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We study the photon emission due to a magnetic spin-flip transition of a two-level atom in the vicinity of a
dielectric body such as a normal conducting metal or a superconductor. For temperatures below the transition
temperature Tc of a superconductor, the corresponding spin-flip lifetime is boosted by several orders of mag-
nitude as compared to the case of a normal conducting body. Numerical results of an exact formulation are also
compared to a previously derived approximative analytical expression for the spin-flip lifetime, and we find
excellent agreement. We present results on how the spin-flip lifetime depends on the temperature T of a
superconducting body as well as its thickness H. Finally, we study how nonmagnetic impurities as well as
possible Eliashberg strong-coupling effects influence the spin-flip rate. It is found that nonmagnetic impurities
as well as strong-coupling effects have no dramatic impact on the spin-flip lifetime.
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I. INTRODUCTION

It is well known that the rate of spontaneous emission of
atoms will be modified due to the presence of a dielectric
body �1�. In current investigations of atom microtraps this
issue is of fundamental importance since such decay pro-
cesses have a direct bearing on the stability of, e.g., atom
chips. In magnetic microtrap experiments, cold atoms are,
e.g., trapped due to the presence of magnetic field gradients
created by current carrying wires �2�. Such microscopic traps
provide a powerful tool for the control and manipulation of
cold neutral atoms over micrometer distances �3�. Unfortu-
nately, this proximity of the cold atoms to a dielectric body
introduces additional decay channels. Most importantly,
Johnson-noise currents in the material give rise to electro-
magnetic field fluctuations. For dielectric bodies at room
temperature made of normal conducting metals, these fluc-
tuations may be strong enough to deplete the quantum state
of the atom and, hence, expel the atom from the magnetic
microtrap �4�. Reducing this disturbance from the surface is
therefore strongly desired. In order to achieve this, the use of
superconducting dielectric bodies instead of normal conduct-
ing metals has been proposed �5�. Some experimental work
in this context has been done as well, e.g., by Nirrengarten et
al. �6�, where cold atoms were trapped near a superconduct-
ing surface.

In the present article we will consider the spin-flip rate
when the electrodynamic properties of the superconducting
body are described in terms of either a simple two-fluid
model or in terms of the detailed microscopic Mattis-
Bardeen �7� and Abrikosov-Gor’kov-Khalatnikov �8� theory
of weak-coupling BCS superconductors. In addition, we will
also study how nonmagnetic impurities, as well as strong
coupling effects according to the low-frequency limit of the
Eliashberg theory �9�, will affect the spontaneous emission
rate.

II. GENERAL THEORY

Following Ref. �10� we consider an atom in an initial state
�i� and trapped at position rA= �0,0 ,z� in vacuum near a
dielectric body. The rate �B of spontaneous and thermally
stimulated magnetic spin-flip transition into a final state �f� is
then

�B = �0
2��BgS�2

�
�
j,k

SjSk
�Im�� � � � G�rA,rA,��� jk�n̄ + 1� ,

�1�

where we have introduced the dimensionless components

Sj �	f �Ŝj /��i� of the electron spin operators Ŝj with
j=x ,y ,z. Here gS
2 is the gyromagnetic factor of the elec-
tron and G�r ,r� ,�� is the dyadic Green tensor of Maxwell’s
theory. Equation �1� can be derived from Fermi’s golden rule
and the correlation spectrum of the electromagnetic field
fluctuations �11,12�. It also follows from a consistent
quantum-mechanical treatment of electromagnetic radiation
in the presence of an absorbing body �13,14�. In this theory a
local response is assumed; i.e., the characteristic skin depth
should be larger than the mean free path of the electric
charge carriers of the absorbing body. Thermal excitations of
the electromagnetic field modes are accounted for by the
factor �n̄+1�, where n̄=1/ �e��/kBT−1� and ��2�� is the
angular frequency of the spin-flip transition. Here T is the
temperature of the dielectric body, which is assumed to be in
thermal equilibrium with its surroundings. The dyadic Green
tensor G�r ,r� ,�� is a unique solution to the Helmholtz
equation

� � � � G�r,r�,�� − k2��r,��G�r,r�,�� = 	�r − r��1 ,

�2�

with appropriate boundary conditions. Here k=� /c is the
wave number in vacuum, c is the speed of light, and 1 is the
unit dyad. The dyadic tensor G�r ,r� ,�� contains all relevant
information about the geometry of the material and, through
the relative electric permittivity ��r ,��, about its dielectric
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properties. The fluctuation-dissipation theorem is built into
this theory �13,14�.

The decay rate �B
0 of a magnetic spin-flip transition for an

atom in free-space is well known �see, e.g., Refs. �1,10��.
This free-space decay rate is �B

0 =�BS2, where �B
=�0��BgS�2k3 / �3��� and where we have introduced the di-
mensionless spin factor S2�Sx

2+Sy
2+Sz

2. The free-space life-
time corresponding to this magnetic spin-flip rate is

B

0 �1/�B
0 . In the present paper we only consider 87Rb atoms

that are initially pumped into the �5S1/2 ,F=2,mF=2�
��2,2� state and assume as a rate-limiting transition
�2,2�→ �2,1� in correspondence with recent experiments
�6,15–17�. The spin factor is S2=1/8 �cf. Ref. �10�� and the
frequency is �=560 kHz. The numerical value of the free-
space lifetime then is 
B

0 =1.14�1025 s.
In the following we will consider a geometry where an

atom is trapped at a distance z away from a dielectric slab
with thickness H. Vacuum is on both sides of the slab, i.e.,
��r ,��=1 for any position r outside the body. The slab can,
e.g., be a superconductor or a normal conducting metal de-
scribed by a dielectric function ����. The total transition rate
for magnetic spontaneous emission,

�B = ��B
0 + �B

slab��n̄ + 1� , �3�

can then be decomposed into a free part and a part purely due
to the presence of the slab. The latter contribution for an
arbitrary spin orientation is then given by

�B
slab = 2�B

0��Sx
2 + Sy

2�I� + Sz
2I�� , �4�

with the atom-spin-orientation-dependent integrals

I� =
3

16kz
Re�


0

2kz

dx eix�CN�x� − � x

2kz�2

CM�x��
+ 


0

�

dx e−x1

i �CN�ix� + � x

2kz�2

CM�ix��� , �5�

I� =
3

8kz
Re�


0

2kz

dx eix�1 − � x

2kz�2�CM�x�

+ 

0

�

dx e−x1

i �1 + � x

2kz�2�CM�ix�� , �6�

where the scattering coefficients are given by �18�

CN�x� = rp�x�
1 − eixH/z

1 − rp
2�x�eixH/z , �7�

CM�x� = rs�x�
1 − eixH/z

1 − rs
2�x�eixH/z . �8�

The electromagnetic-field-polarization-dependent Fresnel co-
efficients are

rp�x� =
����x − ��2kz�2����� − 1� + x2

����x + ��2kz�2����� − 1� + x2
, �9�

rs�x� =
x − ��2kz�2����� − 1� + x2

x + ��2kz�2����� − 1� + x2
. �10�

For the special case H=�, the integrals in Eqs. �5� and �6�
are simply a convenient rewriting of Eqs. �8�–�12� in Ref.
�19�. Note that I�
2I� provided kz�1. Throughout this ar-
ticle, we use the same spin-orientation as in Refs. �5,20�, i.e.,
Sy

2=Sz
2 and Sx=0.

III. TWO FLUID- AND DRUDE-LIKE MODELS

As the total current density is assumed to respond linearly
and locally to the electric field, the dielectric function ����
can be written in the form

���� = 1 −
�2�T�
�0�

+ i
�1�T�
�0�

. �11�

Here ��T���1�T�+ i�2�T� is the, in general, frequency-
dependent, complex optical conductivity. We may now pa-
rametrize this complex conductivity in terms of the London
penetration length 
L�T���1/��0�2�T� and the skin depth
	�T���2/��0�1�T�. In this case, the dielectric function is
����=1−1/k2
L

2�T�+ i2/k2	2�T�. If, in addition, we consider
a nonzero and sufficiently small frequency in the range
0����g�2��0� /�, where ��0� is the energy gap of the
superconductor at zero temperature, the current density may
be described in terms of a two-fluid model �21�. The London
penetration length is 
L�T�=
L�0� /�ns�T� /n0 and the skin
depth is 	�T�=	�Tc� /�nn�T� /n0. Here the electron density in
the superconducting and normal state is ns�T� and nn�T�, re-
spectively, such that ns�T�+nn�T�=n0 and ns�0�=nn�T�Tc�
=n0 �21�. A convenient summary of the two-fluid model is
expressed by the relations

�1�T� = �n
nn�T�

n0
, �2�T� = �L

ns�T�
n0

, �12�

where �n��1�Tc� and �L�1/��0
L
2�0�. Considering, in

particular, the Gorter-Casimir temperature dependence �22�
for the current densities, the electron density in the
normal state is nn�T� /n0= �T /Tc�4. For niobium we use
	�Tc�=�2/��0�n
150 �m as �n
2�107 �� m�−1 and

L�0�=35 nm according to Ref. �23�. In passing, we remark
that the value of �n as obtained in Ref. �24� is two orders of
magnitude larger than the corresponding value inferred from
the data presented in Ref. �23�.

The lifetime 
B�1/�B for photon emission as a function
of T is shown in Fig. 1 for H=0.9 �m �curve �iii��. We
confirm the observation in Ref. �20� that for temperatures
below Tc and for H=� �curve �ii��, the spin-flip lifetime is
boosted by several orders of magnitude. In Ref. �20�, the
spin-flip lifetime was, however, calculated by making use of
the approximative and analytical expression


0
B


B = �n̄ + 1��1 + �3

4
�3

��0�
�1�T�

�2
3/2�T�

1

�kz�4� , �13�

valid provided 
L�T��	�T� and 
L�T��z�
. Comparing
this analytical expression with the numerical results as pre-
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sented in Fig. 1, based on the exact equations �3�–�10�, we
find excellent agreement. This observation remains true
when �1�T� and �2�T� are obtained from more detailed and
microscopic considerations to be discussed below. For tem-
peratures T /Tc�1 we can neglect the �2�T� dependence and,
for 	�T��z, we confirm the result of Ref. �5�, i.e.,


0
B


B = �n̄ + 1��1 + �3

4
�3� 2�0�

�1�T�
1

�kz�4� . �14�

For T�Tc we have to resort to numerical investigations.
Equations �13� and �14� can also be obtained from the
asymptotic form of the various expressions in Ref. �12�.

In contrast to the traditional Drude model, more realistic
descriptions of a normal conducting metal in terms of a per-
mittivity include a significant real contribution to the dielec-
tric function in addition to an imaginary part. One such de-
scription is discussed in Ref. �25�, where

���� = 1 −
�p

2

�2 + ��T�2 + i
��T��p

2

���2 + ��T�2�
�15�

and ���T�=0.0847�T /��5�0
�/Tdx x5ex / �ex−1�2 eV using a

Bloch-Grüneisen approximation. Here �=175 K for
gold. The plasma frequency is ��p=9 eV. For
�=2��560 kHz and for temperatures T�0.25Tc, we ob-
serve that Eq. �15� leads to �1�T���2�T�, and that for lower
temperatures, �2�T� will be the dominant contribution to the
conductivity. For temperatures T /Tc�1, with use of Eq. �15�
we can set �2�T��0 when calculating the lifetime. For a
bulk material of gold this leads to almost two orders of mag-
nitude longer lifetime as compared to niobium since for gold
	�Tc�
1 �m, using the parameters corresponding to Fig. 1.
This finding is in accordance with Eq. �14�. As seen from

Fig. 1, for a thin film and for T /Tc�1 we find the opposite
and remarkable result: i.e., a decrease in conductivity can
lead to a larger lifetime.

IV. MICROSCOPIC DESCRIPTIONS

A much more detailed and often used description of the
electrodynamic properties of superconductors than the
simple two-fluid model was developed by Mattis and
Bardeen �7� and independently by Abrikosov, Gor’kov, and
Khalatnikov �8�, based on the weak-coupling BCS theory of
superconductors. In the clean limit, i.e., l��0, where l is the
electron mean free path and �0 is the coherence length of a
pure material, the complex conductivity, normalized to �n
��1�Tc�, can be expressed in the form �26�

��T�
�n

= 

��T�−��

� dx

��
tanh� x + ��

2kBT
�g�x�

− 

��T�

� dx

��
tanh� x

2kBT
�g�x� , �16�

where g�x�= �x2+�2�T�+��x� /u1u2 and u1=�x2−�2�T�, u2

=��x+���2−�2�T�. Here, the well-known BCS temperature
dependence for the superconducting energy gap ��T� is
given by �27�

ln����D + ����D�2 + �2�0��/��0��

= 

0

��D dx
�x2 + �2�T�

tanh��x2 + �2�T�
2kBT

� , �17�

where �D is the Debye frequency and ��0�=3.53kBTc /2. For
niobium, the Debye frequency is ��D=25 meV. According
to a theorem of Anderson �31,32�, the presence of nonmag-
netic impurities, which we only consider in the present paper,
will not modify the superconducting energy gap as given by
Eq. �17�. The complex conductivity will, however, in general
be modified due to the presence of such impurities.

In the dirty limit where l��0, the complex conductivity
has been examined within the framework of the microscopic
BCS theory �see, e.g., Ref. �34��. In this case, the complex
conductivity, now normalized to �L, can conveniently be
written in the form

��T�
�L

= 

��T�−��

� dx

2
tanh� x + ��

2kBT
�� g�x� + 1

u2 − u1 + i�/


−
g�x� − 1

u2 + u1 − i�/

� − 


��T�

� dx

2
tanh� x

2kBT
�

�� g�x� + 1

u2 − u1 + i�/

+

g�x� − 1

u2 + u1 + i�/

� . �18�

Here we choose 
 such that � /
��0�=��0 / l=13.61, corre-
sponding to the experimental coherence length �0=39 nm
and the mean free path l�T�9K�=9 nm. The normalization
constant is �L=1.85�1014 �� m�−1 corresponding to

L�0�=35 �m for niobium �23�.

As the temperature decreases below Tc, Cooper pairs will
be created. Despite a very small fraction of Cooper pairs for

τB (s)

T/Tc

z = 440 µm

ν = 560 kHz(i)

(ii)

(iii)

(iv)

H = ∞

H = 0.9 µm

H = 0.9 µm
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FIG. 1. 
B of a trapped atom near a superconducting film as a
function of the temperature T /Tc. Curve �i� shows the free-space
lifetime 
B

0 / �n̄+1�, where 
B
0 =1.14�1025 s. Curves �ii� and �iii�

correspond to the two-fluid mode with the Gorter-Casimir tempera-
ture dependence for H=� and H=0.9 �m, respectively. We use

L�0�=35 nm and 	�Tc�
150 �m �23�, corresponding to nio-
bium. The critical temperature is Tc=8.31 K �23�. For T /Tc�1 we
put �2�T��0 but �1�T�=2/��0	�Tc�2. Curve �iv� corresponds to a
film made of gold described by the dielectric function given by Eq.
�15�.
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temperatures just below Tc, the imaginary part of the conduc-
tivity as given by Eq. �18� exhibits a vast increase �cf. Fig.
2�. Furthermore, due to the modification of the quasiparticle
dispersion in the superconducting state, there is an increase
in �1�T� as well just below Tc. This is the well-known co-
herence Hebel-Slichter peak �28�. The importance of this co-
herence peak in this context was first pointed out in Ref. �29�
and commented upon in Ref. �30�. In contrast to the simple
Gorter-Casimir temperature dependence, both Eqs. �16� and
�18� describe well the presence of the Hebel-Slichter peak,
with a peak height less than 8�n for both cases �cf. Fig. 2�, at
least for the values of the physical parameters under consid-
eration in the present paper. In the opposite temperature
limit, i.e., T�Tc, numerical studies of Eq. �18� show that
�1�T� decreases exponentially fast. As seen in Fig. 2, the
imaginary part of the conductivity, on the other hand, is more
or less constant for such temperatures.

In passing we observe that there is only a minor differ-
ence in �2�T� as obtained from Eqs. �16� and �18�, respec-
tively. For temperatures around the peak value of the Hebel-
Slichter peak, �1�T� obtained from Eq. �18� is, however,
approximately 20% larger than �1�T� as obtained from Eq.
�16�. This difference has, nevertheless a small effect on the
lifetime 
B. Hence, computing 
B using Eq. �16� and �18� for
the complex conductivity, we realize that the presence of
nonmagnetic impurities has no dramatic impact on the life-
time for spontaneous emission �see Fig. 3�. A comparison of
the values of 
B as obtained using the two-fluid model for
H=� as presented in Fig. 1 and the corresponding result as
shown in Fig. 3 shows, for our set of physical parameters,
that the two-fluid model overestimates 
B by three orders of
magnitude.

For finite values of the lifetime 
 and for nonmagnetic
impurities we can also investigate the validity of the two-
fluid model approximation in terms of the lifetime 
B for
spontaneous emission processes. As we now will see, there
are large deviations between the microscopic theory and the
two-fluid model approximation, in particular for small tem-

peratures. According to Abrikosov and Gor’kov �for an ex-
cellent account see, e.g., Ref. �33� and references cited
therein�, the density of superconducting electrons is given by

ns�T�
n0



�


�
��T�tanh���T�

2kBT
� , �19�

provided that 
��0� /��1. We can now compute the dielec-
tric function �11� using Eq. �12�. We find that �2�T� /�L ob-
tained in this way agrees well with the corresponding quan-
tity obtained from Eq. �18�. There is, however, a
considerable discrepancy between the two-fluid expression
for �1�T� /�L and the corresponding expressions obtained
from the microscopic theory as given by Eq. �18�. The nu-
merical results for the lifetime in this case are illustrated in
curve �iv� in Figs. 3 and 4.

Since we are considering low frequencies 0����g
�2��0� /�, strong-coupling effects can now be estimated by
making use of the low-frequency limit of the Eliashberg
theory �9� and its relation to the BCS theory �see, e.g., Ref.
�35��. The so-called mass-renormalization factor ZN, which
in general is both frequency and temperature dependent, is
then replaced by its zero-temperature limit, which for nio-
bium has the value ZN
2.1 �35�. Using the strong-coupling
expressions for the optical conductivity in a suitable form,
such as, e.g., given in Ref. �26�, we then find that the com-
plex conductivity ��T� /�n is rescaled by �n→�n /ZN with
the lifetime of nonmagnetic impurities rescaled by

→
 /ZN. The change in the lifetime for spontaneous emis-
sion can then, e.g., be inferred from the relation �13�, and we
find only a minor decrease of 
B by the numerical factor
1 /�ZN
0.69, which also agrees well with more precise nu-
merical evaluations.

σ1(T )
σn

˜σ2(T )
σn

T/Tc

h̄/τ∆(0) = 13.61 (i)

(ii)

(iii)

(iv)

8

6

4

2

0
0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 2. The complex conductivity ��T���1�T�+ i�2�T� as a
function of the temperature T /Tc with � /
��0�=13.61 �23�. Curves
�i� and �ii� show �1�T� /�n with �1 as given by Eqs. �18� and �16�,
respectively. Curves �iii� and �iv� show �2

˜�T� /�n with

�2
˜�T��0.25�10−5�2�T� and where �2�T� is given by Eqs. �16�
and �18�, respectively.

τB (s)

T/Tc

τ 0

B/(n + 1)

H = ∞

(i)
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FIG. 3. 
B of a trapped atom near a superconducting bulk as a
function of temperature T /Tc. The other relevant parameters are the
same as in Fig. 1. Curve �i� shows the free-space lifetime

B

0 / �n̄+1�, with 
B
0 =1.14�1025 s. Curve �ii� shows the lifetime 
B

using the microscopic BCS theory, i.e., Eq. �18�. Curve �iii� corre-
sponds to the Mattis-Bardeen theory, i.e., using Eq. �16�. Curve �iv�
shows the lifetime 
B using the two-fluid model and Eq. �19�, with
� /
��0�=13.61. Curve �v� corresponds to a film made of gold de-
scribed by the dielectric function given by Eq. �15�.
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As observed in Refs. �5,36�, the lifetime for spontaneous
emission exhibits a minimum with respect to variation of the
thickness H of a normal conducting film. This fact is also
illustrated for a superconducting film in Fig. 5. Below the
minimum at Hmin
0.1 �m, a decrease of the thickness H
leads to an increase of lifetime in proportion to H−1. This
might be traced back to the fact that the region generating the
noise is becoming thinner as it is limited by H, and not 	�T�.
Eventually, the lifetime reaches the free-space lifetime 
B

0 as
H tends to zero. On the other hand, for large H, i.e.,
H�	�T�,the lifetime is constant with respect to H, giving
the same result as for an infinite thick slab. In the region
between, i.e., 
L�T��H�	�T�, the lifetime is proportional
to H. Numerical studies show that a nonzero �2�T� is impor-
tant for a well-pronounced minimum of 
B as a function of
H.

V. FINAL REMARKS AND SUMMARY

Some experimental work has been done using a supercon-
ducting body: e.g., Nirrengarten et al. �6�. Here cold atoms
were trapped near a superconducting surface. At the distance
of 440 �m from the chip surface, the trap lifetime reaches
115 s at low atomic densities and with a temperature 40 �K
of the chip. We believe the vast discrepancy between this
experimental value and our theoretical calculations must rely
on effects that we have not taken into account in our analy-
sis.

The use of a thin superconducting film may lead to the
presence of vortex motion and pinning effects �see, e.g.,
Refs. �37,38��. The presence of vortices will in general
modify the dielectric properties of the dielectric body. If we,
as an example, consider a vortex system in the liquid phase
in a finite-slab geometry, one expects a strongly temperature-
dependent �1�T� with a peak value

�1�T� � 1.3 � 107 �� m�−1/H2��m� ��kHz�

�see Ref. �37��. Close to this peak, �1�T���2�T�. For
H��m��0.9 and ��kHz��560 we find, for T /Tc�0.5, a
lifetime for spontaneous emission four orders of magnitude
larger than a film made out of gold with the same geometry.
It is an interesting possibility that spontaneous emission pro-
cesses close to thin superconducting films could be used for
an experimental study of the physics of vortex condensation.
This possibility has also been noticed in a related consider-
ation, which has appeared during the preparation of the
present work �39�. There are also fabrication issues concern-
ing the Nb-O chemistry �40� which may have an influence on
the lifetime for spontaneous emission.

To summarize, we have studied the rate for photon emis-
sion, due to a magnetic spin-flip transition, of a two-level
atom in the vicinity of a normal conducting metal or a su-
perconductor. Our results confirms the conclusion in Ref.
�20� namely, that the corresponding magnetic spin-flip life-
time will be boosted by several orders of magnitude by re-
placing a normal conducting film with a superconducting
body. This conclusion holds when describing the electromag-
netic properties of the superconductivity in terms of a simple
two-fluid model as well as in terms of more detailed and
precise microscopic Mattis-Bardeen and Abrikosov-
Gor’kov-Khalatnikov theories. For the set of physical param-
eters as used in Ref. �20� it so happens, more or less by
chance, that the two-fluid model results agree well with the
results from the microscopic BCS theory. We have, however,
seen that even though the two-fluid model gives a qualita-
tively correct physical picture for photon emission, it, never-
theless, leads in general to large quantitative deviations when
compared to a detailed microscopic treatment. We therefore
have to resort to the microscopic Mattis-Bardeen �7� and
Abrikosov-Gor’kov-Khalatnikov �8� theories in order to ob-
tain precise predictions. We have also shown that nonmag-
netic impurities as well as strong-coupling effects have no
dramatic impact on the rate for photon emission. Vortex con-
densation in thin superconducting films may, however, be of
great importance. Finally, we stress the close dependence
between the spin-flip rate for photon emission and the com-
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FIG. 4. 
B of a trapped atom near a superconducting film as a
function of the temperature T /Tc with H=0.9 �m. The other rel-
evant parameters and labels are the same as in Fig. 3.
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FIG. 5. Curve �i� shows 
B as a function of the thickness H of
the film. The complex conductivity is computed applying Eq. �18�
with � /
��0�=13.61. Other relevant parameters are the same as in
curve �iii� in Fig. 1. In the limit H=0, i.e., no slab at all, the lifetime
is simply 
B

0 / �n+1�=7.34�1019 s for the parameters under consid-
eration. Line �ii� corresponds to the London length 
L�Tc /2�
=89.2 nm. Line �iii� corresponds to the skin depth 	�Tc /2�
=80.5 �m.
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plex conductivity, which indicates a new method to experi-
mentally study the electrodynamical properties of a super-
conductor or a normal conducting metal. In such a context
the parameter dependence for a bulk material as given by Eq.
�13� may be useful.

After the submission of the present paper, a related work
appeared with some conclusions similar to ours �41�.
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