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Theoretical analysis of the Autler-Townes splitting pattern in a three-level cascade excitation of a Doppler-
broadened sample reveals that the observed Autler-Townes splitting is not only a function of the coupling-laser
Rabi frequency, as in the homogeneously broadened case, but can also strongly depend on the wavenumber
ratio of the coupling and probe lasers. Utilizing a steady-state density matrix formalism, we derive exact
expressions for the populations of the intermediate and upper levels for a homogeneously broadened system. In
the limit of a weak probe field, analytical expressions for Doppler-broadened excitation spectra from the
intermediate and upper levels are derived. Using these expressions, we investigate the critical role of Doppler
broadening on the observation of Autler-Townes splitting and its asymptotic behavior as a function of the
coupling Rabi frequency for counterpropagating and copropagating configurations for different wavenumber
ratios of the lasers.
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INTRODUCTION

Recent strong interest in coherence and quantum interfer-
ence effects such as the Autler-Townes �AT� effect �1� and
electromagnetically induced transparency �EIT� �2,3� in
atomic and molecular systems is due to novel applications
such as measurement of the absolute value of the transition
dipole moment �4,5�, production of slow light �6�, and ma-
nipulation of the index of refraction �7�. Very often in such
experiments gas-phase atomic and molecular systems are
used, in which the inhomogeneous Doppler line broadening
is much larger than the homogeneous broadening.

There has been extensive theoretical and experimental
work on three-level atomic and molecular systems. The gen-
eral theoretical description of a three-level atom was given
by �8,9�. For some of the different aspects and configurations
of the three-level systems one can see �10–20� and the ref-
erences therein. We would like to mention particularly the
works by Salomaa and Stenholm on Doppler-free �21� and
Doppler-broadened �22� cascade schemes in the limit of a
weak probe laser with the coupling laser on resonance be-
tween the ground and intermediate states. For this arrange-
ment, experimental results on the AT splitting in the context
of transition dipole moment measurements between the
ground X 1�g

+ and the excited A 1�u
+ states for Na2 are given

in �5�.
In the presented work we consider the effect of inhomo-

geneous Doppler broadening on the observation of AT split-
ting in the excitation spectra of a cascade open molecular
system given in Fig. 1. In contrast to the works �21,22� men-
tioned in the above paragraph, we consider a variant of the
cascade scheme where the coupling laser is on resonance
between the intermediate and upper levels. This cascade con-
figuration has been employed experimentally in Refs.
�4,23,24� for observation of EIT and AT splitting in alkali-
metal dimers. The theoretical considerations presented in this
paper are in close relation to these experimental works. For
our calculations we use the well-known and widely used
density matrix formalism �11,25�. Since the calculations are
in relation to molecular systems, we have introduced two

additional levels �4� and �5� as given in Fig. 1 to represent all
possible extra levels to which decay from levels �2� and �3� is
possible due to spontaneous emission. The two laser beams
interacting with the system propagate along a common axis z
either in copropagating or counterpropagating configuration.
We assume that each laser is on resonance with only one
transition. The first laser L1 �the probe� couples the levels �1�
and �2�, while the second laser L2 �the coupling� couples the
levels �2� and �3�.
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FIG. 1. Schematic diagram of excitation and decay processes of
the three-level, double-resonance cascade scheme. The probe laser
L1 with optical frequency �1 and Rabi frequency �1 is tuned
through the resonance of levels �1� and �2�, while the coupling laser
L2 with optical frequency �2 and Rabi frequency �2 is on reso-
nance with levels �2� and �3�. Here I2��i ,�i ,�ij� and I3��i ,�i ,�ij�
represent the intensities of the single-channel fluorescence usually
used for detection in the experiments with molecules �4,23,24�; they
are proportional to the populations of levels �2� and �3�. The dashed
arrows indicate possible decay channels from the different energy
levels. Due to selection rules W31, W24 and W35 are zero for homo-
nuclear molecules. Levels �4�* and �5�* indicate other possible de-
cay channels rendering the system open. The beam-transit rate Wt is
added to account for the rate with which the molecules escape the
interaction region. It is only significant for level �5�* since it cannot
radiatively decay, W51=Wt.
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HOMOGENEOUSLY BROADENED SYSTEM

The evolution of the density matrix ��v ,r , t� of our sys-
tem in time and space is governed by the equation of motion

��

�t
= −

i

�
�HI,�� + 	��� . �1�

The Hamiltonian HI in the interaction picture with the rotat-
ing wave approximation taken into account has the form

HI = ��1�2��2� + ���1 + �2��3��3� + �
�1

2
��2��1� + �1��2��

+ �
�2

2
��3��2� + �2��3�� , �2�

where the detunings �1 and �2 are defined by �1=�21−�1
and �2=�32−�2, and �21 and �32 are the corresponding
transition frequencies for the �1�↔ �2� and �2�↔ �3� transi-
tions. The Hamiltonian in Eq. �2� does not involve levels �4�
and �5� since they are not coherently coupled to any other
levels. Every molecular level can decay to lower-lying states
of the system through spontaneous emission, as well as other
processes such as collisions, etc. They are incorporated in the
density matrix equation of motion by means of an n
n re-
laxation matrix 	���, with n=5 for the system depicted in
Fig. 1. The elements of the matrix 	��� in general can be
represented in the form

	ij��� = �ij�− Wi�ij + 	
k=1

k�i

n

��k − i�Wki�kk
 − �1 − �ij��ij�ij ,

�3�

where �ij is Kronecker’s delta and ��k−i� is the Heaviside
step function. i denotes the energy of level �i�. With Wij we
denote the radiative decay rate from level i to level j, Wi is
the total radiative decay rate of level i, and �ij are phenom-
enological parameters representing the damping rate at
which the off-diagonal elements of the density matrix relax
toward equilibrium, defined by

�nm =
1

2	
k

�Wnk + Wmk� + �nm
c , n � m . �4�

The �nm
c parameters represent the dependence of the decay

processes on collisions with other atoms or molecules.
Since the molecules are in motion, the presence of a ve-

locity component along the propagation axis z of the laser
beams, leads to a Doppler shift of the frequency of each laser
as observed from the rest frame of the molecule. Thus, we
define the velocity-dependent detuning of the laser frequen-
cies of L1 and L2 from the molecular transitions as �1
��1±k1vz and �2��2+k2vz, respectively. Here k1 and k2
are the wavenumbers of the corresponding laser, vz is the
molecular velocity component along the laser propagation
axis z, and the sign for ±k1vz is chosen in accordance with
the propagation direction of L1, with respect to L2.

Taking into account the molecular motion, the Hamil-
tonian HI becomes

HI = ��1�2��2� + ���1 + �2��3��3� + �
�1

2
��2��1� + �1��2��

+ �
�2

2
��3��2� + �2��3�� . �5�

Since we only consider cw laser excitations, we have a
steady state and �̇=0, which reduces Eq. �1� from a system
of differential equations of first order to a set of homoge-
neous linear equations. Because the total population in the
system is conserved, we have the additional condition

1 = �11 + �22 + �33 + �44 + �55. �6�

Combining Eq. �5� with the equation of motion �1� and in-
cluding all the possible decay processes depicted in Fig. 1 in
	���, we obtain the individual components of the density
matrix equation of motion:

0 = i�1��12 − �21� + 2W2�22 + 2W34�33, �7a�

0 = 2d1�12 − i�1��22 − �11� + i�2�13, �7b�

0 = i�2�12 + 2d2�13 − i�1�23, �7c�

0 = 2d̃1�21 + i�1��22 − �11� − i�2�31, �7d�

0 = − i�1�13 + i�2��22 − �33� + 2d3�23, �7e�

0 = − i�2�21 + 2d̃2�31 + i�1�32, �7f�

0 = i�1�31 − i�2��22 − �33� + 2d̃3�32, �7g�

0 = i�2��23 − �32� + 2W3�33, �7h�

where we have eliminated the terms involving the levels �4�
and �5�. This is easily performed, since they are noncoher-
ently coupled to the rest of the system. With d1, d2, and d3
we denote the complex detunings, defined by d1= i�1−�12,

d2= i�1+ i�2−�13, and d3= i�2−�23, and d̃i is the complex
conjugate of di. In the system of linear equations �7� only the
linearly independent components of Eq. �1� are included. The
population conservation condition �6� with �44 and �55 elimi-
nated has the form

1 = �11 + �a − 1��22 + b�33. �8�

The parameters a and b are defined as

a = 2 +
W25

Wt
, �9�

b = 1 +
W34

W4
�1 +

W45

Wt
 . �10�

Since our analysis applies mainly to experiments in which
the detected signal is spectrally resolved fluorescence of
a single rovibronic transition �called hereinafter “single-
channel fluorescence”�, the calculations emphasize the diag-
onal matrix elements, which are proportional to the popula-
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tions of the corresponding levels. In cases where the
experiments are based on absorption measurements, the off-
diagonal density matrix elements are of importance. Due to
the relative weakness of absorption by any single molecular
rovibronic transition, fluorescence detection is mainly used
in experiments involving molecules, while absorption mea-
surements are frequently used in experiments with atoms.

The system of linear equations �7� combined with the
population conservation condition �8� can be solved explic-
itly for any of the density matrix elements �ij. After lengthy
algebraic manipulations one obtains the following expression
for �22 and �33:

�22 = �1
2 �2

2��W34 − 2�13�Re�L� − D� − W3 Re�D̃2L�

2AL̃L − Re��S1D1 + �1
2S2�L̃� − �1

2�2
2�a + b�D

,

�11�

�33 = − �1
2�2

2 �W2 + 2�13�Re�L� + D

2AL̃L − Re��S1D1 + �1
2S2�L̃� − �1

2�2
2�a + b�D

,

�12�

where A, L, Si, Di, and D are defined by

L = 4d1d2d3 + d1�1
2 + d3�2

2, �13�

A = W2W3 − 2�13�bW2 − aW34� , �14�

S1 = �bW2 − aW34�D2 + �2
2�W2 + W34� , �15�

S2 = W3aD2 + �2
2
„2�13�a + b� − W3… , �16�

D1 = 4d1d2 + �2
2, �17�

D2 = 4d2d3 + �1
2, �18�

D = 2�d1d2 − d̃1d̃2��d2d3 − d̃2d̃3� . �19�

It is important to note that the above expressions for �22
and �33 are exact in the framework of the steady-state density
matrix formalism. Unlike the perturbatively derived expres-
sions �4,21�, they are valid for any combinations of Rabi
frequencies �1 and �2. In cases where the populations of
levels �2� and �3� have to be known exactly, expressions �11�
and �12� can be used instead of a numerical solution of the
system of equations �7�.

DOPPLER-AVERAGED EXCITATION SPECTRA

In this section we derive expressions for the Doppler-
averaged excitation spectra I2��i ,�i , . . . � and I3��i ,�i , . . . �
from levels �2� and �3�, respectively. In order to obtain
Ik��i ,�i , . . . �, we average the homogeneously broadened ex-
citation spectra, given by the population �kk of the corre-
sponding level, over the velocity distribution N�vz� of the
molecules. Thus,

Ik = �
−�

+�

�kk�vz�N�vz�dvz, �20�

where vz is the z component of the velocity of the molecules.
For the velocity distribution N�vz�, we use the Maxwell-
Boltzmann distribution

N�vz� =
N0

u��
exp�−

vz
2

u2 . �21�

Although the expressions for �22 and �33 given by Eqs.
�11� and �12� are simple rational functions of vz, analytical
calculation of the integral in Eq. �20� is not possible. Inte-
grals of the type R���e−�2

can be evaluated analytically �in
terms of special functions� by decomposing the rational
function into elementary fractions. In our case, however, the
denominator of �kk is a polynomial of sixth order with re-
spect to vz, with nonzero complex coefficients, making the
decomposition practically impossible.

In order to overcome this difficulty, one has to resort to
some form of simplification of Eqs. �11� and �12�. The most
straightforward and widespread approach is to consider the
Rabi frequency of one of the lasers �probe� as a weak per-
turbation. Hereafter we assume that L1 is the probe laser and
L2 is the coupling laser with the condition �1��2 always
fulfilled. In order to highlight the terms that can be neglected
in the limit of a weak probe laser in Eqs. �11� and �12�, we
rewrite them in the forms given below.

For �22 we have

�22 = �1
2Re�M0D̃1� + M1�1

2

P�D1�2 − Q�1
2 , �22�

with the terms in the numerator given by

M0 = �2
2�W34d̃3 − 2�23d2� − 4W3�d3�2d2, �23�

M1 = 8�12W3 Re�d2d3� + W3��1
2�12 + �23�2

2�

− �W34 − 2�13��12�2
2. �24�

For �33 we have

�33 = �1
2�2

2Re�L0D̃1� + L1�1
2

P�D1�2 − Q�1
2 , �25�

with the terms in the numerator given by

L0 = − W2d̃3 − 2�23d2, �26�

L1 = �12�W2 + 2�13� . �27�

The quantities in the denominators of Eqs. �22� and �25� are
defined by

P = 2W2W3�d3�2 + �23�W2 + W34��2
2, �28�
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Q = Re��S1d̃1 + S̃2d3 − 4Ad̃1d3�D1 + �1
2S2d̃1�

− �23�bW2 − aW34��D1�2 + �2
2�a + b�D − 2A�d1�2�1

2.

�29�

By keeping the leading term of �1
2 and setting �1=0 every-

where else, we obtain

�22
p = �1

2Re�M0D̃1�
P�D1�2

=
�1

2

P
Re�M0

D1
� , �30�

�33
p = �1

2�2
2Re�L0D̃1�

P�D1�2
=

�1
2�2

2

P
Re� L0

D1
� . �31�

Expressions �30� and �31� are exactly the same as in �4�,
where they are derived from the system of equations similar
to Eqs. �7� by applying perturbative theory in �1 directly to
the system of linear equations. We note also that Eq. �31� is
similar to the expression for �33

p given in �21� for a cascade
scheme where the coupling laser acts on the transition �1�-�2�
while the probe acts on the �2�-�3� transition. The denomina-
tors of the above �22

p and �33
p expressions are a product of two

parts P and D1, each being a polynomial of second order in
vz. Thus, the decomposition into elementary fractions can be
done without any difficulties.

To make all further considerations simpler and more
transparent, we use the dimensionless variables

z =
vz

u
, �i� =

�i

k2u
, �ij� =

�ij

k2u
, Wi� =

Wi

k2u
, �i� =

�i

k2u

�32�

In addition, we omit the primes for simplicity unless noted
otherwise. Next, we write �kk

p in the form

�22
p =

C2

�z + �2�2 + W2 Im�a0 + a1z + a2z2 + a3z3

�z − z1��z − z2� � , �33�

�33
p =

C3

�z + �2�2 + W2 Im� b0 + b1z

�z − z1��z − z2�� , �34�

with W, B, z1, z2, a0, a1, a2, a3, b0, and b1 defined by

W2 = �23
2 +

�23�W2 + W34��2
2

2W2W3
, �35�

C2 = −
�1

2

8x�1 + x�W2W3
, C3 = − �2

2C2 �36�

z1,2 = −
1

2
� e1

x
+

e2

�1 + x� ±
1

2
�� e1

x
−

e2

�1 + x�
2

+
�2

2

x�1 + x�
,

�37�

a0 = �2
2�W34ẽ3 + 2�23e2� + 4W3e2�e3�2, �38�

a1 = �2
2�W34 + 2�23�1 + x�� + 4W3��e3�2�1 + x� + �e3 + ẽ3�e2� ,

�39�

a2 = 4W3�e2 + �e3 + ẽ3��1 + x�� , �40�

a3 = 4W3�1 + x� , �41�

b0 = W2ẽ3 − 2�23e2, �42�

b1 = W2 − 2�23�1 + x� , �43�

where e1=�1+ i�12, e2=�1+�2+ i�13, e3=�2+ i�23, and x is
the ratio of the probe and coupling laser wavenumbers k1 and
k2, respectively. In order to simultaneously treat copropagat-
ing and counterpropagating beam configurations, x carries a
sign. We define

x =
k1

k2
, x � 0 for counterpropagating laser beams,

x � 0 for copropagating laser beams. �44�

We proceed by expanding Eqs. �33� and �34� into partial
fractions

�22
p = 	

k=1

2

Im�Ak� 1

z − zk
−

zk + 2�2 + z

�z + �2�2 + W2�
+

�12�1
2

2W2x2

1

�z + �2�2 + W2 , �45�

�33
p = 	

k=1

2

Im�Bk� 1

z − zk
−

zk + 2�2 + z

�z + �2�2 + W2� . �46�

The coefficients Ak and Bk are given by

Ak = �− 1�k−1C2
a0 + a1zk + a2zk

2 + a3zk
3

�zk + �2�2 + W2

1

z1 − z2
for k = 1,2,

�47�

Bk = �− 1�k−1C3
b0 + b1zk

�zk + �2�2 + W2

1

z1 − z2
for k = 1,2.

�48�

Combining Eqs. �45� and �46� with Eq. �20�, we obtain

I2 = 	
k=1

2

Im�Ak�
−�

+� e−z2

z − zk
dz − Ak�

−�

+� zk + 2�2 + z

�z + �2�2 + W2e−z2
dz�

+
�12�1

2

2W2x2�
−�

+� e−z2

�z + �2�2 + W2dz , �49�

I3 = 	
k=1

2

Im�Bk�
−�

+� e−z2

z − zk
dz − Bk�

−�

+� zk + 2�2 + z

�z + �2�2 + W2e−z2
dz� ,

�50�

where we have omitted the factor N0��� for simplicity. The
integrals in Eqs. �49� and �50� can be expressed in terms of
the Faddeeva function w�z�=e−z2

erfc�−iz� �26,27�. This
yields
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I2 = �	
k=1

2

Re†Ak�w�zk� − 2��Re�izk��e−zk
2
��

+ �	
k=1

2

Im�Ak Im�w�− �2 + iW��

−
Ak�zk + �2�

W
Re�w�− �2 + iW���

+
�12�1

2

2W2x2

�

W
Re�w�− �2 + iW�� , �51�

I3 = �	
k=1

2

Re†Bk�w�zk� − 2��Re�izk��e−zk
2
�‡

+ �	
k=1

2

Im�Bk Im�w�− �2 + iW��

− Bk
�zk + �2�

W
Re�w�− �2 + iW��� , �52�

where ���� is the Heaviside step function. Thus, in the
framework of the perturbative population densities �kk

p we
obtain analytical expressions for the Doppler-broadened ex-
citation spectra of the intermediate and upper levels for the
cascade excitation scheme given in Fig. 1.

In most experiments the coupling field is kept on or very
close to resonance. For this reason and in order to simplify
the analysis that follows algebraically, we set the detuning of
the coupling laser to zero ��2=0�. Thus, we obtain

I2 = �	
k=1

2

Re†Ak�w�zk� − 2��Re�izk��e−zk
2
�� + �AeW2

erfc�W� ,

�53�

I3 = �	
k=1

2

Re†Bk�w�zk� − 2��Re�izk��e−zk
2
�‡ + �BeW2

erfc�W� ,

�54�

A =
�12�1

2

2W2Wx2 −
1

W
	
k=1

2

Im�Akzk� , �55�

B = −
1

W
	
k=1

2

Im�Bkzk� , �56�

where we used the relation w�iy�=ey2
erfc�y�, for y real.

Note that I2 and I3 consist of two distinct dominant parts

Re�Ak�w�zk� − 2��Re�izk��e−zk
2
��, for I2 �k = 1,2� ,

�57�

Re�Bk�w�zk� − 2��Re�izk��e−zk
2
��, for I3 �k = 1,2� .

�58�

For each Ii the two terms for k=1 and k=2 added together
form the basic shape of the spectra. The term proportional to
eW2

erfc�W� is usually negligible. The presence or the absence
of the AT splitting and EIT features, and others depends on
the degree of overlap between these two dominant parts of I2
and I3, as shown in Figs. 2 and 3. In the calculations for these
figures the parameters we have used are for the Na2 dimer
system with level �2� corresponding to a rovibrational level
of the A 1�u

+ state with a lifetime of �2=12.5 ns �28� and with
level �3� corresponding to a rovibrational level of a higher

-1 0 1

I 2(
∆ 1
)(
ar
bi
tra
ry
un
its
)

∆1/νD

FIG. 2. The solid black line corresponds to I2��1� as calculated
from Eq. �53�, the plot with the open circles shows Eq. �57� for k
=1, and the plot with the open squares shows Eq. �57� for k=2, for
x=−1.2, and �2=100 MHz.

-0.2 0.0 0.2

I 3(
∆ 1
)(
ar
bi
tra
ry
un
its
)

∆1/νD

FIG. 3. The solid black line corresponds to I3��1� calculated
from Eq. �54�, the plot with the open circles shows Eq. �58� for k
=1, and the plot with the open squares shows Eq. �58� for k=2, for
x=−1.2, and �2=100 MHz.
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excited state, in our case 2 1�g, with lifetime of �3=18 ns �5�
and branching ratio W32=0.1W3. The Doppler linewidth is
�D=1.1 GHz corresponding approximately to a temperature
of 550 K and transition wavenumber of 15 000 cm−1 for the
�2�-�1� transition. No collisional dephasing rates are included,
and no magnetic sublevel structure of the rovibrational levels
is taken into account. In all further calculations and plots, we
will use this set of parameters, unless stated otherwise.

AUTLER-TOWNES SPLITTING IN THE FLUORESCENCE
EXCITATION SPECTRA

Although the AT splitting for the scheme we are consid-
ering is present in the intermediate and upper levels, experi-
mentally in Doppler-broadened molecular systems it is very
difficult to be observed from the intermediate state due to the
inhomogeneous Doppler broadening. Instead, from the inter-
mediate level one can observe on the background of the
Doppler-broadened excitation spectra the narrow EIT feature
as shown by �4,23,24�. Thus, the AT splitting in the cascade
scheme we are considering is mainly observed from the up-
per level �3�, when the coupling laser is fixed on resonance
and the probe laser is scanned. For this reason in the analysis
that follows we will work with the excitation spectra I3��2

=0� given by Eq. �54�.
As shown by the experimental results given in Refs.

�24,29�, the AT splitting in the excitation spectra of level �3�
in a Doppler-broadened sample is strongly dependent on the
wavenumber ratio �x�=k1 /k2 of the two lasers. For counter-
propagating laser beams �x�0� the experimental results
show a distinct difference between the case −1�x�0,
where the wavenumber of the probe laser k1 is smaller than
the wavenumber of the coupling laser k2, and the case
x�−1, where k1 is larger than k2. In the case −1�x�0
�4,29� the AT splitting in �3� can be observed even at fairly
small coupling Rabi frequencies. In contrast, when x�−1
the experimental fluorescence spectra �24,29� show that the
AT splitting cannot be observed in the range of the experi-
mentally accessible coupling laser Rabi frequencies of up to
500 MHz. In the latter case, even though the AT splitting is
not observed from level �3�, the spectrum from the interme-
diate level �2� clearly shows the EIT effect, thus indicating
the presence of the AT effect in the system. In addition, simu-
lations with only homogeneous broadening present show the
AT splitting in both cases. This indicates that the appearance
of the AT splitting in an inhomogeneously Doppler-
broadened system is governed by the averaging over the ve-
locity distribution of the molecules. As shown in Fig. 4, there
are two types of features in the spectra of level �3�: one
narrow and sharp, dominant at smaller Rabi frequencies, and
a broad one appearing in the spectra at very large �2. The
analysis of the expression for I3��1� in Eq. �54� shows that
the sharp narrow feature is due to the term 1/ �z1−z2� present
in the coefficients Bk, while the broad feature is due to the
w�zk� terms.

From the condition
dI3

d�1
=0 for an extremum of I3��1� with

respect to �1, we can calculate the AT splitting as a function
of the Rabi frequency of the coupling laser �2. Results for

such calculations are shown in Fig. 5 for three different val-
ues of x. The curve with x=−0.9 �i.e., k1�k2� is an example
for the case of counterpropagating probe and coupling lasers.
The case x=−1.2 also is an example of a counterpropagating
configuration, but with k1�k2 and the curve with x=0.9 rep-
resents a copropagating configuration. As the Doppler line-
width is kept the same in all three cases �at �D=1.1 GHz�,
changing the absolute value of x effectively corresponds to
changing the value of k2.

Figure 5 shows that AT splitting depends on �2 in two
ways. The first dependence appears at small Rabi frequen-
cies, and only in the case of −1�x�0, is given by the term
1/ �z1−z2�. As discussed above, this corresponds to the sharp
narrow features in Fig. 4. The second type of dependence
exists for any value of x, but only at large enough values of

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

Ω2 = 0.20GHz
Ω2 = 0.77GHz
Ω2 = 1.20GHz

I 3(
∆ 1
)(
ar
bi
tra
ry
un
its
)

∆1/νD

FIG. 4. Sample simulated spectra for level �3� for the Na2 sus-
tem described above with x=−0.9. The spectra represented by solid,
dotted, and dashed lines correspond to coupling Rabi frequencies
�2 0.20, 0.77, and 1.20 GHz, respectively.
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FIG. 5. The Autler-Townes splitting as a function of the Rabi
frequency of the coupling laser �2 for the Na2 system for three
different values of the ratio x.
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�2, and is given by the terms w�zk�. The splitting due to the
term 1/ �z1−z2� has asymptotic linear behavior as in the case
of the homogeneously broadened media, but the slope is dif-
ferent from unity and is, in general, a function of the ratio x.
In order to understand why this is the case and why this type
of splitting is only present for −1�x�0, we rewrite 1 / �z1

−z2� as

1

z1 − z2
= x�x + 1�� ��1 − i	�2 + x�x + 1��2

2

��1
2 − 	2 + x�x + 1��2

2�2 + 4	2�1
2 ,

�59�

with 	=�12�1+x�−x�13.
The term under the square root,

1

��1
2 − 	2 + x�x + 1��2

2�2 + 4	2�1
2 , �60�

resembles a Lorentzian function with respect to �1
2. Using

the resonance condition �1
2−	2+x�x+1��2

2=0 and the fact
that 	 is usually a small parameter, we see that

�1
AT splitting = 2�− x�1 + x��2, for − 1 � x � 0, �61�

where �1
AT splitting is the peak-to-peak separation of the AT

split spectra. In Fig. 6, the asymptotic behavior given by Eq.
�61� is compared with exact calculations for the AT splitting.
It is obvious that there is good agreement at large enough
coupling Rabi frequencies, especially in the value of the
slope, which is an important parameter in the determination
of the transition dipole moment of the coupling transition
�4�. The resonance condition in �60� exists only for −1�x
�0, because the term x�1+x� is negative. In contrast, when
x�0 or x�−1, the term x�1+x� is positive and the function
�60� has an extremum as a function of �1 only at �1=0. This
unusual behavior of 1 / �z1−z2� is the reason the AT splitting

is only observed in the case of a counterpropagating laser
configuration when k2�k1.

At large enough coupling Rabi frequencies, the w�zi�
terms become dominant and determines the AT splitting and
the shape of the spectra. If the argument of w�zi� satisfies
�zi��1 �always fulfilled for �2�1�, we have the asymptotic
behavior w�zi�� i

��

1
zi

�27,30�. It can be easily shown that for
large �2 ��ij ��2� and correspondingly large AT splitting
��ij ��1� the denominator ziz̃i of the asymptote has a mini-
mum as a function of �1 approximately when

�1�1 + 2x� ± ��1
2 + x�1 + x��2

2 = 0, �62�

which gives us �1= ±
�2

2 . Then, for the splitting �1
AT splitting

defined as the peak-to-peak separation, we have

�1
AT splitting = �2. �63�

Expression �63� is identical with the case of only homoge-
neous broadening present in the system. As is obvious from
Eq. �63�, in this case the splitting does not depend on x. The
AT splitting for any value of x and large enough �2 reaches
this asymptotic behavior �see Fig. 7�.

As can be seen from Figs. 6 and 7, there is a minimum
value of �2 that is required in order for AT splitting to be
observed. We denote this threshold value of the coupling
laser Rabi frequency by �2

T. It is obvious that �2
T is strongly

dependent on the ratio x. Since for the value of �2 at which
the splitting becomes experimentally observable I3��1� has
an inflection point at zero detuning, the condition

�d2I3��1�
d�1

2 �
�1=0

= 0 �64�

may be used to calculate �2
T. Results obtained using Eq. �64�

as a function of the ratio x are given in Fig. 8. As the graph
shows, �2

T is very small in the counterpropagating case for
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FIG. 6. Comparison between exact calculations �solid line� for
the Autler-Townes splitting as a function of the coupling Rabi fre-
quency �2 and the asymptotic behavior �dashed line� given by Eq.
�61� for x=−0.9.
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−1.2, and 0.95 for Autler-Townes splitting as a function of the cou-
pling Rabi frequency �2 and the asymptotic behavior �solid line�
given by Eq. �63�.
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−1�x�0 �−��1/x�−1� and does not depend on the Dop-
pler linewidth. In the counterpropagating case with x�−1
�−1�1/x�0� and for the copropagating case x�0
�0�1/x���, the �2

T grows very rapidly with increasing
1/x. Interpreted in experimental terms, the graph shows that
the Autler-Townes splitting for a cascade scheme �Fig. 1� can
be observed relatively easily in Doppler-broadened samples
only for counterpropagating laser beams when the probe la-
ser wavenumber k1 is smaller than the coupling laser wave-
number k2. In the case of copropagating laser beams, for any
values of the wavenumbers k1 and k2, and in the case of
counterpropagating beams, when the wavenumber of the
probe laser k1 is larger than the wavenumber of the coupling
laser k2, the splitting is very difficult to observe.

AUTLER-TOWNES SPLITTING ASYMPTOTE
FOR EXPERIMENTAL MOLECULAR SYSTEMS

In real molecular systems �4,24� the experimentally re-
corded spectrum is a superposition of spectra originating be-
tween �with the selection rules taken into account� the differ-
ent magnetic sublevels of the corresponding rovibrational
levels. The Rabi frequency �i,M between the corresponding
sublevels is M dependent due to the M dependence of the
transition dipole moment. Thus, expressions �61� and �63�
can be interpreted only as the splitting asymptotes of a mo-
lecular system with given sublevel M. Since it is experimen-
tally difficult to selectively couple specific M components

�31�, generalizing the AT splitting asymptotes to take into
account the M sublevel structure of the molecular systems
would be very useful. Keeping in mind that C3��1

2�2
2 for

the relative intensity of each M component we have

I3
M��1,�1,M,�2,M� � �1,M

2 �1,M
2 . �65�

Thus, if we find the maximum of this function with respect
to M, we will have the effective M value, denoted by M*, to
determine the positions of the AT peaks in the resulting spec-
trum. M* can be found from the condition

d�1,M
2 �1,M

2

dM
= 0 �66�

for an extremum of the function �1,M
2 �1,M

2 . Next using the
definition of Rabi frequency, Eq. �66� can be rewritten in
terms of the transition dipole moments �1,M and �2,M as

d�1,M
2 �2,M

2

dM
= 0. �67�

For example, for 1�→ 1� and 1�→ 1� electronic transitions
the M-dependent transition dipole moment �i,M between spe-
cific magnetic sublevels of �i� and �i+1� can be expressed as
�32�

�i,M = �i
�F1�→1��Ji,Ji+1,M�

for 1� → 1� electronic transition, �68a�

�i,M = �i
�F1�→1��Ji,Ji+1,M�

for 1� → 1� electronic transition, �68b�

where �i
� and �i

� are the parallel and perpendicular compo-
nents of the transition dipole moment between the �i� and
�i+1� rovibrational levels with respect to the internuclear
axis. F1�→1� and F1�→1� are orientation factors �33–35�. The
dependence of the orientation factors from Ji, Ji+1, and M is
governed by the type of transition, the polarization of the
corresponding laser field, and the rotational branch of the
transition. Knowing M* explicitly from Eqs. �67� and �68�
for the AT splitting of the experimental spectrum, we can
write

�1
AT splitting = 2�− x�1 + x��2,M*

= 2�− x�1 + x�F�Ji,Ji+1,M = M*��2. �69�

We have calculated M* for few often encountered transition
combinations in diatomic alkali-metal dimer molecules, with
the results given in Table I. For example, in the case of Ref.
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FIG. 8. Threshold Rabi frequency �2
T as a function of 1/x for a

set of Doppler linewidths of ��D=0.95, 1.10, and 1.50 GHz for the
Na2 system with k1=15 000 cm−1. These values of �D correspond to
temperatures of 400 K, 550 K, and 1000 K.

TABLE I. Effective M* for a linearly polarized probe �L1� and coupling �L2� laser for a set of possible
electronic transition combinations.

E. AHMED AND A. M. LYYRA PHYSICAL REVIEW A 76, 053407 �2007�

053407-8



�4�, where energy levels with X 1�g
+�v1=4 ,J1=15� for �1�,

A 1�g
+�v2=13,J2=14� for �2�, and G 1�g�v3=11,J3=14� for

�3� were used in the experiment, for the factor in Eq. �69� we
have F�J2�= � �M�

�J2�J2+1� �M=M*. Taking into account that M*

= 1
�2

J1 and that the wavenumbers of the transitions are k1

=15 642.636 cm−1 and k2=17 053.954 cm−1 �x=−0.92� for
the slope we obtain

2�− x�1 + x�F�J2,J3,M = M*�

= 2�− x�1 + x�
J1

�2J2�J2 + 1�
= 0.40. �70�

The corresponding value in �4� is 0.42, obtained from fitting
the experimentally measured AT-split spectra as a function of
the coupling Rabi frequency. Being able to calculate the
slope of Eq. �69� in the simple way described above is of
advantage, since the slope is a very important parameter in
extracting the transition dipole moment from the experimen-
tally measured AT-split spectra.

CONCLUSION

Employing the density matrix formalism in the steady-
state limit we give exact expressions for the populations of
the intermediate and upper levels of the cascade excitation

scheme of Fig. 1 for the homogeneously broadened case.
With the aid of perturbatively derived expressions for the
excitation spectra we have studied the properties of the AT
effect with the inhomogeneous Doppler broadening included.
We showed that the Doppler broadening profoundly influ-
ences the observation of the AT splitting with a strong de-
pendence of the splitting on the wavenumber ratio of the
probe and coupling laser and their relative propagation direc-
tion. Additionally, we have investigated the asymptotic be-
haviors of the AT-splitting as a function of the coupling Rabi
frequency and demonstrated a simple way of calculating the
slope of the asymptote when the magnetic sublevels are
taken into account. By analyzing the dependence of the
threshold Rabi frequency �2

T from the wavenumber ratio x
and the Doppler linewidth ��D, we have provided a map of
the optimal conditions for observing AT splitting when Dop-
pler broadening is present.
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