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The very pronounced intensity-dependent enhancements of groups of peaks of high-order above-threshold-
ionization spectra of rare-gas atoms are investigated using an improved version of the strong-field approxima-
tion, which realistically models the respective atom. Two types of enhancements are found and explained in
terms of constructive interference of the contributions of a large number of long quantum orbits. The first type
is observed for intensities slightly below channel closings. Its intensity dependence is comparatively smooth
and it is generated by comparatively few �of the order of 20� orbits. The second type occurs precisely at
channel closings and exhibits an extremely sharp intensity dependence. It requires constructive interference of
a very large number of long orbits �several hundreds� and generates cusps in the electron spectrum at integer
multiples of the laser-photon energy. An interpretation of these enhancements as a threshold phenomenon is
also given. An interplay of different types of the threshold anomalies is observed. The position of both types of
enhancements, in the photoelectron-energy—laser-intensity plane, shifts to the next channel closing intensity
with the change of the ground-state parity. The enhancements gradually disappear with decreasing laser pulse
duration. This confirms the interpretation of enhancements as a consequence of the interference of long
strong-laser-field-induced quantum orbits.
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I. INTRODUCTION

Above-threshold ionization �ATI� of atoms by intense la-
ser radiation is a nonlinear quantum-mechanical phenom-
enon that is characterized by a sequence of peaks in the
electron spectrum, spaced by the photon energy. Since its
discovery �1�, the interest in ATI has been renewed many
times �for a review see �2–5��. In 1993 the sidelobes �scat-
tering rings� in the angular distributions were discovered �6�,
and a plateau in the high-energy electron spectra, where the
ionization probability is independent of the photoelectron’s
energy up to a rather well-defined cutoff, was observed �7,8�.
The photoelectron energy spectra were explained by the re-
scattering or three-step model �6–10�. According to this
model, photoelectrons can be separated into direct and res-
cattered electrons. After becoming free at some well-defined
ionization time, direct electrons are not affected anymore by
the binding potential. After the first few peaks �sometimes
this region is called a first plateau�, the spectrum decreases
exponentially with increasing energy. Classically, their en-
ergy cannot exceed 2UP, where UP is the ponderomotive
energy. The electron can achieve much higher energies if,
driven by the laser field, it revisits its parent ion and back-
scatters. In this event, it may be accelerated for another half
period of the laser field and reach a kinetic energy of up to
10UP. Rescattered and backscattered electrons form a plateau
whose yield is lower by several orders of magnitude than the
yield of direct electrons. The transition from direct electrons
to the plateau occurs at an energy of the order 2UP or higher.
Where exactly the transition takes place depends on the laser
wavelength, laser intensity, and the atomic or ionic species.
Especially, it was also shown that the energy at which the
exponentially decreasing yield of the low-energy electrons
intersects the yield of the rescattering-plateau electrons de-

pends on the parity of the atomic ground state and can reach
values above 4UP �11�. A more recent semiclassical generali-
zation of this three-step model gives the cutoff at 10.007UP
+0.538IP �12�, where IP is the ionization energy.

In 1997 resonantlike enhancements for particular laser in-
tensities in high-energy ATI have been discovered in experi-
ments with inert gases �13�. The observed photoelectron
spectrum was composed of narrow individual peaks whose
energy positions do not shift with the change of the laser-
field intensity. In fact, depending on the inert gas used, sepa-
rate series of peaks, each with a distinct intensity threshold
for their onset, have been observed. More recent experiments
have confirmed these resonantlike enhancements �14–16�.
Furthermore, it was found that the enhancements become
suppressed with the decrease of the laser pulse duration
�17,18�. ATI by few-cycle pulses has become an important
tool for attosecond physics: the ATI spectrum, notably its
rescattering part, depends very sensitively on the carrier-
envelope phase and has frequently been used for its control
and stabilization �5,19–22�.

It is not possible to explain the mentioned enhancements
using the classical three-step model: all elements of the lat-
ter, such as ionization rates, cutoffs, and classical orbits de-
pend continuously and smoothly on the laser intensity, pro-
viding no mechanism for a sudden surge of any feature as a
function of intensity. Hence it appears that a quantum treat-
ment is required. At present, there is no consensus about the
physical origin of these resonantlike enhancements. The vari-
ous quantum-mechanical approaches to their theoretical in-
terpretation can be divided into two groups. The first is based
on an analysis of the numerical solution of the time-
dependent Schrödinger equation �23,24� or on an analysis of
the Floquet quasienergy spectrum �25,26�. According to
these findings, the enhancements occur at particular intensi-
ties where the atom is in a state that is a superposition of the
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laser-dressed ground state and of one or several laser-dressed
excited states. For Coulomb-like potentials, besides the
ground state there are many excited �Rydberg� states and the
enhancements are related to multiphoton resonances with
these states. For short-range potentials �for example, for the
zero-range potential� there is only a single bound state. In
this case, it was suggested that light-induced states �27,28�,
which lie very close to the continuum threshold, take over
the role of Rydberg states and allow a similar interpretation
of the enhancements �25�.

The second group of approaches does not require any ex-
cited states. It attributes the resonantlike enhancements to the
well-known channel closings �CCs�, which occur when the
laser intensity increases. After it has left the field, the kinetic
energy of an electron generated by ionization is

Ep �
p2

2m
= n�� − IP − UP, �1�

where p denotes its momentum, IP the ionization energy of
the respective atom, and � the frequency of the laser field.
Ionization is made possible because the laser field “provides
n photons.” The lowest energy that the freed electron can
have is Ep=0. The ponderomotive energy UP is proportional
to the intensity of the laser field. Hence when the latter in-
creases, at some intensity Ic, absorption of nc photons no
longer suffices for ionization, and nc+1 photons are required;
we say that the nc-photon channel has closed. This intensity
is given by

UPc + IP = nc�� , �2�

where UPc denotes the corresponding ponderomotive energy.
Electrons born by ionization at this intensity have energies

Ep = k�� �3�

with integer k�0. This spectrum includes electrons with
zero drift energies. They are driven by the laser field �if one
disregards the atomic Coulomb field� into an infinite series of
recollisions with the ion. Calculations show that near the
intensity Ic the yields of a group or several groups of ATI
peaks within the rescattering plateau are raised significantly,
by up to an order of magnitude �16,29�.

There are two complementary interpretations of why a CC
leads to an enhancement. The first is based on the semiclas-
sical generalization of the three-step model. As mentioned
above, near a CC an ionized electron is driven by the field
into multiple recollisions with its parent ion. Upon each
recollision, the electron may rescatter. If all of the corre-
sponding contributions to the ionization amplitude interfere
constructively, a very substantial enhancement results
�16,29�. It was shown analytically within the strong-field ap-
proximation that the conditions for constructive interference
are satisfied near a CC �30�. Note that each individual con-
tribution is well described classically, but the concept of their
constructive interference is quantum-mechanical. The ab-
sence of resonantlike enhancements in the ATI plateau in
experiments with short laser pulses �17� supports the above
theoretical explanation that constructive interference of the
contributions of many long trajectories is responsible for the

CC enhancements. This interpretation can be cast more pre-
cisely in terms of Feynman’s path integral and quantum-orbit
theory �3,5,16,21,29–37�. It will be the main subject of the
present paper.

The second interpretation treats the enhancements as an
example of well-known threshold phenomena �38–40� in the
case where a multiphoton channel closes. That is, it regards
the enhancements as a manifestation of the threshold anoma-
lies of collision theory �41–43� for the case of multiphoton
processes �44�. This interpretation has been introduced in the
context of calculations of above-threshold detachment of
negative ions, based on the zero-range potential model �45�.
More recently, for negative ions with p ground states, an
effective-range model was introduced �46�. It was found that
the enhancement effects strongly depend on the orbital angu-
lar momentum l of the bound electron �47�. For even �odd� l
the enhancement is most pronounced for even �odd� CCs.
Similar conclusions were obtained in �48� �see also �49� for
an earlier report about these findings� by solving the time-
dependent Schrödinger equation within the Sturmian-Floquet
approach.

In the present paper we will further develop the quantum-
orbit theory of high-order ATI and apply it to explain the CC
enhancements. Particular attention will be devoted to the in-
fluence of the parity of the initial bound state, in order to
show that quantum-orbit theory can also explain the findings
of Refs. �47–49�. Our paper is organized as follows. We
introduce our theory in Sec. II. We first define the ionization
probability amplitude and the differential ionization rate and
then we introduce the improved strong-field approximation
�SFA�, which includes the rescattering of the ionized electron
off its parent ion. Next, we present the saddle-point approxi-
mation and introduce a classification of the saddle-point so-
lutions. Section II concludes with a numerical example based
on the uniform approximation, which is more precise than
the saddle-point approximation. In Sec. III a semiclassical
cutoff law is presented and analyzed in terms of the saddle-
point solutions. In Sec. IV we derive the conditions for the
constructive interference of the partial T-matrix contribu-
tions, while in Sec. V we analyze high-order ATI enhance-
ments in terms of long quantum orbits. In Sec. VI, we rec-
ognize the ATI enhancements as an example of the threshold
anomalies known from scattering theory with inelastic chan-
nels. Section VII contains our numerical results which are
based on the numerical integration of the improved SFA
T-matrix element. We observe two very different manifesta-
tions of CCs in the ATI spectrum, which we classify as type-I
and type-II enhancements. In Sec. VIII the possibility of ob-
serving these different types in the focal-averaged spectra is
considered. In Sec. IX we show how these enhancements
gradually disappear with decreasing laser pulse duration. Fi-
nally, our conclusions are given in Sec. X. We will use the
atomic system of units ��=e=m=4��0=1�.

II. THEORY

The probability amplitude for detecting an ATI electron
with momentum p and kinetic energy Ep�p2 /2, within the
S-matrix approach, is �3,50�
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Mpi = − i lim
t→�

�
−�

t

dt0��p�t��U�t,t0�r · E�t0���i�t0�	 . �4�

The states ��p�t�	 and ��i�t�	= ��i	exp�iIPt� are a scattering
state with asymptotic momentum p and the initial atomic
ground state, respectively, of the atomic Hamiltonian
Hi=−�2 /2+V�r�, with V�r� the interaction of the electron
with the rest of the atom in the absence of the laser field. In
Eq. �4�, U�t , t0� is the time-evolution operator of the com-
plete Hamiltonian H�t�=Hi+r ·E�t�, where r ·E�t� is the
laser-field-electron interaction in the length gauge and the
dipole approximation, E�t�=−dA�t� /dt is the electric field
vector, and A�t� is a vector potential of the laser field.

A. Improved strong-field approximation

The time-evolution operator U�t , t0� satisfies the Dyson
equation

U�t,t0� = UL�t,t0� − i�
t0

t

dt�UL�t,t��V�r�U�t�,t0� , �5�

where UL�t , t0�=
d3k��k
�L��t�	��k

�L��t0�� is the Volkov time-
evolution operator and

��p
�L��t�	 = �p + A�t�	exp�− iSp�t�� �6�

are the Volkov states in length gauge. Here �q	 denotes a
plane-wave state ��r �q	= �2��−3/2 exp�iq ·r��, and

Sp�t� =
1

2
�t

dt��p + A�t���2. �7�

Inserting Eq. �5�, with the operator U�t , t0� on the right-hand
side approximated by UL�t , t0�, into Eq. �4�, we obtain the
transition amplitude in the improved strong-field approxima-
tion �11,51–55�, which we present here in the form

Mpi
SFA = Mpi

�0� + Mpi
�1�, �8�

where Mpi
�0�=Mpi

�0����, with

Mpi
�0��t� = − i�

−�

t

dt0��p
�L��t0��r · E�t0���i�t0�	 , �9�

and

Mpi
�1� = �

−�

�

dt� d3kMpk
�0��t�Mki

�0��t� , �10�

with

Mpk
�0��t� = − i��p

�L��t��V�r���k
�L��t�	 . �11�

The term Mpi
�0� in Eq. �8� is the standard SFA �in its length-

gauge version�, which describes direct ATI, while Mpi
�1� is the

rescattering amplitude, which is responsible for the high-
energy plateau in the electron energy spectrum. Physically,
the rescattering amplitude incorporates the three-step model
of high-order ATI �3,4,10�. The electron is ionized at the time
t0 and propagates under the influence of only the laser field
until the time t. These two steps are described by the ampli-

tude Mki
�0��t�, Eq. �9�. At the time t, the electron, being in the

Volkov state with the momentum k, scatters elastically off
the potential V�r�. After the laser-assisted scattering, de-
scribed by the amplitude Mpk

�0��t�, Eq. �11�, the electron’s final
momentum at the detector is p. In Eq. �10� we also have to
integrate over all intermediate electron momenta k and over
all rescattering times t.

For a periodic laser field with the period T=2� /�, the
transition amplitude can be decomposed in the form �4�

Mpi
�j� = − 2�i�

n

��Ep + IP + UP − n��Tpi
�j��n� , �12�

where Tpi
�j��n�, j=0,1, is the corresponding T-matrix element

of the ATI process and UP is the ponderomotive energy de-
fined by the nonperiodic part of 1

2
tdt�A2�t��=U1�t�+UPt,
with U1�t+T�=U1�t�. The argument of the � function in Eq.
�12� displays energy conservation in terms of “absorption of
laser photons.” The explicit forms of the SFA T-matrix ele-
ments Tpi

�0��n� and Tpi
�1��n�, as well as the choice of the ground-

state wave function �i and the rescattering potentials V�r� for
the inert gases He, Ne, Ar, Kr, and Xe, are given in Ref. �11�.
The differential ionization rate with absorption of n photons
then is

wpi�n� = 2�p�Tpi
�0��n� + Tpi

�1��n��2, �13�

where the additional factor 2� comes from the integration
over all azimuthal angles 	 of the momentum p= �p ,
 ,	� of
the emitted electron.

B. Saddle-point approximation

The matrix element in the integrand of Eq. �10� can be
represented in the form Api exp�iSpi� where the action Spi

consists of three parts,

Spi�t,t0,k� = − �
t

�

dt��p + A�t���2/2

− �
t0

t

dt��k + A�t���2/2 + IPt0, �14�

in accordance with the three-step model discussed in Secs. I
and II A. The integral over the intermediate electron momen-
tum k, which comes from the Volkov time-evolution opera-
tor, can be solved using the saddle-point method �3,4�. The
action is stationary, i.e., �kSpi�t , t0 ,k�=0, for the momentum
k=ks=−
t0

t dt�A�t�� / �t− t0�. This condition corresponds to
the requirement that the electron returns to its parent ion. The
stationarity conditions with respect to the remaining two in-
tegration variables t0 and t lead to the relations

�ks + A�t0��2 = − 2IP, �15�

�ks + A�t��2 = �p + A�t��2. �16�

Physically, these two conditions correspond to energy con-
servation at the time t0 of ionization and at the time t of
rescattering. The above equations are the basis of the
quantum-orbit theory �3,5,21,29–37�. Application of the
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saddle-point method �56� to the double integral over the
times t0 and t leads to a sum over solutions �t0s , ts
 of the
system �15� and �16�. The corresponding T-matrix element,
which appears in Eqs. �12� and �13�, has the form

Tpi
�1��n� = �

s

Ase
iSs

= ��
s

Vks−p�s
−1/2�ks + A�t0s��r · E�t0s���i	exp�iSs� ,

�17�

where VK= �2��−3
d3rV�r�exp�iK ·r�, Ss�S�t0s , ts�, and �s

���t0s , ts�, with

S�t0,t� = Ept + p · ��t� + Eks
�t − t0� + �UP + IP�t0 + U1�t0� ,

�18�

��t0,t� = � i�t − t0�
2�

�3�� �2S

�t0�t
�2

−
�2S

�t0
2

�2S

�t2 � . �19�

Here ��t�=
tdt�A�t�� and Ep=n�− IP−UP. We will call the
result �17�–�19� the saddle-point approximation �SPA�. An
example of comparison of the ATI spectra obtained solving
the time-dependent Schrödinger equation with the SPA re-
sults is presented in Ref. �37�, while a comparison of the
results obtained using the improved SFA with the SPA results
is given in Ref. �11� and in Refs. �5,21� for few-cycle laser
pulses.

The direct part of the spectrum can also be approximated
by the saddle-point method. The corresponding saddle-point
solutions of the one-dimensional integral �9� can be repre-
sented in analytical form. Here we concentrate on the rescat-
tering part of the spectrum. The direct part is significantly
modified by the effects of the Coulomb potential, which are
not taken into account in the present theory.

C. Saddle-point solutions

For a linearly polarized laser field, the system �15� and
�16� can be solved similarly as it has been done for high-
order harmonic generation in Ref. �36�. The solutions �t0s , ts

are characterized by a multiindex consisting of the three
numbers s��
m �57�. This notation is explained in Fig. 1.
We restrict the rescattering times t to one cycle of the field so
that 0�Re t�T. For each t there are infinitely many pairs of
solutions, which can be ordered by their ionization time t0.
For −�m+1/2�T�Re t0�−�m−1/2�T, where m=0,1 ,2 , . . .,
there are two pairs of solutions. The pair having the longer
�shorter� travel time Re�t− t0� carries the index 
=−1 �
=
+1�. Each pair again consists of two orbits with slightly dif-
ferent travel times. This is well-known from the Lewenstein
model �31� of high-order harmonic generation. We discrimi-
nate the longer from the shorter orbit by the index � as
indicated in Fig. 1 �59�. The index m gives the approximate
length of the travel time in multiples of the laser period, m
= ��t− t0� /T� �with �x� the largest integer �x�. For m=0, there
is only one pair of solutions, having 
=−1. For all solutions,
the imaginary part of the variable �=�t is very small, while
its real part lies in the interval �0,2��.

In Ref. �36�, approximate analytical solutions of the sys-
tem of saddle-point equations for high-order harmonic gen-
eration were found. These solutions were obtained by sup-
posing that the stationary momentum ks is small, which is
true for long travel times Re�t− t0�. A similar procedure can
be followed for high-order ATI. For this purpose, we con-
sider a linearly polarized laser field with the vector potential
A�t�=A0 cos �t and introduce new variables: �0=�t0, �
=�t, q= p /A0, and k=ks /A0. In this notation, the system �15�
and �16� reduces to

�k + cos �0�2 + �2 = 0,

q2 = 2�k − q cos 
�cos � + k2, �20�

where the scaled stationary momentum is

k = �sin �0 − sin ��/�� − �0� �21�

and �=�IP / �2UP� is the Keldysh parameter �60�. The solu-
tion of the second equation in Eq. �20� over � is

� = �1 − ��� + � arccos� q2 − k2

2k − 2q cos 

�, � = ± 1,

�22�

which explains the origin of the index � �61�. The solution
�0 is the same as for high-order harmonic generation

-2 -1.5 -1 -0.5 0 0.5 1
Re t0 / T Re t / T

2

4

6

8

10

E
p

/U
P

α=-1

β=-1, m=0

m=1

m=1

m=2

α=+1

α=-1α=+1

α=-1 α=+1

α=-1α=+1

β=-1

β=1
β=1 α=+1 α=-1

α=+1α=-1

m=2
β=-1

FIG. 1. �Color online� Examples of the notation �
m used to
label the solutions of the saddle-point equations. The solid, dotted,
long-dashed, dot-dashed, and double-dot-dashed curves in the right-
hand part of the figure �0� t�T� specify the rescattering times for
the five pairs of orbits with the shortest travel times. In the left-hand
part of the figure, the counterpart of each curve identifies the cor-
responding ionization times. The emitted electron energy in mul-
tiples of UP is plotted on the ordinate, and horizontal lines �at con-
stant energy� relate ionization times and rescattering times for the
respective orbits. There are infinitely many further solutions that
have ionization times t0 beyond the left-hand margin of the figure.
Their maximal return energies converge to 8UP. The curves have
been calculated for He, for emission in the direction 
=0°, and for
a linearly polarized laser field having the intensity 1015 W/cm2 and
the wavelength 760 nm.
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�0 = 
��

2
+

k
�1 + �2� − 2m� + i arcsinh �, 
 = ± 1,

�23�

which shows where the indexes 
 and m come from: m
=1,2 , . . . for 
= +1, and m=0,1 ,2 , . . . for 
=−1. Letting
k�0�=0 in Eqs. �22� and �23�, we obtain the zeroth-order ap-
proximations ��0� and �0

�0�. Introducing these solutions into
the expression for k, Eq. �21�, we obtain the first-order ap-
proximation k�1�. The first-order approximation for �0 and
� is obtained by substituting the k�1� so obtained into the
relations �0

�1�=�0
�0�+
k�1� /�1+�2 and ��1�=��0�+�k�1� /

�2 cos2 
�1−q2 / �4 cos2 
��. Using these approximate solu-
tions as the initial solutions, the saddle-point solutions �0
and � can easily be found solving the system of saddle-point
equations numerically.

D. Uniform approximation

It is known that the saddle-point method fails for electron
energies near and beyond the cutoff �3�. Near their cutoff, the
two solutions of one pair approach each other very closely,
invalidating the assumption of the SPA that each saddle point
can be treated separately. After the cutoff, one solution of
each pair is unphysical and does not contribute to the sum
�17�. This problem has been solved by dropping the unphysi-
cal solution for energies higher than the cutoff energy. How-
ever, this procedure generates unphysical small spikes
around the respective cutoffs. A better and mathematically
more rigorous way to solve this problem is to use a uniform
approximation for the case of coalescing saddle points
�56,62�. This method has already been successfully applied
to high-order ATI �35�, to high-order harmonic generation
�36,58�, and to laser-assisted electron-atom scattering �63�.
The T-matrix element �17� in the uniform approximation
takes the form

Tpi
�1��n� = �

�
m

A�
m exp�iS�
m�

= �

m

�6�S−�1/2 exp�iS+ + i�/4�

� �A−

�z
Ai�− z� +

iA+

z
Ai��− z�� , �24�

where Ai and Ai� are the Airy function and its first deriva-
tive, respectively, and z= �3S− /2�2/3. The quantities A± and S±

are related to the weights and the actions of the saddle points
in Eq. �17�: A±= �A1
m±A−1
m� /2, S±= �S1
m±S−1
m� /2. In
Eq. �24�, beyond the cutoff the argument z must be replaced
by z exp�i2
� /3�, in order to select the proper branch of the
Airy functions, and A�
m should change its sign.

In Fig. 2 we have compared the results obtained using the
uniform approximation with the results obtained using the
improved SFA which includes numerical integration over the
ionization and travel times. The agreement is excellent. The
differences in the low-energy part are due to the dominance
of direct ionization for Ep�3UP, which is not taken into
account in our uniform approximation.

III. SEMICLASSICAL ANALYSIS AND THE CUTOFF LAW

In Ref. �12�, using relations �15� and �16�, we have de-
rived the semiclassical cutoff law

Ep,max = 10.007UP + 0.538IP. �25�

It displays the IP-dependent correction to the well-known
10UP classical cutoff law for high-order ATI �10�. The cutoff
law �25� is valid for 
=0° and 180°. For all other values of 

the cutoff value is lower, i.e., the rescattering plateau is
shorter. Analogous results for an arbitrary emission angle 

can be obtained solving the system �15� and �16� �11�. In Fig.
3 an example of �Ep /UP�max, obtained in the limit of small
Keldysh parameter �, is presented as a function of the angle

. The well-known symmetry upon 
↔�±
 �3–5� is clearly
visible in Fig. 3.

In Sec. II C we have introduced a classification of the
quantum orbits. Each pair of orbits 
m is characterized by its
own cutoff. It will be useful to analyze how these cutoffs
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FIG. 2. �Color online� Differential ionization rate of He as a
function of the electron kinetic energy Ep in units of the pondero-
motive energy UP, for emission in the direction 
=0°, for a linearly
polarized laser field having the intensity 1015 W/cm2 and the wave-
length 760 nm. Comparison of the uniform approximation �UNA�
with the results obtained by numerical integration �SFA�.
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FIG. 3. �Color online� Maximal classical electron kinetic energy
as a function of the angle between the emitted electron and the
linearly polarized laser field direction.
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depend on the angle 
. In Fig. 4, we present the

-dependence of the cutoff values for various orbits 
m, for
Xe, and for a linearly polarized laser field having the inten-
sity 8�1013 W/cm2 and the wavelength 760 nm. There are
two groups of orbits: orbits with 
=−1 approach, with in-
creasing m a certain 
-dependent limit value from above,
while orbits with 
=1 approach the same value from below.
For 
=0 the maximum cutoff is for 
m=−10: �Ep,
=0�max

=11.32UP, which is approximately equal to the result ob-
tained using Eq. �25�: 10.007UP+0.538IP=11.5UP. The
minimum cutoff is for 
m=11: �Ep,
=0�max=6.526UP. For
both solutions 
=−1 and 1, the value �Ep,
=0�max=8UP is
approached with increasing m. This is in accordance with
the cutoff law for electron-atom scattering: Epf

=Epi

+8UP±4�2Epi
UP, presented in Refs. �64,65�, and with the

fact that for long orbits �large values of m� the electron initial
kinetic energy Epi

becomes lower and lower. The cutoff val-
ues for all solutions 
m behave in the same way with in-
creasing 
: the corresponding maximal electron energy
slowly decreases toward a value lower than 2UP for 
=90°.
Only for the solution with m=0 and for not too small values
of � can the minimum cutoff value for 
=90° be larger than
2UP, as shown in Fig. 4. There are no intersections of the
cutoff curves.

IV. CONDITION FOR THE CONSTRUCTIVE
INTERFERENCE OF THE PARTIAL

T-MATRIX CONTRIBUTIONS

According to Eq. �17�, the T-matrix element is the sum of
partial contributions, which correspond to different saddle-
point solutions. In order to analyze the interference of these
partial contributions, it is convenient to present the rescatter-
ing T-matrix element in the form Tpi

�1��n�=�sas exp�i�s�,
where as�0 and �s are real. The interference will be con-
structive if all partial contributions are in phase.

Let us find these phases for the solutions �22� and �23�
in the limit of small stationary momenta k, i.e., for long
travel times �30�. Taking into account the relations sin �0

�0�

=
�1+�2 and sin ��0�=� sin�arccos�−q / �2 cos 
��

=��1−q2 / �4 cos2 
� to lowest order in 1/ �2m�� we obtain

k�1� =
1

2m�
�
�1 + �2 − ��1 − q2/�4 cos2 
�� . �26�

Then, using Eq. �18�, we find

Re S�
m =
4UP

�
�q2

2
��0� + q cos 
 sin ��0�� +

IP + UP

�
Re �0

�0�,

�27�

where the corrections of the order 1 / �2m�� were neglected
�we have also found the higher-order corrections but will not
present them here�. For 
=180° this result agrees with that
of Ref. �30�. Introducing the solutions �0

�0� and ��0� into Eq.
�27�, we obtain explicitly

Re S�
m =
4UP

�
�q2

2
�� − � arccos� q

2 cos 

��

+ �q cos 
�1 −
q2

4 cos2 

�

+
IP + UP

�
�


�

2
− 2m�� . �28�

Further contributions to the phase �s come from the matrix
elements in Eq. �17� and from �s, Eq. �19�. Keeping only the
zeroth order terms in 1/ �2m��, it can be shown that �s has
the opposite sign for �=1 and −1, so that

�s
−1/2 � exp�i�� − 1��/4� . �29�

It can also be shown that Vks−p=V−p plus corrections of the
order 1 / �2m��, so that this matrix element does not contrib-
ute to the phase �s. Let us now analyze the matrix element
M0s= �ks+A�t0s��r ·E�t0s���i	, which appears in Eq. �17�, for
the initial Hartree-Fock wave functions �11�. This matrix el-
ement can be calculated analytically, but we will not present
here these cumbersome expressions. If, in these expressions,
we take into account that �ks+A�t0��2=−2IP, Eq. �15�, then,
for our linearly polarized laser field, we obtain

M0 � �sin �0�k + cos �0� �for an s ground state�
sin �0 �for a p ground state� � .

�30�

Taking into account that sin �0
�0�=
�1+�2 and k�1�

+cos �0
�1�=−i
�, we get

M0 � exp�i�1 − 
�l�/2� , �31�

where l=0 for s states and l=1 for p states. Taking also into
account relations �28� and �29�, we finally have

��
m = Re S�
m + �� − 1��/4 + �1 − 
�l�/2. �32�

With the abbreviation

IP + UP � nc� , �33�

from relations �28� and �32� it follows that
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FIG. 4. �Color online� The 
-dependence of the cutoff values for
the saddle-point solutions characterized by the index 
m �see the
text for more explanations�.
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��1m − ��−1m = �nc − l�� . �34�

In Refs. �30,36�, only the case l=0 was considered and it was
found that the interferences are constructive for even nc.
Then, from relation �34� it follows that the constructive in-
terferences and the resonantlike enhancements for p states
�l=1� should be obtained for odd nc in Eq. �33�.

V. ANALYSIS OF HIGH-ORDER ATI ENHANCEMENTS
IN TERMS OF LONG QUANTUM ORBITS

It is known that a small number of quantum orbits is
sufficient to approximately calculate the high-order ATI
spectra within the saddle-point approximation �3�. Figure 4
shows that in the cutoff region only the two orbits with

m=−10 contribute. We have also shown, in Sec. II D, that
the appearance of artificial spikes in the high-order ATI spec-
trum near the cutoffs of particular pairs of orbits 1
m and
−1
m �see, for example, Fig. 4 in Ref. �11�� is avoided by
using the uniform approximation. In the middle part of the
spectrum, i.e., in the plateau region, more orbits have to be
taken into account. Due to wave-packet spreading, the am-
plitudes of the partial T-matrix elements decrease with in-
creasing length of the orbits. Since, in most cases, their
phases are random, the convergence of the sum �24� can be
achieved with a small number of orbits. However, near a
channel closing the phases of the long orbits add construc-
tively so that very many orbits have to be taken into account.

We illustrate this with an example of ATI spectra of Kr
atoms, presented in Fig. 5. The laser field is linearly polar-
ized having the wavelength of 760 nm and its intensity
changes from 0.67�1014 to 1.76�1014 W/cm2, so that the
parameter �IP+UP� /� takes on values between 10.8 and 14.4
and encompasses four CCs: nc=11, 12, 13, and 14 �see Eq.
�33��. It is obvious that four orbits �the black dotted curve in
Fig. 5� only produce a very rough approximation to the exact

yield. However, including 200 orbits does not significantly
change the sum of 20 orbits, except near CCs, where the
former exhibits extremely sharp spikes exactly at the odd
CCs nc=11 and 13. According to Refs. �46–48�, the en-
hancements are threshold phenomena, which appear at even
CCs for even l and at odd CCs for odd l �as is the case in our
example for the p ground state of Kr�. Our analysis suggests
that the enhancements are due to the constructive interfer-
ence of the contributions of the long orbits. The constructive
interference of about the first 20 orbits leads to the appear-
ance of enhancements in the region 5%–10% below even
CCs. These enhancements we will call type-I enhancements.
Long orbits imply a long travel time, i.e., these orbits can
only develop if the pulse duration is long enough. Still longer
orbits �e.g., orbits 50–100 and longer� give rise to the very
sharp enhancements that are located precisely at the odd
CCs. We will refer to the latter as type-II enhancements.

In order better to understand the behavior of the spectra
shown in Fig. 5, we will analyze the relative phase ���m�
=�
=−1−�
=+1 of the partial contributions to the T-matrix
element �24� for fixed values of m. If ���m�= �2k+1�� with
integer k, the contributions with 
=1 and 
=−1 for ioniza-
tion within the mth past period are out of phase. If this is so
for all m�m0 with m0�1, a constructive interference of the
contributions of the long orbits cannot develop. If, on the
other hand, ���m�=2k� with integer k for m�m0, con-
structive interference is likely. Figure 6 shows that the latter
condition is satisfied for nc=11 with m0=0. Indeed, Fig. 5
exhibits a pronounced spike at nc=11. In contrast, for nc
=12 we infer from Fig. 6 that the orbits with m�m0=5 will
all interfere destructively, in agreement with the observation
from Fig. 5 that 20 orbits suffice to approximate the exact
result near nc=12 and that the resulting yield forms a smooth
maximum. These patterns repeat themselves near nc=13 and
14. A very interesting observation from Fig. 6�b� is that just
below nc=12 for m�6 the phase differences jump up by �
to settle near a value close to zero for a short nc interval.
Indeed, this is approximately where Fig. 5 displays the type-I
enhancement.

Let us now analyze an example of the He atom, whose
ground state has even parity �l=0�. Since the ionization en-
ergy and the saturation intensity of He are larger than for Kr,
the final electron kinetic energy Ep can also be larger. In Fig.
7 we present the ionization rate of He for Ep=199 eV. The
laser field is linearly polarized having the wavelength
760 nm and its intensity changes from 1.04�1015 to 1.16
�1015 W/cm2, so that the parameter �IP+UP� /� assumes
values between 49.5 and 53.4 and encompasses four CCs:
nc=50, 51, 52, and 53. As in the Kr case, the spectrum can-
not be well described with only four orbits; but the results for
20 and 200 orbits agree well most of the time so that 20
orbits are sufficient. The exception is the immediate vicinity
of the CCs, where 200 �or possibly more; cf. Fig. 11� orbits
are needed. These enhancements are particularly sharp for
even nc. They are so sharp that they are just barely visible in
Fig. 7; see Fig. 12 below for an enlargement. Each of these
spikes is preceded by a pronounced peak. These peaks can be
approximated well with 40 orbits but not with 20 orbits. For
even CCs these peaks are closer to nc and can easily be
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FIG. 5. �Color online� Differential ionization rate of Kr as a
function of the parameter �IP+UP� /�, for emission of electrons
with kinetic energy Ep=23 eV in the direction 
=0°. The laser field
is linearly polarized having the wavelength 760 nm. Its intensity
changes from 0.67�1014 to 1.76�1014 W/cm2. The uniform ap-
proximation for high-order ATI is used with 4 �black dotted curve�,
20 �red long-dashed curve�, 40 �green dot-dashed curve�, and 200
�blue solid curve� quantum orbits.
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misinterpreted as the spiky type-II enhancements, which ap-
pear exactly at CCs. For the s ground state of He, we expect
to have the type-II enhancements for even CCs. However, we
see that they appear also for odd CCs.

To summarize the present case of He, we observe both
types of enhancements at each CC, regardless of whether nc
is even or odd. The constructive interference of 30–40 orbits
leads to the appearance of type-I enhancements in the region
5%–10% below each CC. Very long orbits �orbits 50–400�
give rise to the extremely sharp type-II enhancements, which
are located precisely at the CCs. The qualitative difference
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FIG. 6. �Color online� The relative phase �
=−1−�
=+1 of the
mth partial contribution to the T-matrix element in the uniform
approximation �24� as a function of the parameter �IP+UP� /�, for
the atomic and laser field parameters of Fig. 5. The results presented
are �a� for 1�m�5 and �b� for 6�m�22 in steps of 4.
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FIG. 7. �Color online� Differential ionization rate of He as a
function of the parameter �IP+UP� /�, for emission of electrons
with kinetic energy Ep=199 eV in the direction 
=0°. The laser
field is linearly polarized having the wavelength 760 nm. Its inten-
sity changes from 1.04�1015 to 1.16�1015 W/cm2. The uniform
approximation for high-order ATI is used with 4 �red dashed curve�,
20 �blue dot-dashed curve�, 40 �green long dashed curve�, and 200
�black solid curve� quantum orbits.
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FIG. 8. �Color online� The relative phase �
=−1−�
=+1 of the
mth partial contribution to the T-matrix element in the uniform
approximation �24� as a function of the parameter �IP+UP� /�, for
the atomic and laser field parameters of Fig. 7. The results presented
are �a� for 1�m�5, �b� 6�m�11, and �c� for even 12�m�24.
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between the results for Kr, presented in Fig. 5, and the results
for He �Fig. 7� is apparently due to different electron kinetic
energy and laser intensity regions.

As in the previous case of Fig. 5, further insight can be
gained by inspection of the phase differences ���m�. We
exhibit the latter in Fig. 8 and invite the reader to study the
very complex relation between the phases and the yields. As
one example, Fig. 8�c� shows that only the orbits with m
�14 conspire to build up the very narrow type-II spike at
nc=50.

As a final example, we analyze the high-order ATI spectra
of Xe atoms for which the enhancements are expected for
odd nc, since l=1 for the ground state of Xe. In Fig. 9 we
show the yield of 90-eV electrons emitted in the laser polar-
ization direction for nc between 16 and 36. We see that the
enhancements appear both for even and odd nc and that for
some values of nc there are no enhancements at all. In order
to explain these results we have also presented the partial
rates, obtained using the uniform approximation �24�, for
fixed values of the subindex 
, summed over all values of m.
Recall from Figs. 1 and 4 that orbits with 
=1 have a cutoff
below the very-long-orbit cutoff limit �m→�� and those
with 
=−1 above. The energy of 90 eV is well below 8UP
even at the lowest intensity considered so that orbits with

=1 and with 
=−1 on the average will contribute equally.
For 16�nc�20 the amplitudes of the contributions from 

=1 �red dot-dashed curve� and from 
=−1 �green long
dashed curve� interfere constructively leading to sharp peaks
in the differential rate summed over m �black solid curve�.
However, with a further increase of nc up to nc=24, the
interference is destructive and the peaks are less pronounced
or completely disappear. The interference is again construc-

tive for nc from 25 to 28. This is followed by subsequent
intervals of destructive and constructive interferences. For
Xe, Eq. �34�, viz. ��1m−��−1m= �nc− l�� with l=1, seems to
favor enhancements for odd nc. We observe from Fig. 9 that
this prediction is not reliable. It is more appropriate for lower
electron energies and laser intensities, as in Fig. 5.

VI. THRESHOLD ANOMALIES IN HIGH-ORDER ATI

Threshold anomalies are a well-known phenomenon in
the theory of collisions and reactions �38–43�. If a cross
section is considered as a function of energy, these anomalies
manifest themselves in the form of “Wigner cusps” �upward
or downward� and “steps” �rounded upward �S-like� or
downward step� at the threshold energies. We will now show
that these features also occur for ATI, even though this is
induced by a time-dependent external field.

Our intensity-dependent enhancements occur in the pla-
teau region of the electron energy spectra. Since the rescat-
tering ATI amplitude is responsible for this part of the spec-
trum, in the Appendix we derived the expression �A7� for the
corresponding rescattering T-matrix element for ATI with ab-
sorption of n laser photons:

Tpi
�1��n� = �

n�
� d3kTpki�n,n���

0

�

d�e−i�Ek+�nc−n�����,

�35�

with Tpki�n ,n��=−iTpk
�0��n−n��Tki

�0��n�� and nc�= IP+UP. This
result is in accordance with the three-step model of high-
order ATI: direct ionization with absorption of n� laser pho-
tons is followed by propagation of the electron with momen-
tum k in the laser field during the time � and subsequent
laser-assisted potential scattering in which n−n� photons are
exchanged with the laser field. The expression �35� also in-
cludes the integration over all travel times � and over all
intermediate electron momenta k, as well as the summation
over all integer values of n�.

The threshold anomalies of time-independent scattering
theory are connected with the nonanalyticity of the transition
amplitude at the threshold energy. The corresponding mo-
menta are small. In our case an electron “born” with drift
momentum near zero can acquire a much higher drift mo-
mentum during the subsequent steps. This is exactly what
happens in high-order ATI: the small quantity is the drift
momentum ks of the electron in the intermediate state �be-
tween ionization and rescattering�; see Sec. II. The ionization
happens at the threshold ks=0 and the subsequent laser-
assisted electron scattering cannot “delete” the anomalies in-
troduced by this ionization threshold. Furthermore, since ks
�1/ �t− t0�, small ks implies long travel time and long orbits,
which is in agreement with the fact that at the threshold a
large number of saddle-point solutions has to be taken into
account.

In the Appendix, we have obtained the expressions �A8�
and �A9� for the expansion of the rescattering T-matrix in the
small intermediate electron momentum k. This can be rewrit-
ten as
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FIG. 9. �Color online� Natural logarithm of the differential ion-
ization rate of Xe as a function of the parameter �IP+UP� /�, for
emission of the electrons having kinetic energy Ep=90 eV in the
direction 
=0°. The laser field is linearly polarized having the
wavelength 760 nm. Its intensity changes from 2.5�1014 to 8
�1014 W/cm2. The uniform approximation for high-order ATI is
used with 100 quantum orbits �black solid curve�. The results with
only the orbits having 
=1 �
=−1� included are presented by the
red dot-dashed �green long dashed� curve.

INTENSITY-DEPENDENT ENHANCEMENTS IN HIGH-… PHYSICAL REVIEW A 76, 053410 �2007�

053410-9



Tpi
�1��n� � Rpi�n� + Api�n,nc���nc� − nc, �36�

where we have explicitly separated the term n�=nc�, with nc�
the integer nearest nc, from the remaining part Rpi�n� of the
sum over n�. According to Eq. �A9� it is Api�n ,nc��
= i�2��2�2�Tp0

�0��n−nc��T0i
�0��nc��, while, in general, it may be

proportional to an integer power of nc�−nc. Denoting RpiApi
*

=a exp�i�� with real positive a and the real phase �, we
obtain

�Tpi�n��2 = �Rpi�n��2 + �Api�n,nc���
2�nc� − nc� + 2a��nc� − nc�

��cos � , nc� � nc

sin � , nc� � nc
� . �37�

Therefore if we consider the rescattering T-matrix element as
an analytical function of the parameter nc, we see that the
nonanalyticity �and the threshold anomaly� appears at nc
=nc�. The above expression shows that, as a function of nc
�that is, as a function of intensity�, around the nc�th channel
closing the derivative of �Tpi�n��2 with respect to nc is infinite
���nc�−nc�−1/2� and �Tpi�n��2 exhibits an upward �downward�
cusp for � in the first �third� quadrant, and a rounded upward
�downward� step for � in the second �fourth� quadrant.

The appearance of all four types of threshold anomalies is
not always possible. For example, for scattering cross sec-
tions in the case when below the considered threshold there
is only one open channel, the S-like step and downward cusp
are not possible �42,66�. In this case, immediately above
threshold the cross section cannot increase. Our results, pre-
sented in Figs. 5, 7, and 9, exhibit only upward cusps and
downward steps, though in some cases this is hard to tell.

It should be mentioned that the threshold anomalies are
modified in the presence of the Coulomb interaction �67,68�.
In our theory, the long-range Coulomb interaction is ne-
glected and we will not discuss this here.

After we have realized that the threshold anomalies
should appear for high-order ATI, let us now, again using
the results of the Appendix, investigate analytically the con-
nection of the type of the ground state �s or p� and the parity
of nc. In the term Api in Eq. �36� the T-matrix element
Tp0

�0��n−n�� is real, while T0i
�0��n�� is expressed as the Fourier

transform of Eq. �A6�. The matrix element in Eq. �A6� can
be calculated analytically. This matrix element is multiplied
by the exponential function exp�iU1�t0��=exp�ia sin�2�t0��,
with a=UP / �2��, which can be expanded in Bessel functions
as �mJm�a�exp�2im�t0�. Since we have 2m in the exponent it
can be shown that for s states T0i

�0��n��=0 for odd n�, while
for p states T0i

�0��n��=0 for even n�. Therefore the enhance-
ments for the s states �p states� occur for even �odd� nc. This
is in agreement with previous results. These dominant en-
hancements correspond to long travel times, i.e., long orbits,
for which the higher-order terms in the expansion �A8� can
be neglected �the wave-packet spreading term is ��−3/2−s, s
=0,1 ,2 , . . .�. There are also less pronounced enhancements
which can appear both for even and odd nc and correspond to
not so long orbits. Namely, for the higher-order terms the
expansion of exp�ik ·��t0�+ iU1�t0�� in terms of the general-
ized Bessel functions gives the factor exp�im�t0� so that the

enhancements may be encountered both for even and for odd
nc. Furthermore, the second term in the last row of Eq. �A8�
is proportional to �n�−nc�3/2 so that the type of the enhance-
ment can change.

In order to illustrate how the threshold anomalies are re-
lated to our type-I and type-II enhancements, in Fig. 10 we
present the ionization rate and its derivative over the param-
eter nc= �IP+UP� /� as functions of nc for the same laser and
atomic parameters as in Fig. 5, calculated using the uniform
approximation with 400 orbits. For odd nc, it is obvious that
the type-II enhancements are upward cusps. Very close to
nc=11 and 13, the first derivative w� goes from +� to −�,
which is in agreement with the derivative of Eq. �37�. From
the previous analysis, the nature of the type-I enhancements
was not quite clear. Now, from Fig. 10 it follows that for
nc=12 and 14 the first derivative of the rate over nc goes to
−�. This corresponds to the threshold anomaly called the
rounded downward step. For this type of the threshold
anomaly the ionization rate, as a function of nc, has a maxi-
mum below the corresponding channel closing.

Another point that should be discussed is the appearance
of more than one enhancement near the same value of nc, as
it was illustrated in Fig. 7. In Fig. 11 we present results
analogous to Fig. 7 but for 400 orbits and with the first
derivative of the ionization rate also shown. At each of the
four channel closings covered by the figure, we observe an
upward cusp �those at nc=50 and 52 are just barely visible�.
On top of that and dwarfing the cusps at nc=50 and 52, we
notice two different rounded-downward-step threshold
anomalies. In order to illustrate this more precisely, in Fig.
12 we present an enlarged part of Fig. 11 around nc=50. The
presence of the upward cusp at nc=50 is revealed by the fact
that the derivative w� of the ionization rate goes from +� just
below nc=50 to −� just above nc=50. The additional two
rounded downward steps are connected with the rate maxima
at nc=49.78 and 49.95. At these values of nc, the derivatives
of the respective terms in the ionization rate each start to
decrease to −�, which they reach at nc=50, but, since the
upward-cusp-threshold anomaly takes over, these rounded-
downward-step threshold anomalies manifest themselves as
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FIG. 10. �Color online� The same as in Fig. 5 but for 400 orbits.
The derivative of the ionization rate �divided by the factor 10� over
the parameter nc= �IP+UP� /� as a function of nc is also presented
by a red solid line.
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minima in the derivative of the rate. Therefore we have an
interplay of several different threshold anomalies. At a par-
ticular channel closing one type of threshold anomaly is
dominant but, depending on the laser field and atomic pa-
rameters and on the electron energy, the contributions of
other anomalies, which are related to higher order terms in
Eq. �A8�, may become important.

VII. NUMERICAL EXAMPLES

In this section, we present energy spectra for Xe atoms,
obtained using the improved SFA method described in Ref.
�11�. We consider only high-order ATI and rescattered elec-
trons emitted in the direction 
=0°. The laser field is linearly
polarized having the wavelength 760 nm. In order to see the
influence of the parity of the ground state, we model the
ground state wave function by a p state as in �11� �these
results are presented in Fig. 13� and by a 1s state �Fig. 14�.
The rescattering potential is the same in both cases and is
modeled as in Refs. �11,65�.

Let us first analyze Fig. 13, where the logarithm of the
differential ionization rate is presented in false colors as a

function of the electron energy Ep �in eV� and of the laser
intensity, expressed through the parameter �IP+UP� /� so that
integer numbers on the abscissa correspond to the CC num-
bers nc. The cutoff region is clearly visible: it extends from
30 eV at nc=9 to 100 eV at nc=13. The enhancements at
integer values of nc are very pronounced. In the region
35–45 eV there are sharp enhancements for nc=11 and 13,
while the enhancements for nc=12 and 14 are broader. The
next enhancements are for the energies between 60 and
70 eV, where sharp enhancements are for nc=13 and 15,
while a broad enhancement is for nc=14. For energies above
80 eV a sharp enhancement appears for nc=15, etc. There
are two types of sharp enhancements. One looks like a cusp
�nc=11 and Ep�40 eV, nc=13 and Ep�65 eV, and nc=15
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FIG. 11. �Color online� The same as Fig. 7 but for 400 orbits.
The derivative of the ionization rate �divided by the factor 20� over
the parameter nc= �IP+UP� /� as a function of nc is also presented
by the red solid line.

49.7 49.8 49.9 50 50.1
(I

p
+U

p
)/ω

-3

-2

-1

0

1

2

3

Io
ni

za
tio

n
R

at
e

(a
rb

.u
ni

ts
)

w(400)
w’/20

FIG. 12. �Color online� Enlarged part of Fig. 11 near nc=50.

FIG. 13. �Color� High-order ATI photoelectron energy spectrum
of Xe �IP=12.13 eV, p ground state �11��, presented in false colors,
as a function of the laser intensity expressed in units �IP+UP� /�.
Electron emission is in the direction 
=0°, the laser field is linearly
polarized having the wavelength 760 nm, and the laser intensity
changes from 4�1013 to 2.4�1014 W/cm2. Only the rescattering
contribution to the T matrix is taken into account, with the rescat-
tering potential modeled as in �11�.

FIG. 14. �Color� Same as in Fig. 13, but for the Xe atom mod-
eled by a 1s ground state. The ionization energy is IP=12.13 eV.
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and Ep�90 eV�, while the other exhibits a broad maximum
followed by a minimum �nc=13 and Ep�40 eV, and nc
=15 and Ep�65 eV�. For even nc it seems that the enhance-
ment regions at nc=12 with Ep�40 eV and at nc=14 with
Ep�65 eV are broader than the one at nc=14 with Ep
�40 eV. All these numerical results are examples of the two
types of enhancements described in Sec. V and presented in
Fig. 5. For instance, for Ep�40 eV the sharp peak at nc
=11 is a cusp, which above we classified as a type-II en-
hancement. The broad peak below nc=12 is a type-I en-
hancement. Near nc=13 both types appear. The broad peak
below nc=13 is the type-I enhancement, while the sharp peak
exactly at nc=13 is the type-II enhancement. Finally, the
broad peak below nc=14 is a type-I enhancement.

The same results as in Fig. 13, but for the Xe atom mod-
eled by a 1s ground state, are shown in Fig. 14. Comparing
Figs. 13 and 14, we notice that they are qualitatively very
similar except that the role of even and odd CCs is inter-
changed. For example, the shape and the structure of the
enhancements near 40 eV in Fig. 13 at nc=11, 12, 13, and
14, are completely repeated in Fig. 14, but now for energies
near 50 eV and for nc=12, 13, 14, and 15. Therefore for the
s ground state �l=0� sharp enhancements appear for even nc,
while for the p ground state �l=1� they appear for odd nc.
This is in agreement with the saddle-point analysis presented
in Sec. IV �see Eq. �34��.

VIII. FOCAL AVERAGING AND THE POSSIBILITY
OF OBSERVING TYPE-I AND TYPE-II

ENHANCEMENTS

For a simulation of ATI experiments, the energy spectrum
of the ionized electrons has to be integrated over the spa-
tiotemporal intensity distribution in the laser focus. The de-
tails of our focal-averaging method are described in �29,55�
and numerous examples, related to the channel-closing ef-
fect, are presented in Ref. �11�. In the focal-averaged spec-
trum, the effects of channel closings are visible regardless of
the value of the peak intensity since the focal volume always
contains regions where the laser intensity is close to the
channel-closing intensity. Therefore the type-II enhance-
ments always appear in the focal-averaged spectra and mani-
fest themselves as sharp peaks in the spectra at electron en-
ergies Ep= �n−nc,min��, n�nc,min= �IP /��+1. For electrons
emitted in the direction 
=0 or 
=�, the sharp enhance-
ments are by far most pronounced for electron energies
within the interval 5UP�Ep�8UP �for details see �11��.

In this section, we will consider the question of whether
the type-I enhancements survive the focal averaging, i.e.,
whether they can be distinguished in an experiment. We
calculate the focal-averaged electron spectra of Kr for four
different peak intensities: 0.75, 1.06, 1.37, and 1.68
�1014 W/cm2, which, in accordance with Fig. 5, are slightly
above the channel-closing intensities for the channels nc
=11, 12, 13, and 14, respectively. The corresponding focal-
averaged electron spectra are presented in Fig. 15. The sharp
peaks at the electron energies equal to n� correspond to the
type-II enhancements for nc=11 and 13 in Fig. 5. They ap-
pear in the region 5–8UPc which is 20–32 and 36–58 eV for

nc=11 and 13, respectively. In order to investigate the type-I
enhancements, in Fig. 16 we present an enlarged part of Fig.
15 for the intensities 1.06 and 1.68�1014 W/cm2 that cor-
responds to nc=12 and 14, respectively. For nc=12 the inter-
val 5–8UPc �11� corresponds to the electron energies
28–45 eV. In this case, the bottom curve in Fig. 16 exhibits
peaks that are not positioned at Ep=n� and whose relative
distance is not equal to �. These peaks are less pronounced
than the sharp peaks at Ep=n�. They are related to the type-I
enhancements.

Let us explain the position of these peaks. For a fixed
laser intensity I corresponding to the ponderomotive energy
UP= I / �4�2�, the electron energy is given by the energy-
conserving condition Ep=n�− IP−UP. According to Fig. 5,
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FIG. 15. �Color online� Logarithm of the focal-averaged differ-
ential ionization rates of Kr as functions of the electron kinetic
energy for emission in the direction 
=0°. The laser field is linearly
polarized having the wavelength 760 nm. Its intensity is a
�1014 W/cm2, where a=0.75 �bottom black curve�, 1.06 �green
curve�, 1.37 �blue curve�, and 1.68 �upper red curve�. The results
are obtained using the improved SFA �11� and each upper curve is
shifted up by 0.5 units with respect to the lower one.
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FIG. 16. �Color online� Same as Fig. 15, but for the intensities
1.06�1014 W/cm2 �lower red curve� and 1.68�1014 W/cm2 �up-
per black curve�.
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for Ep=23 eV, the ionization rate has broad maxima at IP
+UP=nc�−�c just below nc=12 and 14. The shift �c�Ep�
depends both on the electron energy Ep and on the channel-
closing number nc. Introducing this into the energy-
conserving condition we obtain Ep= �n−nc��+�c�Ep� for the
corresponding electron energies. For nc=12 we have used
our quantum-orbit theory to calculate that the shift �c�Ep�
decreases with increasing electron energy. This is exactly
what we observe in the bottom curve in Fig. 16. Further-
more, there are traces of these peaks in the upper curve in
Fig. 16 in the region 30–35 eV, where the sharp peaks at
Ep=n� are dominant.

For nc=14, the interval 5–8UPc corresponds to
44–70 eV. Again, the upper curve in Fig. 16 shows peaks in
this region that are not exactly at n�. Below 60 eV they are
mixed with the nc=13 sharp peaks. We conclude that, even
though they are not so strong as the sharp type-II enhance-
ments, the type-I enhancements can be distinguished in the
experiment. They are characterized by peaks which are
shifted with respect to Ep=n� and whose relative distance is
smaller than �.

IX. DISAPPEARANCE OF THE ENHANCEMENTS
FOR ULTRASHORT LASER PULSES

In this section we will show that the enhancements in
high-order ATI spectra disappear for laser pulses which are
so short that long orbits do not have enough time to develop.
The improved SFA �11� can be generalized to ATI by few-
cycle pulses �5�. Without going into the details of this
method, we here present numerical results for the focal-
averaged ATI spectra of Xe atoms ionized by a linearly po-
larized few-cycle pulse having the wavelength 760 nm and
the intensity 1.1�1014 W/cm2. The pulse envelope is sine
square and we consider pulse durations �full width at half
maximum of the intensity� of 5.5 fs �np=6 optical cycles,
according to Sec. 4.3 of Ref. �5��, 12.9 fs �np=14�, and
20.3 fs �np=22�. According to the results presented in Table
II in Ref. �11�, the enhancements due to the nc=11 channel
closing appear for energies between 29 and 47 eV. This is
clearly visible from the bottom curve in Fig. 17, which cor-
responds to an infinitely long pulse with a flat envelope.
These enhancements become less pronounced for shorter
pulses and completely disappear for a few-cycle pulse; see
the upper curve, which corresponds to the pulse duration
5.5 fs. These results are in agreement with the experiments
�17,18�.

X. CONCLUSIONS

The intensity-dependent enhancements in high-order ATI
spectra are a fascinating quantum-mechanical phenomenon
wanting further analysis and physical interpretation. Our pa-
per gives insights into this problem. With the formalism de-
veloped we were able to analyze these enhancements in
terms of partial contributions of different quantum orbits to
high-order ATI spectra.

We have shown both analytically �see Eq. �34�� and nu-
merically �see Figs. 13 and 14� that the enhanced structures

move from even to odd channel closings when the parity of
the ground state changes sign.

We have observed two qualitatively different types of en-
hancements near channel closings: in one case, the enhance-
ment at a given energy as a function of intensity occurs
slightly below the nominal CC intensity and is comparatively
broad. We referred to this as type I. In contrast, type-II en-
hancements are extremely sharp, precisely located at the CC
intensities, and give rise to sharp peaks in the electron spec-
trum at energies Ep=n� with integer n regardless of the
direction of emission. Both types can be attributed to the
constructive interference of a large number of long quantum
orbits. Type-I enhancements are built up by the superposition
of some 20–40 orbits corresponding to ionization up to some
4–8 laser periods before the rescattering event. In contrast,
the razor-sharp type-II enhancements require 200 and more
orbits to develop fully, corresponding to 50 cycles of the
laser field and more.

Figure 18 provides a comprehensive illustration of these
observations. It corresponds to Fig. 13 but covers a wider
range of parameters. The broad band that moves up from
Ep�70 eV for nc=12 to Ep�150 eV for nc=17 marks the
10UP cutoff. The further the electron energy moves from the
cutoff into the plateau, the more complex becomes the elec-
tron yield. In the lower part of the plateau and for higher
intensities, we recover the situation of Figs. 2, 7, and 9 where
various types of enhancements occur near the same channel
closing. The structure of the electron yields generally scales
with UP and therefore moves up in the direction of the diag-
onal with increasing intensity.

We have also related the enhancements to the well-known
threshold anomalies of time-independent �that is, without a
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FIG. 17. �Color online� The logarithm of the focal-averaged
yield of Xe as a function of the energy of a photoelectron emitted in
the polarization direction. The laser field is linearly polarized hav-
ing the wavelength 760 nm and the intensity 1.1�1014 W/cm2.
The bottom green solid curve represents the results for a flat enve-
lope and infinitely long pulse. For the other curves presented, the
pulse envelope is sine square with zero carrier-envelope phase, as
defined in �5�. The number of optical cycles is np=6 �black dotted
curve�, 14 �blue dashed curve�, and 22 �red long dashed curve�. The
curves are shifted by two orders of magnitude with respect to each
other for better visibility.
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time-dependent external field� scattering theory, which �for
short-range interaction potential� classifies the threshold be-
havior in four different groups: upward and downward cusps
and upward �S-shaped� or downward steps. We have ob-
served only upward cusps and downward rounded steps. Up-
ward cusps correspond to type-II and downward steps to
type-I enhancements. For both types, the derivative of the
yield at fixed energy with respect to the intensity diverges at
the precise CC intensity. For type-II behavior it changes sign
at this intensity, which generates the pronounced spike. For
type-I, the yield drops steeply at the CC, but whether the
drop is infinitely steep �as it actually is� or just very steep
makes little difference in a plot of the electron yield. There-
fore the notable feature of the type-I yield is not the infinite
derivative at the CC, but rather the maximum that precedes
it. This maximum, in contrast to the infinite derivative, is
already produced by a moderate number of orbits. For high
intensity and comparatively low energy, most CCs exhibit
enhancements of both types, which can lead to a very com-
plex behavior of the yield.

The CC enhancements have been observed in experi-
ments. In Sec. VIII, by calculating the focal-averaged elec-
tron spectra, we have shown that the type-I enhancements
may also be observed in the form of peaks in the spectrum
which do not appear at n� and whose separation is less than
�.

We have found that the enhancements in the photoelec-
tron spectra gradually disappear with the decrease of the la-
ser pulse duration. This is in agreement with the experiments
�17,18�. It also confirms our interpretation of these resonant-
like enhancements in terms of constructive interference of
long orbits.

Finally, we should mention that the improved SFA under-
lying the calculations as well as the classification of the
threshold anomalies is strictly speaking only applicable for
short-range potentials and, hence, negative ions. The fact
that, notwithstanding, the results bear a lot of similarity with
the spectra observed in atoms remains a mystery.
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APPENDIX: RESCATTERING T-MATRIX ELEMENT FOR
SMALL INTERMEDIATE MOMENTA

In this Appendix we derive an expression for the rescat-
tering T-matrix element which is used in Sec. VI in order to
show analytically the appearance of the threshold anomalies.
We will start from Eq. �10� with Eqs. �9� and �11�. For a
linearly polarized laser field with the vector potential A�t�
=A0 cos �t, the rescattering matrix element �11� can be writ-
ten as

Mpk
�0��t� = − i�

n

Tpk
�0��n�exp�i�Ep − Ek − n��t� , �A1�

where Tpk
�0��n�=Jn�x�Vk−p is the T-matrix element for laser-

assisted potential scattering in the first Born approximation
�69�. Here x= �k−p� ·A0 /� and Jn�x� is the ordinary Bessel
function of integer order n. Using this result and the relations

�
−�

�

dtf�t� = �
m=−�

� �
0

T

dt�f�t� + mT� , �A2�

Sp�t + T� = Sp�t� + �Ep + UP�T , �A3�

and

�
m

exp�imET� = ��
m

��E − m�� , �A4�

the matrix element Mpi
�1�, Eq. �10�, can be rewritten in the

form �12�, where the rescattering T-matrix element is given
by

Tpi
�1��n� = �

m
� d3kTpk

�0��m��
0

T dt

T
Mki

�0��t�ei�Ep−Ek−m��t,

�A5�

with Ep=n�− IP−UP. The amplitude Mki
�0��t�, Eq. �9�, is ex-

pressed as an integral over t0. The integrand contains the
quantity

Tki
�0��t0� = �k + A�t0��r · E�t0���i	ei�k·��t0�+U1�t0��

= �
n�

Tki
�0��n��exp�− in��t0� , �A6�

which is periodic with period T=2� /�. Introducing this into
Eq. �A5�, taking into account that the integral over t gives
�m,n−n�, and making the substitution �= t− t0, we obtain

Tpi
�1��n� = − i�

n�
� d3kTpk

�0��n − n��Tki
�0��n��

� �
0

�

d�e−i�Ek+IP+UP−n����. �A7�

FIG. 18. �Color� Same as Fig. 13, but for a wider range of
electron energies and laser intensities.
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We are interested in the contributions to this integral from
small intermediate electron momenta k. Expanding the inte-
grand around k=0, with the notation b= IP+UP−n��, we
obtain

�
0

�

d�e−ib�� d3kf�k�exp�− ik2�/2�

= �
0

�

d�e−ib��2�

i�
�3/2

exp�−
i

2�

�2

�k2� f ��k��k=0

= − 2�2�/i�3/2�i�b�f�0� − bf��0�/3 + ¯ � . �A8�

Introducing the zeroth-order term of this expansion into Eq.
�A7� we get

Tpi
�1��n� � i�2��2�2��

n�

Tp0
�0��n − n��T0i

�0��n���n� − nc,

�A9�

where nc��IP+UP� /�.
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