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Amplifying on a proposal by O’Dell et al. for the realization of Bose-Einstein condensates of neutral atoms
with attractive 1/r interaction, we point out that the instance of self-trapping of the condensate, without an
external trap potential, is physically best understood by introducing appropriate “atomic” units. This reveals a
remarkable scaling property: the physics of the condensate depends only on the two parameters N2a /au and
� /N2, where N is the particle number, a the scattering length, au the “Bohr” radius, and � the trap frequency
in atomic units. We calculate accurate numerical results for self-trapping wave functions and potentials, and for
energies, sizes, and peak densities, and compare with previous variational results. We point out the existence of
a second solution of the extended Gross-Pitaevskii equation for negative scattering lengths, with and without
trapping potential, which is born together with the ground state in a tangent bifurcation. This indicates the
existence of an unstable collectively excited state of the condensate for negative scattering lengths.
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I. INTRODUCTION

Bose-Einstein condensation of dipolar gases has attracted
much attention in recent years �1–5� because it offers the
opportunity to create degenerate quantum gases with adjust-
able long- and short-range interactions, which gives rise to a
wealth of novel phenomena �6–9�. In particular, the achieve-
ment of Bose-Einstein condensation in a gas of chromium
atoms �10�, with a large dipole moment, has opened the way
to promising experiments on dipolar quantum gases �11�.

As an alternative system with tunable interactions, the
Bose-Einstein condensation of neutral atoms with electro-
magnetically induced attractive 1/r interaction has been pro-
posed. Here a monopolar, “gravitylike,” long-range interac-
tion, in addition to the short-range �van der Waals–like�
interactions, takes the place of the dipole-dipole interaction
in dipolar gases. A monopolar quantum gas could be realized
according to O’Dell et al. �12� by a combination of six ap-
propriately arranged “triads” of intense off-resonant laser
beams. In that arrangement, the 1/r3 interactions of the re-
tarded dipole-dipole interaction of neutral atoms in the pres-
ence of intense electromagnetic radiation are averaged out in
the near-zone limit �13,14�, while the weaker 1 /r interaction
is retained. The resulting atom-atom interaction potential in
the near-zone limit is �12�

Vu�r�,r��� = −
u

�r� − r���
, with u =

11

4�

Ik2�2

c�0
2 .

Here, ��k� is the isotropic, dynamic, polarizability of the
atoms at frequency ck and I the intensity of the radiation.
The quantity u determines the strength of the “gravitylike”
interaction. The estimate for u given by O’Dell et al. �12� for
a CO2 laser light of intensity I=108 W/cm2 is equivalent to
the attraction of two opposite equal charges with
q�e /2000. However, by contrast with the van der Waals
interaction, the 1/r potential acts over the entire sample, and

therefore its contribution to the energy can become impor-
tant. Instead of six triads of lasers, a different arrangement
with three rotating lasers has been proposed �15�.

Even though the experimental realization of such configu-
rations is not yet at hand, the theoretical issues associated
with monopolar degenerate quantum gases are worthwhile
investigating. In particular, as pointed out by O’Dell et al.
�12�, the intriguing new physical feature that emerges is the
possibility of self-trapping of the condensate, without an
external trap.

In the theory of trapped Bose-Einstein condensates it is
common to introduce as natural units for energy and length
the quantum energy ��0 and the oscillator length
a0=�� /m�0 of the trap potential. In the case of self-
trapping, however, where the trapping potential is switched
off, ��0→0 and a0→�. Thus these quantities become “bad”
units. As a consequence, in their study of the physical con-
ditions necessary to observe the transition from external
binding to self-binding Giovanazzi et al. �16� used the laser
wavelength and energy as units of length and energy.

It is the purpose of this paper to reanalyze Bose conden-
sates with attractive 1/r interaction using appropriate
“atomic” units. This will first reveal remarkable scaling
properties of the condensates. Next we solve the extended
Gross-Pitaevskii equation for monopolar quantum gases nu-
merically and compare with previous variational results.
Last, we point out that our numerical calculations reveal the
existence of a second solution of the Gross-Pitaevskii equa-
tion for negative scattering lengths, which is born together
with the ground state in a bifurcation “out of nowhere.” The
existence of the second solution indicates the existence of an
unstable collectively excited state of such condensates at
negative scattering lengths.

II. NATURAL UNITS, SCALING PROPERTIES

A. General case

We analyze the physics of trapped monopolar gases, and
in particular the limit �0→0, in terms of natural “atomic”*wunner@theo1.physik.uni-stuttgart.de
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units. From the analogy u⇔e2 /4��0 we can define a “fine-
structure constant”

�u: = u/�c �1�

and can construct a “Bohr radius” and “Rydberg energy” in
the usual way from the Compton wavelength 	C=� /mc and
the rest energy mc2 via

au =
	C

�u
=

�2

mu
, Eu =

�u
2mc2

2
=

�2

2mau
2 . �2�

Measuring lengths in au and energies in Eu, we can write the
Hartree equation of the ground state of a system of N iden-
tical bosons in an isotropic external trapping potential
V0�r�=m�0

2r2 /2, all in the same single-particle orbital 
, in-
teracting via Vu and the s-wave scattering pseudopotential
Vs=4�a�2��r�−r��� /m in dimensionless form

�− � + �2r2 + N8�
a

au
�
�r���2 − 2N	 �
�r����2

�r� − r���
d3r��

�r��

= �
�r�� . �3�

In Eq. �3�, � is the chemical potential and the dimensionless
quantity � denotes the quantum energy of the trapping
frequency in units of the “Rydberg” energy

� = ��0/Eu. �4�

Small values of � imply that the effects of the trapping po-
tential are small compared with the effects of the gravitylike
interaction and vice versa for large values of �. In Eq. �3� we
have also assumed N�1 so that the usual prefactor �N−1�
in the Hartree potential can be replaced with the total particle
number N. Using the “order parameter” =�N
 instead of
the single-particle orbital, one can absorb the N dependence
in Eq. �3� in the wave function  and obtain an extended
�or, for vanishing gravitylike interaction, the familiar�
time-independent Gross-Pitaevksii equation.

From Eq. �3� it would seem that there are three physical
parameters governing the problem: the trap frequency �0,
given by the dimensionless quantity �, the particle number
N, and the relative strength a /au of the scattering and the
gravitylike potential. For the example mentioned before one
has an estimate of a�10−9 m, au�2.5�10−4, and thus
a /au�10−6−10−5.

However, a central result of the present paper is that the
physics of degenerate monopolar gases depends only on two
relevant parameters: viz., � /N2 and N2a /au. To see this we
note a remarkable scaling property of the mean-field Hamil-
tonian in Eq. �3�: Let 
�r�� be a solution of the �formal�
one-boson problem for a given scaling length a /au and trap
frequency �,

Hmf�N = 1,a/au,���r��
�r�� = �
�r��; �5�

then, 
̃ : =N3/2
�r̃��, with r̃�=r� /N, solves the N-boson problem
for the scaled scattering length N2a /au and the scaled trap
frequency � /N2:

Hmf�N,N2a/au,�/N2��r�̃�
̃�r�̃� = �̃
̃�r�̃� , �6�

with

�̃ = N2� .

The proof is straightforward and left to the reader. From Eq.
�6� follow scaling properties for the mean-field energy and
the root-mean-square radius of the condensate and its peak
density, respectively:

E�N,N2a/au,�/N2� = N3E�N = 1,a/au,�� ,

���r2��N,N2a/au,�/N2� = ���r2��N=1,a/au,��/�N ,

����N,N2a/au,�/N2� = N4����N=1,a/au,�/N2� = N4�
�0��2. �7�

Isosurfaces with constant N2a /au and � /N2 form planes in
the three-dimensional parameter space �� ,N ,a /au� on a
logarithmic scale.

B. Self-binding

In the case of self-binding we are left with one relevant
parameter, viz., N2a /au. In Fig. 1 we show the phase diagram
N vs a /au for self-binding degenerate monopolar quantum
gases. Note that because of the scaling property, the physics
is identical on each of the sloping straight lines with
N2a /au=const. Apart from a numerical factor, the relevant
parameter N2a /au is identical to the quantity s̃ũ used by
O’Dell et al. �12�, but the universal nature of this quantity
was not emphasized. The two asymptotic regimes of self-
trapping dubbed “G” �“gravity”� and “TF-G” �“Thomas-
Fermi gravity”� in Ref. �12� are characterized by the size of
the scaling parameter. For N2a /au�1, the kinetic energy is
negligible and self-binding results from the balance between
repulsive scattering and gravitylike attraction. For
N2a /au�1 scattering is negligible and self-trapping appears
by a balance between kinetic energy and gravitylike
attraction.

We note that the G regime corresponds to the Newton-
Schrödinger scheme of quantum mechanics, which is a non-
linear variant of quantum mechanics that has been investi-
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FIG. 1. �Color online� Phase diagram N vs a /au for the self-
binding ground state of monopolar degenerate quantum gases
�for the explanation, see text�.
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gated in detail in numerous publications on quantum
measurement �17–24�. In that regime, the extended time-
independent Gross-Pitaevskii equation �3� turns into the
Schrödinger equation of gravitationally self-interacting quan-
tum particles. It is worth noting that interacting monopolar
quantum gases offer an experimental realization of Newton-
Schrödinger quantum mechanics.

III. NUMERICAL SOLUTION, RESULTS, AND
DISCUSSION

We have determined numerically accurate radially sym-
metric solutions of the extended Gross-Pitaevskii equation
�3� in dependence on the scaling parameter N2a /au both for
the self-binding case � /N2=0 and for � /N2�0. To verify the
numerical results two different methods were employed. One
was to integrate in parallel Eq. �3� and the Poisson equation
for the gravitylike interaction numerically outward from
r=0 by exploiting the initial conditions for the first deriva-
tives and setting initial values at r=0 for the wave function

0 and the effective potential produced by the gravitylike
interaction V0. The latter was varied via bisection until con-
vergence of the wave function to zero at large values of r
was attained. The other method was an iterative one: the
wave functions determined in the preceding step are used to
calculate the effective potential in the next step, and the re-

sulting one-dimensional Schrödinger equation is integrated
until self-consistency is achieved. The iteration is initialized
by a reasonable guess for the wave function.

In Fig. 2 we show our results for the wave functions and
the corresponding self-consistent potentials for the case of
self-binding for different values of the scaling parameter
N2a /au. It can be seen that for increasing N2a /au the poten-
tials grow shallower and the wave functions become more
extended. The figure confirms that asymptotically all self-
binding potentials converge to a 1/r potential �24�. The case
of N2a /au=0 corresponds to solutions of the Newton-
Schrödinger equation �24–27�. As already pointed out by
O’Dell et al. �12�, solutions also exist for negative scattering
lengths, where the contact interaction, in addition to the
gravitylike interaction, becomes attractive and stability of the
condensate is established by the equilibrium of the kinetic
energy of the condensate and the two attractive interactions.
Figure 2 shows that for negative scattering lengths the self-
trapping potentials become ever more binding, until at a
value of N2a /au�−1.0251 no solutions can be found any-
more and the condensate becomes unstable with respect
to collapse. This corrects the variational value of N2a /au
=−3� /8�−1.18 given by O’Dell et al. �12�. In their varia-
tional calculation, a Gaussian-type orbital was assumed and
the mean-field energy of the condensate was minimized with
respect to the width of the Gaussian.

Since we have the numerically accurate solutions at hand,
we are in a position to check the accuracy of the variational
results for observables of the condensate obtained by O’Dell
et al. �12�. Figure 3 shows the behavior of the total energy of
the condensate over seven decades of the scaling parameter
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FIG. 2. �Color online� Numerically accurate self-binding
ground-state s-wave solutions for different values of the scaling
parameter N2a /au: �a� wave functions and �b� self-binding poten-
tials. Both in �a� the value of the wave function at the origin and in
�b� the absolute value of the self-binding potential at the origin
decrease monotonically with the scaling parameter from their
maximum values at N2a /au=−1.02 to their smallest values at
N2a /au=10. Thus, as the scaling parameter grows the binding be-
comes weaker. In �b� the asymptotic 1 /r potential is also shown for
comparison.
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FIG. 3. �Color online� Total energy of the condensate as a func-
tion of N2a /au: �a� on a logarithmic and �b� on a linear scale.
Variational results obtained by minimizing the total energy for a
Gaussian-type orbital �12� are shown by dashed lines.
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N2a /au. To cover the range of negative scattering lengths, the
energy is also given on a linear scale in the range around
N2a /au�0. The transition between the two asymptotic re-
gimes G and TF-G around N2a /au�1 is evident from Fig. 3.
The comparison with the variational results also plotted in
Fig. 3 shows that the TF-G regime is well described by the
variational calculation. It is only in the transition to the G
regime, and in particular for negative values of N2a /au, that
sizable deviations can be observed, up to the order of 10%.

Observables other than the energy are more sensitive to
the accuracy of the wave function. We therefore compare our
numerically accurate results with the variational results for
the root-mean-square radius and the peak density of the con-
densate in Figs. 4 and 5, again over seven decades of the
scaling parameter on a logarithmic scale and on a linear scale
around N2a /au�0. Again, the transition between the two
asymptotic regimes can be seen. It can also be recognized
that the variational results well reproduce the overall behav-
ior of the observables. For the extension of the condensate
sizable deviations occur again in the transition to the G re-
gime and for negative values of N2a /au, while for the peak
density the variational calculation overestimates the correct
values in the TF-G regime and underestimates them in the G
regime and for negative scattering lengths. Here the devia-
tions increase up to more than 100%. This is understandable
since the peak density depends crucially on the correct wave
function.

IV. BIFURCATING SOLUTIONS

A new result of our numerical calculations is that for
negative scattering lengths there exists a second radially

symmetric nodeless solution of the extended Gross-
Pitaevskii equation �3�. In Fig. 6 the chemical potentials of
the two solutions are plotted as functions of the scaling pa-
rameter N2a /au for �=0. It is evident that the critical value
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FIG. 4. �Color online� Root-mean-square radius of the conden-
sate as a function of N2a /au: �a� on a logarithmic and �b� on a linear
scale. Variational results �12� are shown by dashed lines.
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Variational results �12� are shown by dashed lines.
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and �b� bifurcation of the total mean-field energy at the critical point
N2a /au=−1.0251, for self-binding—i.e., vanishing trap potential.

PAPADOPOULOS et al. PHYSICAL REVIEW A 76, 053604 �2007�

053604-4



of N2a /au=−1.0251 corresponds to a bifurcation point of the
eigenvalue spectrum of Eq. �3�: below the critical point no
solution exists; at the critical point two solutions appear in a
tangent bifurcation. The total energies of the condensates
corresponding to the two solutions are also shown in Fig. 6.
It can be seen that the energy increases from the bifurcation
point on for the second solution. This would mean that above
the bifurcation point there exists a collective excited state of
the condensate in which all atoms occupy one and the same
nodeless orbital, just like in the true ground state.

The second solution is in fact present also in the varia-
tional calculation. It there appears as a second stationary
�maximum� point of the mean-field energy given as a func-
tion of the width of the Gaussian-type orbital. The variational
results for the chemical potential and the total energy of the
second solution are also included in Fig. 6. It can be seen
that a numerically accurate calculation is necessary for a
quantitative description of the bifurcation.

The second solution even persists in external trapping po-
tentials for any value of �. The bifurcation diagram for two
finite values of � is shown in Fig. 7. It can be seen that with
growing � the bifurcation point is shifted to smaller absolute
values of N2a /au. The increase of the total energy of the
second solution which is evident from the figures is a conse-
quence of the fact that the self-consistent potentials become
more and more binding and the wave functions more and
more localized, which leads to a dramatic increase in the
kinetic energy.

What is the physical meaning of the second solution?
We note, on the one hand, that it corresponds to a maxi-

mum of the mean-field energy functional. Schrödinger’s
equation, however, and in our case Eq. �3�, follows as the
Euler-Lagrange equation of a variational principle which
only demands the energy functional to be an extremum. Thus
the fact that the second solution corresponds to a maximum
of the energy functional does not preclude it from corre-
sponding to a real physical quantum state. On the other hand,
the two solutions are nodeless and hence nonorthogonal. Ob-
viously, this is a consequence of the nonlinearity of the ex-
tended Gross-Pitaevskii equation �3�: each solution creates
its own self-consistent potential and thus sees a different
Hamiltonian. This would seem surprising since the original
many-body Hamiltonian is Hermitian and linear in the wave
function, and therefore should possess only orthogonal
eigenstates. The nonlinearity of Eq. �3� is a result of the
Hartree approximation made for the states.

In studies of the decay rates in attractive trapped Bose-
Einstein condensates, with contact interaction only, Huepe et
al. �28,29� have seen similar behavior; i.e., a second solution
is born in a tangent bifurcation together with the ground
state. These states also are nonorthogonal. Analyzing the sta-
bility of the states, Huepe et al. have shown that the first
excited state out of the two solutions is unstable with respect
to macroscopic quantum tunneling.

This is a strong indication that the second solution found
in this paper in Bose condensates with gravitylike interaction
also corresponds to an unstable collectively excited state. A
way to establish this is to linearize the time-dependent
Gross-Pitaevskii equation corresponding to �3� around the
stationary states and to carry out a stability analysis, as was
done for the case of a pure attractive contact interaction by
Huepe et al. �28,29�. Alternatively, by choosing a Gaussian
ansatz with time-dependent widths �30�, equations of motion
for the widths can be obtained from the time-dependent
Gross-Pitaevskii equation and analyzed with standard stabil-
ity methods of nonlinear dynamics. Investigations along
these lines are under way.

We finally note that there is an analogy with bifurcations
seen in investigations of attractive one-dimensional Bose-
Einstein condensates on a ring �cf., e.g., �31–33��. There, at a
critical value of the ratio of the mean-field interaction energy
to the kinetic energy, symmetry-breaking, solitonlike solu-
tions appear, in addition to the symmetry-preserving solution
of the Gross-Pitaevskii equation, which are lower in energy.
By contrast, in the example discussed in this paper, both
bifurcating solutions possess the same symmetry.

V. CONCLUSIONS

We have reanalyzed Bose condensates with attractive 1/r
interaction by introducing appropriate atomic units which are
in particular adapted to the case of self-binding. We have
thus been able to derive previously unknown scaling proper-
ties of such condensates. We have calculated numerically
accurate results for wave functions and observables of self-
binding condensates and compared them with previous varia-
tional results. It turned out that in particular at negative scat-
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FIG. 7. �Color online� �a� Bifurcations of the chemical potential
for nonvanishing values of the trapping potential. The case �=0 is
shown for comparison. �b� Dependence of the critical scattering
length �the bifurcation point� on the frequency of the trapping po-
tential. Numerically accurate results are given by solid lines, varia-
tional results by dashed lines. To elucidate the behavior for small
values of � /N2, this region is shown in the inset on a logarithmic
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tering lengths the variational results become poor and have
to be replaced with our accurate numerical results. We have
demonstrated that the critical point where collapse of the
condensate occurs at negative scattering lengths is in reality
a bifurcation point of the energy functional where both the
ground state and an excited state merge and disappear. We
have argued that this second solution indicates the existence
of an unstable collectively excited state at negative scattering
lengths in degenerate Bose condensates with long-range
attractive 1/r interaction.

Critical points, below which collapse of the condensate
sets in, not only exist in attractive condensates at negative
scattering lengths �28–33� and in the monopolar gases with
gravitylike interaction discussed in this paper, but also exist
in dipolar gases, in certain parameter ranges of the particle
number, the scattering length, and the trap frequencies
�1,34,35�. Our investigations suggest that these also corre-
spond to bifurcation points. Studies of the bifurcation sce-
narios in dipolar gases are therefore strongly encouraged.

We thank Axel Pelster for useful discussions.
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