-
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FIG. 1. Density and phase of the first-order vortex in a parabolic
trap is shown for the case without interactions, �a� and �b�, and for
the case with interactions, �c� and �d�. In the case of nonlinear time
evolution, a 23Na condensate was assumed with a scattering length
of 2.9 nm. The size of the image is �3�102 	m�2 and the trap
frequency is 2��3.3 rad s−1. The phase retrievals were performed
with two different starting guesses �e� and �f�, as discussed in the
text. The retrieved phases using linear time evolution are shown in
�g� and �h� and those for nonlinear evolution in �i� and �j�. Each
phase was retrieved from five images starting at t=0 with time
intervals of 5 ms and is shown after 100 iterations.
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FIG. 2. The comparison of the convergence profiles for the
phase retrievals starting with different initial guesses shown in Fig.
1. The curves labeled “zero phase” refer to the starting phase shown
in Fig. 1�e� and those labeled “vortex in phase” refer to the starting
phase in Fig. 1�f�. The values of a distinguish the linear and non-
linear cases.
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quence of the results shown in Figs. 1�g� and 1�h�, we con-
clude that the phase of wave field containing optical vortices
can be successfully retrieved with this method if the net to-
pological charge is known.

IV. CONVERGENCE PROPERTIES OF THE ITERATIVE
LOOP METHOD FOR ATTRACTIVE AND
REPULSIVE NONLINEAR POTENTIALS

Leaving the issue of nonzero net topological charge, we
now consider how the strength of the interactions affects the
performance of the iterative loop method for wave functions
with a net topological charge of zero. Previous research has
found that increasing the strength of the nonlinear potential
improves convergence �14�. This research considered repul-
sive interactions �a positive nonlinear potential�. The aim in
this section is to systematically explore this convergence be-
havior for wave functions with a net topological charge of
zero and extend the analysis to attractive interactions �a
negative nonlinear potential�.

The test object for this section was constructed using a
portrait of Bose for the density and a portrait of Einstein for
the phase, as shown in Figs. 3�a� and 3�b�, and represents a
general wave function of zero topological charge without any
symmetries. The time series contained five densities at 5 ms
intervals. In this section the variation of the nonlinear poten-
tial, g ���max

2 , has been used to quantify the interaction and to
emphasize that this potential can be changed by varying the
interaction strength, g, or by changing the density of the
condensate. Figure 4 shows the convergence of the iterative
method after 50 iterations as the strength of the nonlinear
potential is varied. It confirms that for repulsive interactions
convergence improves as the strength of the nonlinear poten-

tial increases. This is because a stronger nonlinear potential
produces greater variations between the densities in the time
series which assists the convergence of the method. This idea
has been previously invoked in the choice of appropriate
time intervals between successive measurements �38�. If the
interval is too small, the lower spatial frequencies of the
wave function will be minimally changed by the time evolu-
tion and hence unable to be recovered by the algorithm. The
same effect is evident in Figs. 3�c� and 3�d� which compare
the retrievals after 50 iterations for two different strengths of
the nonlinear potential. In the case of stronger interactions
�g ���max

2 =9�10−13 eV� the retrieval is qualitatively very ac-
curate after 50 iterations and has the correct phase range to
an accuracy of 1%. But in the case of weaker interactions
�g ���max

2 =9�10−14 eV� there is less variation between the
densities in the time series. As a consequence, convergence
is slower and there is still a significant disagreement with the
correct solution after 50 iterations. The use of a larger time
step between densities in the time series and further itera-
tions improves this result.

As Fig. 4 indicates, a significant improvement in conver-
gence can be obtained if the strength of the nonlinear poten-
tial of a repulsive condensate is increased by two orders of
magnitude. As is often done in phase retrieval studies, we
have obtained Fig. 4 with a wave function that was chosen to
rigorously test the capabilities of the method. We expect this
result to be applicable to wave functions in general, and
hence to trapped condensates. In that case, there are a num-
ber of experimental parameters which ultimately determine
the strength of the nonlinear potential. For example, the
strength of nonlinear potential depends on g, which is pro-
portional to s-wave scattering length and inversely propor-
tional to the mass of the atoms. The strength of the nonlinear
potential is also dependent on the density, which is deter-
mined by the trap frequency, the mass, and the number of
atoms in the condensate. In the Thomas-Fermi limit �39�, one
can show that the peak density of a 2D condensate in a
harmonic trap is

FIG. 3. Density �a� and the phase �b� of the test object. The
phase retrievals after 50 iterations are shown for �c� g ���max

2 =9
�10−14 eV ��=2��21.7 rad s−1� and �d� g ���max

2 =9�10−13 eV
��=2��217 rad s−1�. The object size is �8�102 	m�2. The den-
sity was normalized to a value of 50 atoms nm−1. The minimum
and maximum values of the phase are indicated beneath each phase
map in radians.

FIG. 4. Plot of the convergence for a retrieval of the test object
shown in Fig. 3 as the strength of the nonlinear potential is varied.
The convergence is measured after 50 iterations. The retrievals are
performed on five densities at 5 ms intervals.
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���max
2 =�mnz�x�y

�g
, �9�

where nz is the density of atoms in the third dimension and
�x and �y are trap frequencies along the x and y directions,
respectively. Hence we can infer the experimental conditions
which will optimize the performance of the method.

Attractive interactions are modeled by setting the sign of
g to be negative. With attractive interactions the convergence
properties change remarkably. As shown in Fig. 4, for inter-
action strengths �g � ���max

2 up to 1�10−13 eV the convergence
of the method is slower and for strengths of �g � ���max

2 ap-
proaching 1�10−12 eV the method fails completely. This
slow convergence is due to the way in which the attractive
interaction changes the density through the time series. The
attractive interaction leads to an increase in the density in
certain regions of the image and a decrease everywhere else.
Phase retrieval relies on interference to encode the phase of
the wave function at one point in time in the density at a later
time. If the density decreases in a certain region due to a
noninterferometric process, such as an attractive interaction,
then the method becomes less sensitive to interference in that
region. The reduced sensitivity to regions of the measured
density is detrimental to the performance of the method. If
the density becomes very high on very few pixels, then the
Gross-Pitaevskii equation must be solved very accurately, by
sampling time finely, which requires increased computing
power. For the case of very strong attractive interactions,
�g � ���max

2 approaching 1�10−12 eV, the failure could be be-
cause the Gross-Pitaevskii equation has not been solved with
sufficient accuracy. A fine enough sampling was not found
due to constraints on computing time.

In practice the measured densities contain noise due to the
statistics of the detector and due to quantum fluctuations.
Noise due to the statistics of the detector was added to the
simulated densities by specifying a percentage error on the
brightest pixel and determining the noise levels on other pix-
els in accordance with Poisson statistics. The tolerance of the
iterative method to Poisson noise has been investigated pre-
viously �7�, and it has been shown that a successful retrieval
can be achieved with a level of 10% noise on the brightest
pixel. By repeating these tests it was found that the inclusion
of the nonlinear potential does not affect the iterative meth-
od’s tolerance to noise.

V. SOLVING THE CONTINUITY-OF-DENSITY EQUATION
IN THE PRESENCE OF A NONLINEAR POTENTIAL

The phase of a wave function can be recovered by solving
the continuity-of-density equation, Eq. �3�, so long as there
are no points of zero density �i.e., no vortices�. This method
requires knowledge of the derivative of the density with re-
spect to time. This can be estimated from a time series with
a minimum of two density measurements. Care must be
taken to interpret the continuity-of-density equation cor-
rectly. The nonlinear potential does not appear in this equa-
tion and hence the first-order time derivative of the density is
independent of the nonlinear interaction. The error associated
with the estimate of the first-order time derivative from a

number of density measurements is dependent on higher-
order time derivatives �38�. Higher-order time derivatives of
the density are dependent on the nonlinear interaction.
Hence, the nonlinear potential contributes to the error asso-
ciated with the estimate of the first-order time derivative.

The test object from Sec. IV has been used to demonstrate
that the continuity-of-density equation can be solved for the
phase. The continuity-of-density equation has been solved
here from knowledge of the density at three different times.
The estimate of the time derivative of the density was made
from two densities symmetric around the time of interest.
For instance, to retrieve the phase at t= t0 with a 1 ms time
step, the densities at t= t0−1 ms and t0+1 ms are used to
estimate the derivative. To obtain a quantitative measure of
the method’s accuracy, the retrieved phase and the phase of
the test object have been compared using a sum-squared er-
ror, with the form of Eq. �4�. Since the phase is only deter-
mined up to an additive constant, this constant was varied to
minimize the sum-squared error. Although this measure will
not be available in experiment it is useful for understanding
the properties of the method. The sum-squared error calcu-
lated using the retrieved phase and the phase of the test ob-
ject will be abbreviated SSE�Ph� to distinguish it from the
SSE calculated using densities.

Figure 5 shows the results of phase retrieval using the
continuity-of-density equation. In the absence of interac-
tions, a qualitative inspection indicates that the phase has
been retrieved successfully for a step size as large as 20 ms.
The SSE�Ph� is not zero and increases as the step size in-
creases because there is an error in the estimate of the time
derivative of the density. For convenience, the inclusion of
interactions is specified by the value of the scattering length
a. The mass number is still assumed to be 23. When the
scattering length is set to a=29 nm, the retrieval is still
qualitatively successful for step sizes up to 10 ms. The re-
trieval using a 20 ms time step shows a loss of resolution and
the finer details have been lost. The SSE�Ph� is higher when
interactions are included and significantly higher when the
time step is 20 ms. This increase in the SSE�Ph� is due to an
additional error in the estimate of the time derivative of the
density due to the nonlinear potential.

The correlation time is the characteristic time scale over
which the nonlinear interactions cause significant variations
in the density. By dividing the healing length by the speed of
sound in the condensate, the correlation time is estimated to
be �40�

tcorr =
m

2�2hna
, �10�

where m is the mass of the atoms, n is the mean density of
the condensate, a is the scattering length, and h is Planck’s
constant. Using the parameters for the simulations in Fig. 5
with a=29 nm, the correlation time is found to be 9 ms. We
can use the correlation time to estimate the step size for
which the nonlinear interactions begin to introduce a signifi-
cant error in the retrieved phase. Figure 6 shows the SSE�Ph�
as the step size was increased. The SSE�Ph� is only signifi-
cantly above that of the a=0 case when the step size is above
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the correlation time. This is consistent with Fig. 5 which
shows that when the step size was 20 ms, in excess of the
correlation time, the nonlinear interactions lead to a signifi-
cant error in the retrieved phase. When a=2.9 nm, which
corresponds to the strength of sodium interactions, the cor-
relation time is 89 ms. Hence Fig. 6 does not show any sig-
nificant error above that of the a=0 case. The correlation
time given by Eq. �10� is not precise for a general condensate
since it does not take into account the condensate’s specific
geometry. However, based on these simulations we expect
Eq. �10� to be a good guide for choosing an appropriate time
step.

The capacity of the continuity-of-density equation method
to tolerate noise has been investigated previously �7�. In par-

ticular the solution for the phase is susceptible to low fre-
quency noise. When applied to measurements of a BEC, the
solution will be susceptible to noise due to quantum fluctua-
tions irrespective of the imaging technique used. The treat-
ment of this noise, either through low-frequency filtering or
otherwise, will be important for the successful application of
the continuity-of-density solution to BECs. Since noise has
been successfully treated in both applications to x rays and
fast electrons �9,41�, the presence of noise should not dis-
count the use of the continuity-of-density equation.

VI. CONCLUSION

An iterative method has been successfully applied to re-
trieve the phase of a BEC for an experimentally realizable set
of parameters. It was shown that the method can successfully
retrieve a single charge vortex if the correct net topological
charge is specified in the initial phase guess. Increasing the
strength of a repulsive interaction improved convergence, but
increasing the strength of an attractive interaction slowed
convergence. The method was unsuccessful in the presence
of strong attractive interactions.

The continuity-of-density equation has been successfully
solved to retrieve the phase of a wave function, without zeros
in the density, in the presence of a nonlinear potential. The
correlation time of the condensate indicates the point where
the nonlinear interaction introduces a significant error into
the solution. Hence the correlation time is a guide for select-
ing an appropriate time step for the estimate of the density
derivative.
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FIG. 5. The phase maps retrieved from the continuity-of-density
equation for different time steps for the test object shown in Figs.
3�a� and 3�b�. The test object and parameters are the same as Sec.
IV. The SSE�Ph� shown below each phase was calculated using the
retrieved phase and the original phase.

FIG. 6. Comparing the retrieved phase to the phase of the test
object for the different interaction strengths and step sizes. The time
tc1 is the correlation time of the wave function with an interaction
strength of a=58 nm. The time tc2 is the correlation time when the
strength of the interaction is a=29 nm.
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