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We propose a simple experiment to create a sonic horizon in isotropically trapped cold atoms within
currently available experimental techniques. Numerical simulation of the Gross-Pitaevskii equation shows that
the sonic horizon should appear by making the condensate expand. The expansion is triggered by changing the
interaction which can be controlled by the Feshbach resonance in real experiments. The sonic horizon is shown
to be quasistatic for sufficiently strong interaction or large number of atoms. The characteristic temperature that
is associated with particle emission from the horizon, which corresponds to the Hawking temperature in an
ideal situation, is estimated to be a few nK.
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I. INTRODUCTION

For the exploration of cosmology and gravitational phys-
ics, it is necessary to have a deep understanding of quantum
field theory in curved spacetime: It is widely believed that
everything except for the spacetime itself should originate
from quantum fluctuations in the early Universe. Quantum
effects on curved spacetime, such as the Hawking radiation,
give us theoretical support for black hole thermodynamics.
However, it is extremely hard to verify such quantum effects
experimentally. For instance, the Hawking radiation is ther-
mal radiation emitted from a dynamically formed stationary
black hole �1�. However, the characteristic temperature of the
thermal radiation, the Hawking temperature, is on the order
of several tens of nanokelvins at most, which is much lower
than the cosmic microwave background radiation tempera-
ture. So detecting thermal radiation from a real black hole is
almost impossible.

One way to circumvent this difficulty is to make use of
artificial black holes �2,3�. Unruh showed in his seminal pa-
per �4� that excitations in a supersonic flow corresponds to a
scalar field equation on a curved spacetime including a hori-
zon. Since the phenomenon of the Hawking radiation can be
separated from gravitational physics, it is possible to detect
the corresponding phenomenon in a fluid system with sonic
horizon �4�. The basic idea is to identify fluid flow with
curved spacetime and excitation modes with fields on the
curved spacetime. A black hole event horizon corresponds to
a sonic horizon in a fluid. For the purpose of investigating
the quantum effects, a quantum fluid should be considered.
As such a quantum fluid, Bose-Einstein condensates �BEC�
in trapped cold atoms �5,6� are one of the most suitable
systems �7–9�. A crucial advantage is that one can control
scattering length between atoms by making use of the
Feshbach resonance �10�. In fact, that experimental tech-
nique was used in observing jets and bursts in a collapsing
condensate, which is called “Bose-Novae” �11�. A remark-
able explanation of burst and jet phenomena in Bose-Novae
was proposed in �12,13�, based on quantum field theory of
particle creation and structure formation in cosmological
spacetime.

In order to verify the Hawking effect in fluid analogy, it is
necessary to create a stationary sonic horizon because it is a
phenomenon on a dynamically formed stationary black hole.
Although several possibilities have been discussed so far
�7,8�, it seems difficult to realize exactly stationary sonic
horizon in cold atoms. However, if one can make a quasi-
static horizon for high frequency modes, particle emission
from the horizon is also expected. In this paper, we numeri-
cally demonstrate that a quasistatic horizon is realized with-
out introducing new experimental techniques beyond cur-
rently available ones. We consider an expanding BEC driven
by a sudden change of the interaction. Numerically solving
the Gross-Pitaevskii �GP� equation, we show that a quasi-
static horizon appear.

We note that great efforts have been made to create cos-
mological geometry using expanding BEC �14–21�. In these
papers, the analogue models with specific cosmological met-
rics such as Friedmann-Robertson-Walker �FRW� metric or
de Sitter metric were discussed and the effects of particle
creation in these cosmological spacetimes were investigated.
However, in this paper, we do not intend to obtain any cos-
mological analogue model with well-known analytic metric.
But we try to obtain dynamically formed quasistatic sonic
horizon. Furthermore, the sonic horizon should be formed in
hydrodynamic regime of the condensate because the space-
time analogy is only valid in such regime. The appearance of
a horizon due to expansion of a condensate was noticed in
the previous works, for example in �15�, and its formation
itself is not surprising. But it is nontrivial whether the con-
densate flow at the horizon is in the hydrodynamic regime, or
not. In this paper, we show that the quasistatic sonic horizon
will appear in the hydrodynamic regime of the condensate by
changing the atomic interaction instantaneously.

II. ANALOGUE SPACETIME IN BEC

In the coherent state path integral formulation, the action
of bosons is given by
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S =� dt� d3r�i��̄�t� −
�2

2m
� �̄ · �� − Vext�̄�

−
1

2
U0��̄��2� , �1�

where Vext is the confining potential and U0=4��2a /m with
a the s-wave scattering length. For � and Vext, spatial and
time dependences are implicit. The saddle point equation for
this action leads to the GP equation:

i��t� = �−
�2

2m
�2 + Vext + U0���2�� . �2�

This GP equation governs the dynamics of the condensate
whose order parameter is given by �.

Now we consider hydrodynamical approximation. We de-
note the bosonic field � as �=	�0+�ei��0+��, where 	�0 and
�0 are the amplitude and the phase of �, respectively.
�Namely, �=	�0exp�i�0�.� The fields � and � describe the
noncondensate part of the bosonic field. If the density gradi-
ent is sufficiently smooth over the scale determined by the
local healing length ��r , t�
� / �2m�0U0�1/2, or, in other
words if the conditions

�� � �0/�0�2 	 1 and �� � �/��2 	 1, �3�

are satisfied, hydrodynamical approximation is justified.
�The condition �3� shall be examined later.� Under the above
condition, the equation for � is

� = − ���̇ + v0 · ���/U0, �4�

where v0= �� /m���0 is the background fluid velocity, and
the effective action for � is

Seff =� dt� d3r
�2

2U0
���̇ + v0 · ���2 −

�0U0

m
����2� .

�5�

Taking variation with respect to �, we find that the field
equation for � has the form of a propagating wave equation.
Also, the equation for the field � can be expressed as
�
�	−gg
�����=0, where g
� is the inverse of the following
matrix:

g
� � �− �cs
2 − v0

2� − v0

− v0 1
� , �6�

with cs=	�0U0 /m and g=det g
�. Thus, the equation is
equivalent to an equation for a massless field on a curved
spacetime determined by the metric �6� with cs the speed of
“light.” Note that in order to interpret the quantity cs as a
velocity, U0 must be positive because, for negative U0, cs
becomes pure imaginary. Hereafter we consider positive U0,
which leads to an effective spacetime with Lorentzian signa-
ture.

For the excitation modes of � whose frequencies, say ,
are much higher than the frequency BEC, which is associ-
ated with the condensate motion, the condensate will be qua-
sistatic. �For moderate changes of the interaction, BEC turns
out to be the trapping harmonic potential frequency ho, as

shall be discussed below.� The analogy between fields on the
curved spacetime and excitation modes on the fluid flow is
meaningful only when the conditions �3� are satisfied. The
latter condition in Eq. �3� turns out to be 2	 �cs /��2, by
using Eq. �4�. Thus the frequency  has an upper limit. The
former condition in Eq. �3� is satisfied in the regions far from
the edge of the condensate. �In contrast, if one is very close
to the edge, zero-point oscillations become dominant, and so
the former condition in Eq. �3� is not satisfied.� If there exists
an intermediate region for  of

BEC 	  	 cs/� , �7�

then the hydrodynamical approximation is justified and the
condensate is quasistatic for excitation modes. Note that
those modes are associated with particle emission from the
horizon if the hydrodynamical flow has a dynamically
formed sonic horizon. The necessary condition for the exis-
tence of the intermediate region �7� is

cs

�BEC
� 1. �8�

In the following, we mainly consider condensate satisfying
the above condition.

III. FORMATION OF SONIC HORIZON

Now we investigate sonic horizon formation in an ex-
panding BEC trapped in isotropic harmonic potential, Vext
=mho

2 r2 /2, where r is the radial coordinate. Initially, we set
the condensate in a ground state with an initial atomic inter-
action ai. At t=0, the atomic interaction is changed suddenly
from ai to af��ai�, which makes the condensate expand.
Then, formation of sonic horizon can be expected. The rea-
son is as follows: The sound velocity is proportional to the
square root of the condensate density and a decreasing func-
tion of r. In contrast, the fluid velocity is an increasing func-
tion of r and the condensate expands fast around its edge
whereas v0�r=0�=0 due to the boundary condition. There-
fore, at an intermediate radius, v0 exceeds cs and the fluid
flow is transonic. It has a surface satisfying cs= �v0� which is
called a sonic horizon. We should note that the sonic horizon
corresponds to a horizon in the analogue spacetime defined
by the metric �6�. We also note that the subsonic region is
around the center of the condensate and inside of the sonic
horizon.

In general, if a fluid has a static sonic horizon and a
proper quantum state for an excitation field is realized, then
it is theoretically predicted that the horizon will emit thermal
radiation of the quantum field. As will be discussed in Ap-
pendix A, if the sonic horizon in the expanding condensate is
quasistatic for the field �, the horizon will emit thermal ra-
diation into the center of the condensate. The temperature
characterizing the thermal emission �Hawking temperature�
is given by the following formula:

Tpc =
�

2�kB
�r��v0 − cs��rH

, �9�

where rH is the horizon radius and kB is the Boltzmann’s
constant �4,24�. From the above expression, it is found that
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the Hawking temperature is determined by gradient of fluid
and sound velocity at the horizon. Thus it is important to
investigate the velocity gradients at the horizon. In the deri-
vation of the formula �9�, it is assumed that the dynamically
formed horizon is static, but in actual experiments, this as-
sumption is not satisfied exactly. Therefore, the spectrum of
the particle is not fully given by the single Planck’s distribu-
tion function, but rather given by a superposition of the
Planck’s distribution functions with slightly different tem-
peratures. Even if this is the case, the energy scale of the
particle creation emitted from the dynamically formed hori-
zon is on the order of Tpc.

We have simulated the expansion of the condensate by
solving numerically �using the Crank-Nicolson scheme� the
time-dependent GP equation. The initial ground-state wave
function is obtained by solving the GP equation using the
steepest descent method for an initial s-wave scattering
length ai and the number of atoms N. We have computed cs
and the radial velocity of the condensate via

cs = 	��*��U0/m , �10�

v0 = ���*�r� − ��r�
*���/�2mi���2� , �11�

and searched for parameter sets leading to �v0��cs.
In the following, we assume that the condensate consists

of N=105 Rb atoms. �The values of atomic interaction given
below are those in the case of N=105. If N=105/n with an
integer n, then ai and af should be multiplied by n.� The
initial atomic interaction is assumed to be ai=50a0, 200a0,
and 800a0, where a0=0.53�10−10 m is the Bohr radius. The
following change of the atomic interaction has been simu-
lated: af /ai=2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10,15,20,25,30.

Just after t=0, the condensate begins to expand in the
trapping potential and the expansion is accelerated for a
while. At some time, say t= tc, the expansion turns to be
decelerated. Figure 1 shows tc as a function of af /ai. It is
seen that tc does not depend on the initial strength of the
interaction. For t̃ªhot�� /2, the condensate continues to
expand, and at t̃� /2, the condensate starts to collapse.

Therefore, we turn off the trapping potential at t̃=� /4 and
make the condensate expand freely in order to keep the ho-
rizon for a while.

As far as we have investigated, sonic horizon always ap-
pears in the sence of the surface where v0 exceeds cs. As an
example of a sonic horizon, we show Fig. 2 which is the
snapshot at t̃=0.4 in the case of ai=200a0 and af =5ai. We
see that, around r=7aho, the fluid velocity exceeds the sound
velocity, and the sonic horizon exists there. In this case, we
find that, at t̃
hot=0.11, the horizon appears. Figure 3
shows the time dependence of the radius of the horizon, say
rH, and the velocity gradient at the horizon ��r�v0−cs��rH

.
If we keep the trapping potential for a long time, an os-

cillating behavior of the condensate is observed. The period
of the oscillation is about � in units of ho

−1 and we find
BECho, within a moderate change of the interaction.
This oscillation is just like an oscillation of a droplet con-
fined in a harmonic potential. Therefore, condition �8� can be
rewritten as
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FIG. 1. Times tc in each simulation are shown in units of ho
−1.

The horizontal axis is the ratio of af to ai.
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FIG. 2. Sound velocity cs �solid line� and the fluid velocity v0

�dashed line� vs r at t̃=0.4 in the case of ai=200a0 and af =5ai are
shown in units of ��ho/m�1/2. The healing length � �dotted line� is
shown as well in units of aho= �� /mho�1/2.

FIG. 3. Time dependence of �r�v0−cs�rH
�solid line� in units of

ho and the position of the sonic horizon rH �dashed line� in units of
aho= �� /mho�1/2 in the case of ai=200a0 and af =5ai.

FORMATION OF A SONIC HORIZON IN ISOTROPICALLY… PHYSICAL REVIEW A 76, 053603 �2007�

053603-3



cs

�ho
� 1. �12�

Now, we are interested in sonic horizon where Eq. �12� is
satisfied. The intermediate region �7� exists if, for example,
the following inequality is satisfied:

cs

�ho
� 22.5. �13�

For this choice of the lower bound, there exists a region of 
satisfying both conditions of �10ho and �cs /��2�5.
The condition �13� ensures hydrodynamic flow and quasi-
static nature of the condensate. Figure 4 shows cs /�ho as a
function of af /ai. We define horizon lifetime as the time
interval during which the condition �13� continues to be sat-
isfied at the horizon. The horizon lifetime is shown in Fig. 5.
As far as we have investigated, the condensate flow satisfy-
ing Eq. �13� at sonic horizon appears only when af �5ai for
ai=50a0, af �4ai for ai=200a0, and af �3ai for ai=800a0.

The Hawking temperature at t= tc and t̃=0.79 �just after
turning off the trapping potential� are shown in Figs. 6 and 7,
respectively. In the evaluation, we assume the frequency
ho=1400 Hz. The Hawking temperature at t= tc depends on

the ratio af /ai almost linearly. In contrast, for af /ai�9, the
Hawking temperature at t̃=0.79 does not depend on the ratio
so much. From the simulations, the temperature is expected
to be a few nK.

For this spherically symmetric trap, one may concern the
three-body recombination loss of condensed atoms. Now, we
check the effect of three-body losses for the given peak den-
sity. This effect may be taken into account by incorporating
the imaginary term describing the inelastic process in the GP
equation �22�

i��t� = �−
�2

2m
�2 + Vext + U0���2�� −

i�

2
K3���4� ,

where K3 denotes three-body recombination loss-rate coeffi-
cient. Then, the three-body loss is proportional to the cube of
the atomic density

�

�t
� ���2d3r = − K3� ���6d3r ,

which implies that the three-body loss rate is given by R3

K3� ���6d3r /����2d3r. For the value of K3, we assume
K3=2�10−28 cm6/s, according to �23�. Of course, high

0

100

200

300

400

500

0 5 10 15 20 25 30

c s
/ξ

ω
ho

af/ai

ai=50a0

ai=200a0

ai=800a0

FIG. 4. cs /�ho as a function of af /ai is shown for each initial
scattering length.
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FIG. 5. Horizon lifetime as a function of af /ai is shown in units
of ho
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FIG. 6. Hawking temperature at t= tc in units of nK. In the
evaluation, we assume ho=1400 Hz.
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FIG. 7. Hawking temperature at t̃=0.79 in units of nK, when
just after the trapping potential is turned off. In the evaluation, we
assume ho=1400 Hz.
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atomic density causes many inelastic processes and gives
high atomic loss rate. In our numerical simulation, the upper
limit of the loss rate can be estimated by use of the peak
density as R3�3�10 s−1, where the total atomic number
was set to be N=����2d3r=105. Then, the three-body loss
can be ignored because we consider the time scale of
�10 ms.

In the above evaluation for Hawking temperature, horizon
lifetime, and R3, we have assumed that the trapping fre-
quency is ho=1400 Hz. Note that ho is the energy scale of
the system. Therefore, a large value of ho is plausible to
increase the characteristic temperature for the particle emis-
sion, though the time evolution process becomes rapid for
large ho. If lower frequency is assumed, lower temperature,
longer horizon lifetime and fewer three-body loss rate would
be expected. As an example, Fig. 8 shows ho dependence of
the Hawking temperature and the horizon lifetime in the case
of ai=200a0 and af =10ai.

IV. BOGOLIUBOV SPECTRUM

In the above numerical simulations, we assume there is no
dynamical instability. Now, we check whether there is dy-
namical instability or not, within Gaussian approximation.
For that purpose, we study the Bogoliubov–de Gennes equa-
tions: the second quantized field equations for the excitation
fields �� and �� are given by

i��t�� = �−
�2

2m
�2 + Vext + 2U0���2��� + U0�2�� ,

− i��t�� = �−
�2

2m
�2 + Vext + 2U0���2��� + U0��̄�2�� .

The excitation spectrum is computed by performing the Bo-
goliubov transformation:

�� = �
�

�u��r�b�e−iE�t/� − v��r�b�
†eiE�t/�� , �14�

�� = �
�

�u�
*�r�b�

†eiE�t/� − v�
*�r�b�e−iE�t/�� . �15�

The energy spectrum E� is calculated by diagonalizing the
skew symmetric matrix, which is carried out by using a rou-
tine in LAPACK. For the parameter values taken above, we
find that all eigenvalues do not have the imaginary parts
within numerical errors. Therefore, within Gaussian approxi-
mation, there is no dynamical instability. In addition, we find
that there is no level crossing.

V. SUMMARY

To summarize, we have proposed an experiment to create
a quasistatic sonic horizon using an expanding BEC. It has
been shown that the dynamically formed quasistatic sonic
horizon is in hydrodynamic regime as it should be to discuss
analogy with curved spacetime in BEC. Under suitable
choices of the interaction parameter and the confining poten-
tial, the characteristic temperature of the particle emission is
expected to be a few nK for sufficiently strong confining
potential. Large number of atoms or strong atomic interac-
tion improves the quasistatic nature of the horizon.

Of course, another effect such as cosmological particle
creation can occur in this expanding BEC setup, as discussed
in �14–21�. In this paper, we have focused on how to make
dynamically formed quasistatic sonic horizon in the hydro-
dynamic regime of the condensate flow. In order to investi-
gate cosmological particle creation effect and other excita-
tions arising from depletion, we need a different numerical
simulation scheme. The result will be reported in a future
publication.

Furthermore, it is interesting to investigate numerically
the behavior of negative frequency modes with positive
norm which seem to be related to Hawking effect as was
discussed in �26,27�. This point shall be investigated in a
future publication.
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APPENDIX: PARTICLE CREATION PHENOMENON

Here we focus on spherically symmetric quantum fluctua-
tions by symmetry. At t�0, the fluid velocity v0=0, and the
metric of the initial static effective spacetime is

ds2 � − cs
2dt2 + dr2 + r2d�S2

2 , �A1�

where d�S2
2 is the element of solid angle on the unit sphere

S2. After the increase of the interaction, the effective space-
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FIG. 8. ho dependence of TH and horizon lifetime in the case of
ai=200a0 and af =10ai. The Hawking temperature is shown in units
of nK and horizon lifetime is in units of ho

−1.

FORMATION OF A SONIC HORIZON IN ISOTROPICALLY… PHYSICAL REVIEW A 76, 053603 �2007�

053603-5



time evolves dynamically as the BEC starts to expand. Then,
the sonic horizon is formed as was shown by the above nu-
merical simulation. If the effective spacetime is static, we
can introduce a following time coordinate: �= t+�v0dr / �cs

2

−v0
2�, and the effective spacetime metric becomes

ds2 � − �cs
2 − v0

2�d�2 +
cs

2dr2

cs
2 − v0

2 + r2d�S2
2 . �A2�

From this expression, it is found that the horizon is located at
the surface where the condition cs= �v0� is satisfied. A new
coordinate v is introduced as v
�+r* where r*

�csdr / �cs

2−v0
2�, which is a coordinate characterizing ingo-

ing lightlike �null� rays in the effective spacetime.
We assume here that the initial state of the quantum field

� is the vacuum state for the static observer in the initial
effective spacetime. Under the time evolution of the effective
spacetime caused by the expansion of the condensate, the
creation and annihilation operators for the field � also
evolve, and particle creation occurs.

Now we consider an observer who moves along his or her
outgoing geodesic with proper time �, crossing the horizon
at �=0. Hereafter, we term the observer geodesic observer.

If we assume that the horizon is located at r=rH, the
proper time � is related to the coordinate v there via
��−�0e−�2cH/��v, where cH
cs�rH�, �
�2cH�r�v0−cs��r=rH
and �0 is a constant. The ingoing mode functions �=e−iv

have � dependence near the horizon as

� � exp�i
2cH

�
ln�− ��� . �A3�

Initially, the state is the vacuum for the static observer and
therefore the geodesic observer would see no excitation at
short distance, because there will be no much higher positive
frequency excitations than those determined by the time
scale of the dynamical expansion of the BEC. If we ignore
the short distance cutoff determined by the healing length, or
equivalently, if the latter condition in Eq. �3� is ignored, this
� dependence of the ingoing mode functions implies that the
particle creation from the horizon into the inside of the con-
densate has thermal spectrum with the temperature given by
Eq. �9�. Furthermore, even if the short distance cutoff is
taken into account, it is known that the result does not
change in principle �25�.

Therefore, the particle emission from horizon will occur
in the case of expanding condensate, even where the sub-
sonic region is inside of the horizon.
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