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In this paper, the problem of achieving an arbitrary SU�1,1� coherent state is considered via switching the
control field back and forth between admissible values with minimal number of switching times. When the
controlled system Hamiltonian is hyperbolical or parabolical, the results show that the minimal switching
number is one or two, which lies on whether the argument of the involved control is adjustable or not, and is
independent of the target SU�1,1� coherent state. While for the elliptical case, the results indicate that the
minimal number of switches needed depends on the target SU�1,1� coherent state and is provided as a function
of it. In this case, one switch can also be saved if the argument of the involved control is adjustable. The theory
developed here can also be extended to solve the optimal bang-bang control problem for a general SU�1,1�
time evolution.
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I. INTRODUCTION

1In order to realize the desired states transition, strategy
based on Lie group decomposition has been presented for
both compact �1� and noncompact �2� quantum systems in
recent years. In comparison with other existing quantum con-
trol techniques, the merit of this method is that it does not
need any approximations or iterative calculations. The main
idea of this approach is to decompose the desired system
evolution operator Uf as the following product �in the system
of units such that �=1�:

Uf = �
k=1

Q

e−itk�H0+ukHI�, �1�

where H0 and HI are the drift Hamiltonian and the control
Hamiltonian, respectively. Accordingly, one can obtain the
piecewise constant control field u�t�, which takes value uk in
the time period �l=1

k−1tl� t��l=1
k tl and switches Q−1 times.

In practice, however, there always exists a rise or decay
time between two adjacent control pulses. In addition, it is
difficult to implement the required switch exactly at the ideal
switch point. To reduce the error introduced by the switches,
it is natural to consider the problem of controlling the sys-
tems with minimal switches, i.e., achieving the decomposi-
tion �1� for the desired Uf with minimal number of factors.
This minimization problem is mathematically related to the
uniform finite generation problem on Lie groups �3–8�,
which has been extensively explored since the 1970s. If the
Lie algebra of a connected Lie group G is generated by
X1 ,X2 , . . . ,Xn, the problem on the uniform generation is to
find the minimum integer number k such that every element
of G can be decomposed as the product of exp�tiXi� with k
factors. The integer k is called the order of the generation of
G with respect to the generators X1 ,X2 , . . . ,Xn. For a system
to evolve on the Lie group G, one can obtain the switching
control law with its switches less than the generation order

and realize any desired evolution. The generation order is
always finite when G is compact �8�, however, it may be
infinite when G is noncompact �5�. To further reduce the
noise that might be introduced to the system by the switches,
we shall look for the exact minimal number of switches
needed to realize a desired system evolution. In �9�, with the
control field switching back and forth between two different
values, D’Alessandro obtained the optimal switching con-
trols for the systems evolving on the rotation group.

In this paper, we consider the quantum system whose
Hamiltonian preserves, during the evolution process, the
SU�1,1� coherent states �CS’s�. The aim is to realize an ar-
bitrary SU�1,1� CS from the vacuum state by piecewise con-
stant control fields with minimal number of switching times.
The properties of quantum systems with SU�1,1� symmetry
have been extensively studied in the literature �10–20�, and
such dynamical models can be successfully used to describe
various physical processes. Notice that any SU�1,1� CS can
be obtained from the vacuum state by the action of the
squeezing operator, the optimal switching control problem
can be solved by considering the time evolution of the cor-
responding propagator. By introducing the unimodular
Möbius transformation, we obtain the minimal switches for
all the possible situations.

The paper is organized as follows. In Sec. II, we first
introduce the controlled system model for the SU�1,1� CS’s.
Then, by the unimodular Möbius transformation, the desired
squeezing operators are one-to-one mapped to the points on
the open unit disk, which provides the main approach in this
paper. In Sec. III, the main results are obtained on the opti-
mal switching control problem for all the possible situations,
which include the hyperbolical, parabolical, and elliptical
cases. The conclusion is drawn in Sec. IV.

II. FORMULATION

A. Model

In this paper, we consider the following Hamiltonian that
preserves SU�1,1� CS’s �11,12�*wujw03@mails.tsinghua.edu.cn

PHYSICAL REVIEW A 76, 053403 �2007�

1050-2947/2007/76�5�/053403�7� ©2007 The American Physical Society053403-1

http://dx.doi.org/10.1103/PhysRevA.76.053403


H�t� = 2�0K0 + u�t�K+ + ū�t�K−, �2�

where u�t� is an arbitrary complex function of time which is
referred to as the external control field. This time-dependent
Hamiltonian can be used to describe many physical pro-
cesses such as degenerate parametric amplifier �12�. The op-
erators K0, K±=K1± iK2 are the generators of the Lie algebra
of SU�1,1�, which satisfy the following commutation rela-
tions:

�K0,K±� = ± K±, �K−,K+� = 2K0. �3�

Accordingly, the invariant Casimir operator is given by C
=K0

2− 1
2 �K+K−+K−K+�, which has eigenvalue k�k−1� under

the positive discrete series unitary irreducible representation
denoted by D+�k�, where the non-negative integer k is the
so-called Bargmann index. Denote the basis states of D+�k�
as �m ,k�, where m=0,1 , . . ., then K0 is diagonalized as

K0�m,k� = �m + k��m,k� . �4�

Accordingly, K± act as raising and lowering operators as

K+�m,k� = ��m + 1��m + 2k��1/2�m + 1,k� ,

K−�m,k� = �m�m + 2k − 1��1/2�m − 1,k� . �5�

Following Perelomov, the SU�1,1� CS’s are then given by
�11,21�

��,k� = D����0,k�

= exp��K+ − �̄K−��0,k�

= �1 − ���2�k�
m=0

� 	��m + 2k�
m ! ��2k� 


1/2

�m�m,k� , �6�

where �=−�	 /2�e−i
, �=−tanh�	 /2�e−i
, with the parameters

 and 	 obeying 0�	��, 0�
�2�. Assume that the in-
volved quantum state is initially prepared as the vacuum
state �0,k� at time t=0. Then, the desired SU�1,1� CS �� ,k�
can be achieved by steering the system

iU̇�t� = �2�0K0 + u�t�K+ + ū�t�K−�U�t� �7�

from its initial U�0�= I to the terminal U�T�=D���.
In practice, the amplitude of the control u�t� in �2� is

usually restricted by an upper bound c, i.e., the admissible
control should satisfy �u�t���c. Here, we consider the case
when the control field can switch back and forth between
two extremal values u1 and u2, where u1=−u2=cei �0�
�2��. In the control theory, this control strategy is well
known as the bang-bang control. Accordingly, we obtain two
Hamiltonians

H1 = 2�0K0 + ceiK+ + ce−iK− �8�

and

H2 = 2�0K0 − ceiK+ − ce−iK−. �9�

By switching back and forth between H1 and H2, the final
evolution operator that can be generated is of the following
form:

Uf = e−iH2tne−iH1tn−1
¯ e−iH2t2e−iH1t1, �10�

where t1, tn�0, and ti�0 �i=2,3 , . . . ,n−1�. The goal of
this paper is to determine the minimal number of factors
needed, for any desired squeezing operator D���, such that

D���=e−iH0t0�Ufe
−iH0t0�, where the drift term H0=2�0K0 of the

system Hamiltonian is corresponding to the control u=0.

B. Main Idea

We shall be interested in the 2�2 non-Hermitian realiza-
tion of the Lie algebra SU�1,1�, in which the generators are
correspondingly identified as

K0 =
1

2
�3, K1 =

i

2
�2, K2 = −

i

2
�1, �11�

where �i are the Pauli matrices. Accordingly, any given
squeezing operator D��� is then an element of the Lie group
SU�1,1�, and can be written as

D��� = 	 cosh��� �̄
���sinh���

�̄
���sinh��� cosh���



= 	 cosh�	/2� ei��−
� sinh�	/2�

e−i��−
� sinh�	/2� cosh�	/2�

 , �12�

where �=−�	 /2�e−i
, 0�	��, and 0�
�2�. Similarly,
the time evolution propagators corresponding to the Hamil-
tonian Hl �l=1,2� can be written as

U�t� = exp�− itHl� = 	a b

b̄ ā

 , �13�

where

a = cos�t��0
2 − c2� −

i�0

��0
2 − c2

sin�t��0
2 − c2� ,

b = −
iceiei�l−1��

��0
2 − c2

sin�t��0
2 − c2� , �14�

when �0�c, and

a = 1 − i�0t ,

b = − iceiei�l−1��t , �15�

when �0=c, and

a = cosh�t�c2 − �0
2� −

i�0

�c2 − �0
2
sinh�t�c2 − �0

2� ,

b = −
iceiei�l−1��

�c2 − �0
2

sinh�t�c2 − �0
2� , �16�

when �0�c. We call the Hamiltonian Hl �l=1,2� elliptical
�parabolical or hyperbolical� when �0�c ��0=c or �0�c�.

For any given SU�1,1� element
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X = 	a b

b̄ ā

, �a�2 − �b�2 = 1, �17�

one can introduce the unimodular Möbius transformation R
defined by

R�z;X�: =
az + b

b̄z + ā
. �18�

For any given X1 ,X2�SU�1,1�, it can be verified that
R�z ;X2X1�=R(R�z ;X1� ;X2). Let

M�X�: = R�0;X� , �19�

where X�SU�1,1�. Since any given point in the open unit
disk D= ��z�C��z��1 can be written as ei��−
� tanh�	 /2�,
the mapping M maps the squeezing operators one to one and
onto D. Notice that R�0;X�=0 holds if, and only if, X
=exp�−iH0t0� for some t0� �0,2� /�0�, the subgroup G
= ��X�SU�1,1��X=exp�−iH0t0� , t0� �0,2� /�0� is the
maximum isotropy group, with respect to the mapping M�·�,
of the point z=0. Thus, M�·� is an isomorphism from the
coset space SU�1,1� /G to D. This indicates that for arbitrary
X1 ,X2�SU�1,1�, R�0;X1�=R�0;X2� holds if, and only if,
X1=X2 exp�−iH0t0� for some t0� �0,2� /�0�.

Based on the above discussion, one can obtain the optimal
switching control fields steering the quantum system from
the initial vacuum state to a desired SU�1,1� CS state, �� ,k�,
as follows.

Step 1. Calculate the squeezing operator D��� such that
�� ,k�=D����0,k�.

Step 2. Obtain the point zf in the open unit disk that the
squeezing operator D��� is mapped to by the mapping M�·�.

Step 3. Realize the evolution operator Uf with minimal
number of factors such that �R�0,Uf��= �zf� is in the form
Uf =e−iH2tne−iH1tn−1

¯e−iH2t2e−iH1t1.
Step 4. Determine the parameter t0� such that R(0,exp

�−iH0t0��Uf)=zf.
Step 5. Determine the parameter t0� such that D���=exp

�−iH0t0��Uf exp�−iH0t0��.

III. MAIN RESULTS

In this section, we evaluate the minimal switches needed
to realize a desired squeezing operator D��� by looking for
the path that connects the origin z0=0 and the target point
zf =M(D���)=ei��−
� tanh�	 /2�, which follows the trajecto-
ries generated by R�z ,e−iH1t�, R�z ,e−iH2t�, and R�z ,e−iH0t�.
Three different cases with respect to the controlled Hamilto-
nians H1 and H2 will be taken into account.

A. Hyperbolical case

When c��0, H1 and H2 are hyperbolical corresponding
to the control u1=cei and u2=−cei, respectively, where
� �0,2�� is a fixed real number. Consider the trajectories
given by

M„exp�− iHlt�… =

−
iceiei�l−1��

�c2 − �0
2

sinh�t�c2 − �0
2�

cosh�t�c2 − �0
2� +

i�0

�c2 − �0
2
sinh�t�c2 − �0

2�

=
− iceiei�l−1�� tanh�t�c2 − �0

2�
�c2 − �0

2 + i�0 tanh�t�c2 − �0
2�

, �20�

where l=1,2. For any time t, we have

�M„exp�− iHlt�… +
ul

2�0
� =

c

2�0
�1

−
i2�0 tanh�t�c2 − �0

2�
�c2 − �0

2 + i�0 tanh�t�c2 − �0
2�
�

=
c

2�0
�

1

2
. �21�

This equation shows that the time evolution of
M(exp�−iHlt�) follows a circular trajectory centered at z=
−

ul

2�0
with radius r= c

2�0
�see Fig. 1�.

It is easy to show that �M(exp�−iHlt�)� �l=1,2� increases
monotonously as the time t increases. Moreover, as t goes to
infinite, we have

lim
t→+�

�M„exp�− iHlt�…�

= lim
t→+�

� − iceiei�l−1�� tanh�t�c2 − �0
2�

�c2 − �0
2 + i�0 tanh�t�c2 − �0

2�
�

= � − iceiei�l−1��

�c2 − �0
2 + i�0

� = 1. �22�

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

z = 0

z = −iul√
c2−ω2

0+iω0
z = − ul

2ω0

|z + ul
2ω0

| = 1

|z| = 1

z = M(e−iHlt)

Re(z)

Im
(z

)
FIG. 1. �Color online� The trajectory of M(exp�−itHl�) �l=1 or

2� on the complex plane with respect to c��0, where ul /�0

=2+2i.
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Therefore, to reach the target point zf from the origin z0=0,
one can first reach a point z1 such that �z1�=tanh�	 /2� by
following the trajectory M(exp�−iH1t�) �or M(exp�−iH2t�)�.
If z1�zf, one can reach the point zf from z1 by following the
trajectory R(z1 ,exp�−iH0t�), because it follows a circle cen-
tered at z=0 with radius r=tanh�	 /2�. This indicates that one
can construct an evolution operator of the form

Uf = exp�− iH0t0��exp�− iHlt1� , �23�

where l=1 or 2, such that M�Uf�=zf, which enables one to
realize the desired squeezing operator D��� as

D��� = exp�− iH0t0��exp�− iHlt1�exp�− iH0t0�� . �24�

If the parameter  can be adjusted to be any value in �0,2��,
then, for any fixed time t, the argument of M(exp
�−iHlt�) �l=1,2� can take any value in �0,2�� by appropri-
ately tuning . Combining with �22�, one can immediately
draw the conclusion that �z= �M(exp�−iHlt�)�t
�0,� �0,2��=D�l=1,2�, which implies that any target
point zf in D can be reached from the origin z0=0 without
any switch by following the trajectory of M(exp�−iH1t�) or
M(exp�−iH2t�). This enables one to realize the desired
squeezing operator D��� by only one switch, i.e.,

D��� = exp�− iHlt1�exp�− iH0t0� , �25�

where l=1 or 2.
In conclusion, we have the following proposition.
Proposition III.1. Consider the case that the magnitude c

of the controls u1 and u2 is greater than �0. If the control u1
has a fixed argument, then at least two switches are needed to
realize a desired SU�1,1� CS. If the argument of the control
u1 is adjustable in �0,2��, then only one switch is required.

B. Parabolical case

In this case, H1 and H2 are parabolical Hamiltonians cor-
responding to the controls u1=�0ei and u2=−�0ei, where
� �0,2��. The corresponding trajectories are then given by

M„exp�− iHlt�… =
− i�0eiei�l−1��t

1 + i�0t
, �26�

where l=1,2. It also can be verified that, for any time t,

�M„exp�− iHlt�… +
ul

2�0
� =

1

2
�1 −

i2�0t

1 + i�0t
� =

1

2
. �27�

This implies that M(exp�−iHlt�) �l=1,2� evolves on the

circle �z+
ul

2�0
�= 1

2 , which is tangent to the unit circle �z�=1 at
the point z=−eiei�l−1�� �see Fig. 2�.

In this case, �M(exp�−iHlt�)� �l=1,2� also increases mo-
notonously with time t, and

lim
t→+�

�M„exp�− iHlt�…� = lim
t→+�

�− i�0eiei�l−1��t

1 + i�0t
� = 1.

�28�

Similar to the hyperbolical case, we have the following
proposition.

Proposition III.2. For the case that the magnitude c of the
controls u1 and u2 is exactly �0, at least two switches are
required to realize an arbitrary desired SU�1,1� CS with the
argument, , of u1 fixed. If the argument of the control u1 is
adjustable in �0,2��, then only one switch is needed.

C. Elliptical case

When c��0, H1 and H2 are elliptical Hamiltonians cor-
responding to the control u1=cei and u2=−cei, where
� �0,2��. In this case, the trajectory driven by Hl �l
=1,2� starting from the point z=kul with 0�k�1/c can be
determined by

R„kul;exp�− iHlt�… =

�cos�t��0
2 − c2� −

i�0

��0
2 − c2

sin�t��0
2 − c2��kul −

iceiei�l−1��

��0
2 − c2

sin�t��0
2 − c2�

ice−ie−i�l−1��

��0
2 − c2

sin�t��0
2 − c2�kul + cos�t��0

2 − c2� +
i�0

��0
2 − c2

sin�t��0
2 − c2�

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z = 0

|z| = 1

|z + ul
2ω0

| = 1
2

z = M(exp(−iHlt))

z = −ieiφei(l−1)π

z = − ul
2ω0

Re(z)

Im
(z

)
FIG. 2. �Color online� The trajectory of M(exp�−itHl�) on the

complex plane with ul=
�2
2 �1+ i��0.
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=
k��0

2 − c2 − i�k�0 + 1�tan�t��0
2 − c2�

��0
2 − c2 + i�kc2 + �0�tan�t��0

2 − c2�
ul. �29�

One can verify that for every t�0,

�R„kul;exp�− iHlt�… −
k2c2 − 1

2�kc2 + �0�
ul�

= � k��0
2 − c2 − i�k�0 + 1�tan�t��0

2 − c2�
��0

2 − c2 + i�kc2 + �0�tan�t��0
2 − c2�

−
k2c2 − 1

2�kc2 + �0��c

=
k2c2 + 2k�0 + 1

2�k2c2 + �0�
c . �30�

Thus, the trajectory R(kul ; exp�−iHlt�) �l=1,2� is restricted
on a circle centered at z= k2c2−1

2�kc2+�0�ul with radius r

=
k2c2+2k�0+1

2�k2c2+�0� c in the open unit disk D �see Fig. 3�.
Analysis of �29� shows that �R(kul ; exp�−iHlt�)� �l=1,2�

increases monotonously with t when t�� n�
��0

2−c2 ,
�2n+1��

2��0
2−c2� �n

=0,1 ,2 , . . .�, while it is monotonously decreasing on the in-

terval � �2n+1��

2��0
2−c2 ,

�n+1��

��0
2−c2� �n=0,1 ,2 , . . .�. The values of R(· ; ·)

at t�= n�
��0

2−c2 and t�=
�2n+1��

2��0
2−c2 can be calculated by �29� as

R„kul;exp�− iHlt��… = kul �31�

and

R„kul;exp�− iHlt��… = −
k�0 + 1

kc2 + �0
ul. �32�

Notice that kc�1 and c��0, it can be verified that

k �
k�0 + 1

kc2 + �0
�

1

c
. �33�

This implies that for any t�0, the following inequality
holds:

kc � �R„kul;exp�− iHlt�…� �
k�0 + 1

kc2 + �0
c . �34�

Define the sequence �zn, with z0=0 and

z2m+1: = R„z2m;exp�− iH1t̃�… ,

z2m+2: = R„z2m+1;exp�− iH2t̃�… , �35�

where t̃= �

2��0
2−c2 . Making use of �32�, we can obtain

�zn� =
��zn−1�/c��0 + 1

��zn−1�/c�c2 + �0
c =

�zn−1��0 + c

�zn−1�c + �0
, �36�

which in turn gives

�zn� − �zn−1�
1 − �zn��zn−1�

=
c

�0
. �37�

Let rn=arctanh�zn�, then �37� is equivalent to rn−rn−1

=arctanh c
�0

. Making use of �32�, one can further obtain that
zn=tanh�n arctanh c

�0
�ei�+n��.

Based on the above discussions, we are now ready to give
the path between the origin z0=0 and the desired target point
zf =M(D���)=ei��−
� tanh�	 /2� with minimal number of
switches. First, following the circular trajectory R(0;exp
�−iH1t�) from t=0 to t= �

2��0
2−c2 , we arrive at the point z1,

which has maximal magnitude in this trajectory. Then, fol-
lowing the circular trajectory R(z1 ;exp�−iH2t�) for a time
period t= �

2��0
2−c2 , we arrive at the point z2, which still has

maximal magnitude correspondingly. Further, proceeding on
the circular trajectory R(z2 ;exp�−iH1t�) for another time pe-
riod t= �

2��0
2−c2 , we reach the point z3. Similarly, following the

circular trajectory R(z3 ;exp�−iH2t�) for a time period t
= �

2��0
2−c2 , again, leads us to the point z4. Continuing the evo-

lution in such a spiral manner, we can construct a path with
switching points z1 ,z2 , . . . ,zn , . . ., where zn

=tanh�n arctanh c
�0

�ei�+n��. Let

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z = k2c2−1
2(kc2+ω0)

ul

z = kul

z = − kω0+1
kc2+ω0

ul

|z| = 1

z = R(kul; exp(−iHlt))

Re(z)

Im
(z

)

FIG. 3. �Color online� The trajectory of R(kul ; exp�−iHlt�)
on the complex plane with respect to c��0, where k= 3

4 and
ul

�0

= 3
8 �1+ i�.
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N = � 	
2

arctanh c
�0

� , �38�

where �a� denotes the minimal integer number that is not less
than a, then we have

�zN−1� � �zf� = tanh
	

2
� �zN� . �39�

The above inequality implies that the trajectory will cross the
circle �z�= �zf� at a point z̃ f after N−1 switches. Accordingly,
we obtain an evolution operator Uf,

Uf = e−H2tNe−H1tN−1
¯ e−H2t2e−H1t1, �40�

or

Uf = e−H1tNe−H2tN−1
¯ e−H2t2e−H1t1, �41�

where tN is possibly equal to zero, such that M�Uf�= z̃ f.
Then, following the trajectory R(z̃ f ; exp�−iH0t�) for a time
period t= t0�, one can finally reach the desired target point zf.
Similarly, if the argument of the control u1 can be adjusted
according to the value of zf, the point z̃ f can be obtained such
that z̃ f =zf. Since the operator exp�−iH0t0��Uf only differs
from the desired squeezing operator D��� with a possible

factor e−H0t0� on the right-hand side, we have the following
proposition.

Proposition III.3. For the controls u1=cei and u2
=−cei with c��0 and fixed argument , the minimal num-
ber of switches needed to realize the desired SU�1,1� CS
�� ,k� is � 	

2 /arctanh c
�0

�, where �=−tanh�	 /2�e−i
. If the argu-
ment  of the control u1 is adjustable according to the value
of �, the minimal number of switches is � 	

2 /arctanh c
�0

�−1.
For example, assume that �0 /c=2. Consider the problem

of achieving the SU�1,1� CS �� ,k�, where �=−e−i5�/4 tanh3
2 ,

from the vacuum state �0,k� by switching the control back
and forth between u0=0, u1=cei�/4, and u2=−cei�/4.

The squeezing operator that shifts the vacuum state �0,k�
to the target state �� ,k� is D���=D�− 3

2e−i5�/4�. Accordingly,
the point in the open unit disk D corresponding to D��� is
zf =M(D���)=e−i�/4 tanh3

2 . Since � 3
2 /arctanh1

2 �=3, at least
three switches are needed. One can obtain the evolution Uf
such that M(Uf)=zf as

Uf = e−H0t0�e−H1t3e−H2t2e−H1t1, �42�

where t1= t2= �

2�3c
, t3= 0.5204

c , and t0�= 2.9625
c . Multiplied by a

factor e−H0t0� on the right-hand side of Uf, where t0�= 1.1921
c , we

obtain the desired squeezing operator as

D��� = e−H0t0�e−H1t3e−H2t2e−H1t1e−H0t0�. �43�

If the controls u1 and u2 can be selected as u1=cei1.5019 and
u2=−cei1.5019, we can further save one time of the switch to
achieve the desired squeezing operator D���. Correspond-
ingly, we have

D��� = e−H1t3e−H2t2e−H1t1e−H0t0�, �44�

where t0�= 1.0130
c . Referring to Fig. 4, every piece of trajectory

of the optimal path between z0=0 and zf =e−�/4 tanh3
2 is pro-

vided.

IV. CONCLUSION

In this paper, we have studied the problem of achieving an
arbitrary SU�1,1� CS by switching the control field back and
forth between two admissible values with a minimal number
of switches. By the unimodular Möbius transformation, the
desired squeezing operators are one-to-one and mapped to
the open unit disk in the complex plane. Accordingly, the
minimal number of switches is obtained by analyzing the
paths connecting the origin z0=0 and the target point zf cor-
responding to the desired SU�1,1� CS. The minimal number
of switches needed is shown to be a function of the desired
squeezing operator. The results show that, for both the hy-
perbolical and parabolical cases, the minimal switching num-
ber is at most two, depending on whether the argument of the
involved control is adjustable or not. The elliptical case is
more complicated, and the minimal number of switches also
depends on the magnitude of the point corresponding to the
desired squeezing operator.

The restrictions imposed on the involved control fields are
practical in the experiment and hence our results are appli-
cable. We do not see any major obstacles to extending the
theory developed here to solve the optimal switching prob-
lem of states transition between two arbitrary SU�1,1� CS’s,
or a general time evolution on the SU�1,1� Lie group.
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