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We explore the total collisional cross section of ground-state polar molecules in an electric field at various
energies, focusing on RbCs and RbK. An external electric field polarizes the molecules and induces strong
dipolar interactions, leading to nonzero partial waves contributing to the scattering even as the collision energy
goes to zero. This results in the need to compute scattering problems with many different values of total M to
converge the total cross section. An accurate and efficient approximate total cross section is introduced and
used to study the low-field temperature dependence. To understand the scattering of the polar molecules we
compare a semiclassical cross section with the quantum unitarity limit. This comparison leads to the ability to
characterize the scattering based on the value of the electric field and the collision energy. General and simple
forms of the characteristic electric field and energy are given, enabling characterization of the scattering.
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I. INTRODUCTION

Recently the ballistic expansion of a Bose-Einstein con-
densate �BEC� of 52Cr showed the influence of the magnetic
dipole-dipole interaction �1�. In these experiments an inter-
play of trap geometry and magnetic polarization was used to
clearly illustrate the interaction of the dipoles. Another ex-
ample of spin-spin dipolar interactions adding character to
ultracold matter is the perturbative effect observed in the
p-wave Feshbach resonances in 40K �2� and 40K-87Rb �3�
where different �ml�’s have distinct resonant magnetic field
values �4�. These experiments offer a glimpse of the addi-
tional character relatively weak dipole-dipole interactions of-
fer in ultracold atomic systems. Attention has begun to turn
towards polar molecules which have large electric-dipole
moments. Theories predict many novel phase transitions for
dipolar gases �5,6�. Further heightening the interest in polar
molecules are its applications, which range from quantum
computing �7,8� to tests of fundamental symmetries �9,10�.

With such remarkable possibilities, it is not surprising that
rapid experimental progress should soon produce ultracold
ground-state polar molecules. There are many methods of
producing cold molecules; for a review, see Ref. �11�. One of
the most exciting techniques used to produce cold polar mol-
ecules is photoassociation �PA�. This method produces cold
polar molecules by binding two distinct ultracold alkali-
metal atoms through a series of optical transitions which
ultimately lead to the formation of a polar molecule such as
RbCs �12�, KRb �13�, or NaCs �14�. Recently RbCs was
produced in its absolute vibrational ground state at a tem-
perature of 100 �K �15�. The production of a cold and dense
sample of these heteronuclear alkali-metal dimers would
constitute the realization of a strongly interacting dipolar
system near T=0. Considering only the physics of collisions,
this system presents a series of exciting experiments, such as
the detection of field linked states �16�, the study of ultracold
rotationally inelastic collisions, the study of fully hydrody-
namic systems, and ultracold chemistry �17�.

In light of the current experimental progress there is an
immediate need to understand the collisions of polar mol-
ecules, so that collisional experiments can be understood and
control of the molecular interactions can be achieved. Previ-
ous theoretical scattering studies looked at how the long-
range dipolar interactions are affected by external fields, first
those in weak-field-seeking states �16,18,19� and later those
in strong-field-seeking states �20�. Other studies looked at
the ways magnetic and electric fields can be used to control
the molecular state in collisions of atom-molecule systems
�21�.

For ultracold ground-state polar molecules in an electric
field, only long-range interactions at extremely cold tempera-
tures have been studied previously �20�. That work showed
potential resonances �PRs� occur with the application of an
external field. These resonances emerge from the electric
field changing the long-range character of the lowest adia-
batic curve, from 1/R6 to 1/R3, adding many bound states to
the system. This mechanism leads to broad semiregular reso-
nances with respect to electric field. These PRs are signifi-
cantly different from magnetic Feshbach resonances �FRs� in
ultracold atomic physics �22�. A FR occurs when an external
magnetic field separates the scattering thresholds and alters
the molecular structure and changes the number of bound
states in the two-body system. This process acts over short
range, where spin exchange couples different channels. The
long-range character of the interatomic potential remains the
same in a magnetic field, in contrast to PRs.

With the experimental reality of ultracold ground-state
polar molecules rapidly approaching, it is necessary to un-
derstand both the energy and electric field dependence of the
scattering. In this paper we obtain total cross sections for the
long-range scattering of RbCs and RbK. These molecules are
considered to be in their absolute ground state. The rest of
the paper is structured as follows: we briefly review the Stark
effect and the dipolar interaction. Then results of the scatter-
ing are presented with both energy and electric field being
varied. We consider the thermally averaged cross section,
and finally we explore the character of the scattering as a
function of energy and electric field.*cticknor@swin.edu.au
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II. STARK EFFECT AND MOLECULAR SCATTERING

We consider the polar molecules to be in their absolute
ground state, including vibration, rotation and electronic
ground state �1��. We assume the molecules are rigid rotors
best described in the J basis �JM�, where J is J=S+L+N, S
and L are the spin and orbital angular momentum of the
electronic system, and N is the rotational state of the mol-
ecule. For these systems L and S are zero. M is the projection
of J onto the field axis. We ignore the effects nuclear spin.

In this model the only molecular structure is the rotational
state; with the electric field accounted for via the Stark ef-
fect. In the J basis the matrix elements of the field-molecule
Hamiltonian and molecular Hamiltonian are written as �23�

�JM�Hmol�J�M�� = BJ�J + 1��JJ��MM� − �E�J,J��

��− 1�M� J 1 J�

− M 0 M�
	�J 1 J�

0 0 0
	 ,

�1�

where �J� is a shorthand notation for 
2J+1. B is the rota-
tional constant and � is the electric-dipole moment. In Fig. 1
the Stark energies for RbCs are shown as a function of elec-
tric field and the energies are normalized by the rotational
constant. At first the energies vary quadratically as the field
is varied, then a transition occurs roughly at E0=B /�, when
the Stark energy is roughly equal to the energy rotational
splitting. Above this field value the energies vary linearly
with respect to electric field. The top horizontal axis shows
the electric field normalized by the critical field value, E /E0.
The different color �online� curves represent different values
of J projected onto the field axis; the values are �M � =0
�black�, �M � =1 �red�, and �M � =2 �blue�. The black dashed
line is the projection of the lowest molecular eigenstate of
the molecule/field Hamiltonian from Eq. �1� or the field-
dressed ground state onto the field axis, �00 � ẑ �00�= ��� / ���.
An approximate polarization is shown in Fig. 1 as the dotted

red curve. It is used to derive simple analytic results later.
This approximate form is

��� � 0.78�
 x2

6.7 + x2 , �2�

where x=E /E0. This approximation is within 2% of ��� for
fields less than 6E0.

Throughout this paper we use 87Rb133Cs and 87Rb41K as
an example of polar molecules. For RbCs we use a dipole of
�=1.3 D, a mass of m=220 amu, and a rotational constant
of B=0.0245 K. For this model the critical field value is
E0

RbCs�780 V/cm. We also consider RbK with the param-
eters �=0.76 D, m=128 amu, and B=0.055 K �24�. This
yields a critical field of E0

RbK�3000 V/cm.
The intrigue of polar molecules is their long-range aniso-

tropic dipole-dipole interaction

V�� = −
3�R̂ · �̂1��R̂ · �̂2� − �̂1 · �̂2

R3

= −

6

R3 
q

�− 1�qC−q
2 ��1 � �2�q

2. �3�

Here C−q
2 �� ,�� is a reduced spherical harmonic that acts on

the relative angular coordinate of the molecules, while
��1 � �2�q

2 is the rank-2 tensor formed from two rank-1 op-
erators which act on the molecular state. The matrix elements
of the dipole-dipole interaction are

�J1M1J2M2lMl�V���J1�M1�J2�M2�l�Ml��

= �− 1�M1�+M2�+Ml+1�l,l�,J1,J1�,J2,J2��

� ��2
6

R3 	� l 2 l�

0 0 0
	� l 2 l�

− Ml Ml − Ml� Ml�
	

�� 1 1 2

M1 − M1� M2 − M2� Ml − Ml�
	�J1 1 J1�

0 0 0
	

�� J1 1 J1�

− M1 M1 − M1� M1�
	�J2 1 J2�

0 0 0
	

�� J2 1 J2�

− M2 M2 − M2� M2�
	 . �4�

To perform the scattering calculation we field dress the sys-
tem which entails using the molecular-field eigenstates from
Eq. �1� to compose molecular states in the scattering chan-
nels. The basis is also symmetric under interchange because
the molecules are identical bosons.

The scattering Hamiltonian can be expressed by the pro-
jection of the total angular momentum MT=M1+M2+Ml
onto the field axis �ẑ�, and V�� is block diagonal due to
rotational symmetry about the field axis. To obtain the total
cross section �, the cross sections for each block of total M,
��M�, must be calculated. The matrix elements of V�� differ
between blocks of total M and thus are rigorously required to
be computed. Thus � in terms of ��M� is

� = 
M

��M�,

FIG. 1. �Color online� RbCs molecular energies shown as a
function of electric field. The energies are normalized by the rota-
tional constant. Different color curves represent values of M: M
=0 �black�, �M � =1 �red�, and �M � =2 �blue�. The black dashed line
is the projection of the dressed molecular ground state onto the field
axis, �00 � ẑ �00�, and its value is given on the right vertical axis. The
red dotted curve is a simple and approximate form of �00 � ẑ �00�
given in the text. The top horizontal axis shows the electric field
normalized by the critical field value, E /E0.
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��M� = 
ij

�ij
�M� = 

ij

2	

k2 �Tij
�M��2, �5�

where �ij
�M� is the cross section for the system to scattering

from the ith to the jth channel for MT=M. k2=mE, where E
is the collision energy, and Tij

�M� is the scattering T matrix
with MT=M �25�. The factor of 2 in Eq. �6� is present be-
cause the molecules are identical particles. We consider col-
lisions in lowest thresholds with two-ground-state molecules
and there are no two-body inelastic channels. It is also worth
noting that the molecular and scattering Hamiltonian are in-
variant to the sign of the electric field, thus ��−M�=��M�.

An approximate � can be obtained by assuming ��M� is
equal to ��0� once all the terms with unphysical partial wave
terms have been removed—i.e., those with �Ml � 
 l. To
clarify this consider ��1� for ground-state molecules, M1
=M2=0, and therefore MT=Ml=1. Since Ml=1, it is un-
physical to have s-wave channels contribute and these are
removed. This approximation results in ��1�=ij�ij

�0��1−�li0
�

��1−�lj0
�. Using this procedure for all ��M� we find the total

approximate cross section is

�̃ = 
ij

�2lmin + 1��ij
�0�, �6�

where lmin=min�li , lj�. This approximation works well and is
a cost-effective method for computing the thermally aver-
aged total cross section. To obtain the thermally averaged
cross section we use

��� � ��̃� =
1

�kT�2�
0

�

E�̃�E�e−E/kTdE , �7�

where �̃�E� is the energy-dependent approximate total cross
section, k is Boltzmann’s constant, and T is the temperature.

In ultracold atomic collisions there is usually a need to
compute only one block of MT, the one containing s-wave
channels. This is due to Wigner threshold laws which state
that nonzero partial waves are suppressed as the collision
energy goes to zero. However, this is not the case for polar
molecules in a nonzero electric field. The electric field mixes
the various rotational states and polarizes the scattering mol-
ecules. Considering the field-dressed scattering Hamiltonian,
we find that there is a direct dipole-dipole coupling between
the scattering molecules. The result of this interaction is most
clearly seen through the Born approximation, which assumes
a long-range potential CijR

−s. For small Cij one can approxi-
mate the wave functions as spherical Bessel functions and
then the Born approximation yields a T matrix �25,26�. From
the Born approximation we obtain a partial cross section
�ij �Ep where p=min�2l ,s−3�. For a nonzero electric field,
we find s=3 and Cij denotes the field-dressed couplings de-
rived from Eq. �4�. In the Born approximation when Cij�0
the partial cross section for degenerate channels is

�ij = const. �8�

This result is independent of energy for all l and implies that
the dipole-dipole interaction leads to a scattering cross sec-
tion where many partial waves might contribute even at low

energy. For a complete discussion of this result see Ref. �26�.
A worthwhile estimate of the total cross section is with a

semiclassical approach. This approach offers scaling of � on
the physical parameters of the system, such as �, m, and E
�27�. This yields a total cross section of

�SC = ���2
m

E
cSC, �9�

where cSC is a constant chosen so the units of �, m, E, and
�SC are in De, amu, K, and cm2, respectively. Using Eq. �2�
for ��� and comparing the approximation to the full scatter-
ing calculation with many different initial boundary condi-
tions at Rin with large E we obtain cSC=1.5�10−13. This is
roughly an order of magnitude less that what is obtained
from the semiclassical calculation �27�, but as we shall see
this value of cSC offers a good representation of the scatter-
ing in an electric field for both RbCs and RbK.

In quantum mechanical scattering the unitarity limit pro-
vides an upper limit for any single partial-wave contribution.
This limit is obtained when the T matrix takes on its maxi-
mum value of 4, yielding

�Q =
8	

mE
cQ. �10�

cQ=4.85�10−15 and has been chosen so the units of m, E,
and �Q are in amu, K, and cm2, respectively. The comparison
of �SC and �Q offers insight into the scattering process and is
explored at length below. The primary difference between
these two cross sections is the energy dependence, and this
indicates there will be a transition from semiclassical to
quantum mechanical scattering as the collision energy is
lowered.

To numerically solve the scattering problem we use
Johnson’s log derivative �28�. We start the scattering calcu-
lation at Rin=20a0, which is inside of where the molecular
interaction deviates from V�� due to van der Waals interac-
tions. At Rin we impose the boundary condition that the wave
function must be zero. This is not a physical boundary con-
dition; rather, it is a starting point to systematically study the
long-range scattering. We also include a diagonal −C6 /r6 po-
tential, where a value of C6=103 a.u. is used. We propagate
the log derivative to R�=105a0. To converge ��M� we need a
large number of partial waves. For RbCs �RbK� we use
lmax=18 �lmax=14�. Furthermore, many values of the total M
are required; RbCs �RbK� needs up to MT=10 �MT=6� to
converge for field values up to 4E0 and collision energies
ranging from 10−7 to 10−4 K. We use up to J=2; additional
rotational states make the calculations very computationally
cumbersome to converge with respect to the number of par-
tial waves. On physical grounds collisions in the ground state
are coupled at third order to J=3 rotational states and for
these reasons are omitted.

Using the above parameters we find all ��M�’s are con-
verged to better than 1% and the total cross section is con-
verged to better than 10% for electric field values up to 4E0
with collision energies ranging from 10−7 to 10−4 K. For low
field and low energy � is converged to a much better per-
centage. For energies below 10−7 K we need a larger R� to
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converge the calculations, and at higher collision energies
E
10−4 K, more partial waves and ��M� are required. With
this model, we explore the field dependence and energy de-
pendence of the molecular scattering.

III. ENERGY DEPENDENCE

In Fig. 2 we show the energy dependence of the total
cross section � �solid lines� and the approximate cross sec-
tion �̃ �dashed lines� for both RbCs �a� and RbK �b� at three
electric field values: 0 �black�, E0 �blue�, and 3E0 �brown�
where E0

RbCs�780 V/cm and E0
RbK�3000 V/cm. The dotted

lines are �SC from Eq. �9� for the electric field values of E0
�red� and 3E0 �purple�. There are general comments which
can be made about both �a� and �b�, but the effects of dipolar
scattering are more prominent in the heavier, more polar
RbCs.

The solid black curve shows the energy-dependent scat-
tering for zero electric field. In zero field there is no dipolar
coupling between degenerate channels containing ground-
state molecules. This fact implies that the zero-field scatter-
ing will behave like the familiar ultracold atomic systems,
where the low-energy scattering is s-wave dominated. This
means as the energy goes to zero, �→8	a2 where a is the
s-wave scattering length. Furthermore, channels with non-
zero partial waves are suppressed as the collision energy
goes to zero. The zero-field collisions will contain informa-
tion about the short-range interactions. However, the dipolar

interaction does influence the scattering at short range when
V�� becomes larger than the threshold separation been chan-
nels containing two ground-state molecules, J1=J2=0, and
two rotationally excited molecules, J1�=J2�=1.

Once there is an electric field, the nonzero partial-wave
terms contribute to the total cross section even at low energy.
This can be seen in all of the curves in �a� with E�0. The
blue and brown curves have significantly different profiles
than the black curve in both �a� and �b�. The change in pro-
file is only slightly due to the change in the s-wave scattering
length. Predominantly the change is due to the additional
contribution of nonzero partial waves to the total cross sec-
tion. Generally in a strong field the scattering is made up of
many partial-wave contributions at low energies. The total
cross section for large electric field is fairly well represented
by �SC�E−1/2. This is seen in �a� and �b� when the field is
3E0, in the similar energy dependence of the purple dotted
lines and the brown curves.

At low energy quantum mechanical scattering must domi-
nate, �Q
�SC as E→0. This fact does not imply that � must
be larger than �SC or �=�Q. Rather it implies that the scat-
tering will depend on the phase it acquires at short range and
only when resonant will a single partial wave obtain the
value of �Q.

�̃ from Eq. �6� works well as a cost-effective method to
determine the total scattering cross section. This approxima-
tion fails when there are resonances in any of the ��M�’s. If a
resonance is in ��0�, then �̃ overestimates �, or if there is a
resonance in ��M�0�, then �̃ will underestimate �. Aside
from these drawbacks �̃ offers a cost-effective method to
estimate �̃ over a wide range of energies and electric fields.

In Fig. 3 we explore the behavior of particular ��M�’s as a
function of energy at various electric fields. �a� and �b� show
� and several ��M�’s for RbK at two different field values: �a�
E0 and �b� E=3E0. The circles are the total cross section
and are the same points in Fig. 2�b�. The other curves are the
different ��M�’s, where MT is 0 �solid lines�, 2 �dashed lines�,
and 4 �dash-dotted lines�.

The total cross section at zero field �black circles� and a
few of its components are shown in Fig. 3�a�. The most
important feature of this figure is that only M =0 is signifi-
cant at low collision energy. ��0� is the only calculation con-
taining s-wave scattering. In zero field colliding ground-state
molecules are unpolarized and therefore the dipolar interac-
tion is confined to short range. This fact results in all nonzero
partial waves being suppressed as the collision energy goes
to zero. This can clearly be seen in the ��2� �dashed line� and
��4� �dash-dotted line� where these cross sections go to zero
as the collision energy is decreased. Note the vertical axes of
�a� and �b� have significantly different scales.

The result of the scattering is significantly different when
there is a nonzero field. In Fig. 3�b� E=3E0, and we have
plotted � �brown circles� from Fig. 2�b� and ��0� �solid line�,
��2� �dashed line�, and ��4� �dash-dotted line�. In this situa-
tion there is direct dipolar coupling between two scattering
ground-state molecules, which means these are couplings be-
tween degenerate channels in the field-dressed basis. This
coupling dramatically alters the low-energy behavior of all
nonzero partial waves and ��M�’s; they are constant at low
energy as predicted by the Born approximation in Eq. �8�.

(b)

(a)

FIG. 2. �Color online� The energy dependence of � �solid lines�
and �̃ �dashed lines� for various electric fields. In ascending order
the fields are 0 �black�, E0 �blue�, and 3E0 �brown� for �a� RbCs and
�b� RbK where E0

RbCs�780 V/cm and E0
RbK�3000 V/cm. The dot-

ted lines are �SC from Eq. �9� for different electric fields. In ascend-
ing order they are E0 �red� and 3E0 �purple�.
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These two figures, �a� and �b�, show the essential difference
between polar molecules with and without an electric field
and allude to why partial waves and many total M’s are
required to converge �, especially at high collision energies.

We have shown the dramatic effect an electric field has on
the energy-dependent scattering. We now study the scattering
of polar molecules as a function of electric field at various
energies and temperatures.

IV. ELECTRIC FIELD DEPENDENCE

In ultracold atomic physics it is more experimentally fea-
sible to change an external field rather than the temperature
of the gas. To this end we study the total cross section and
approximate total cross section as a function of electric field
at several different energies and temperatures. In Figs. 4�a�
and 4�b� the electric field dependence of � �solid lines� and �̃
�dashed lines� are shown for different energy values. In de-
scending order they are 0.1 �brown�, 1 �red�, 10 �blue�, and
100 �K �black�. Primarily, the influence of the electric field
is to make the cross section large and induce potential reso-
nances, which are clearly seen in the brown curves in �a� and
�b�. The heavier, more polar RbCs has many more than RbK
for a field range of 0 to 4E0.

At the collision energy of 100 �K �black curves� the
dominant effect of the electric field is to increase the cross
section without pronounced PRs. The result of decreasing the

energy an order of magnitude �blue� is to make the PRs
emerge at low field, but not at high field. Then at 1 �K �red�
many more PRs become distinguishable and the variation in
the cross section becomes significant at low field. Finally at
0.1 �K �brown� the PRs are very distinct and there is sig-
nificant variation in � between the PRs at low field. At high
field, especially in RbCs, the minima between PRs are less
deep. The decrease in variation of � is clearly seen in the
brown curve in both �a� and �b�. This result is simply due to
the larger number of partial waves contributing to the scat-
tering cross section. Ultimately, the electric field does not
offer control of the scattering length as has been seen with
the magnetic Feshbach resonance. Rather its induces a large
number of partial waves to significantly contribute to �, thus
resulting in large total cross sections, but they are not neces-
sarily resonant.

In a magnetic Feshbach resonance the field alters the mo-
lecular structure so the colliding pair of atoms can access an
alternate pathway �closed-channel quasibound state�. The
pathways can interfere constructively or destructively de-
pending on the value of the magnetic field, and this leads to
the ability to tune the scattering.

The possibility of resonantly “turning off” the two-body
interactions in a system of polar molecules with an electric
field does not truly exist. The electric field might effectively
turn off the two-body interaction if the zero-field scattering
length is greater than zero. This can be seen in Fig. 4�a�. This
system and its particular parameters result in a large positive
scattering length ��350a0�. This results in a minimum in the
cross section as the electric field evolves the system toward
the addition of another bound state. This fact offers a simple
means to determine the sign of the zero-field scattering
length by varying the electric field. Overall, the effect of an
electric field is to activate the dipoles and make many partial
waves significant in the scattering. This fact prevents the
cross section from rigorously being zero due to the contribu-
tion of nonzero partial waves.

In both Figs. 4�a� and 4�b� we see that �̃ �dashed lines�
offers a good approximation to � �solid lines�. It works es-
pecially well at low field and low energy. Even at high field
and high energy it offers a reasonable estimate of the total
scattering cross section. Also seen in Fig. 2, �̃ does not get
the resonant values of �, but still offers a cost-effective
means to achieve a total cross section. We have used �̃ to
estimate a thermally averaged total cross section at low field,
and this is shown in Fig. 4�c� for RbCs and �d� for RbK. The
temperatures of the curves are 1 �circle�, 5 �open circle�, 10
�square�, 25 �open square�, 50 �open triangle�, and 100 �tri-
angle� �K.

The thermally averaged cross sections for both RbCs �c�
and RbK �d� show that as the temperature is lowered from
100 �K resonant features emerge in the cross section. When
the temperature is decreased, the RbCs cross section devel-
ops PRs at low field first. One can clearly see the emergence
of the PRs as the temperature is decreased at low field along
with the minimum. This shows that if the zero-field scatter-
ing length is greater than zero, there will be an observable
minimum before the first PR below T�25 �K. Then as the
temperature is further decreased the other PRs at high field
become distinguishable. In the thermally averaged system

(b)

(a)

FIG. 3. �Color online� The total cross section �solid circles� for
RbK decomposed into three ��M�’s for different field values. The
fields are �a� E0 and �b� E=3E0, and their comparison clearly
shows the change in threshold behavior induced by the electric
field. The different ��M�’s are for M equal to 0 �solid lines�, 2
�dashed lines�, and 4 �dash-dotted lines�. The total cross section is
also shown as circles in Fig. 2�a�.
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the dominant effect of increasing the electric field is to raise
the total values of the cross section.

V. TRANSITION IN CHARACTER OF SCATTERING

To understand the scattering of polar molecules, we com-
pare the total cross section, semiclassical cross section, and
quantum unitarity limit. We make this comparison for both
RbCs in Fig. 5�a� and for RbK in Fig. 5�b�. In each plot we
show all three cross sections, � �solid lines�, �SC �dashed
lines�, and �Q �dotted lines�, at three energies: 1 �red�, 10
�blue�, and 100 �K �black�. To make �SC simple, use Eq. �2�.

There is an intriguing interplay between the energy and
electric field in this system. Equations �9� and �10� show us

�SC�
���2


E
and �Q�

1
E . When �SC is larger than �Q, the � will

be made up of a large number of partial waves and have
roughly the same simple energy and electric field depen-
dence of �SC. In contrast to when �Q is larger than �SC, the
scattering will sensitively depend on the scattering process
which occurs, making the energy and electric field depen-
dence nontrivial.

To begin the analysis we look at RbCs in Fig. 5�a�. First
we look at the 100-�K system: � is the solid black curve and

its behavior closely follows �SC, the dashed black line. Note
how large the cross section becomes for large electric field
values. It is much larger than �Q, the dotted black line. This
shows a large number of partial waves are contributing to the
scattering. The electric field where �SC=�Q is marked by a
square and is called the critical field EX. Above this field �
closely follows �SC.

When the energy is lowered by an order of magnitude to
10 �K, �Q �blue dotted line� is larger by an order of magni-
tude, but �SC �blue dashed line� only increases by a factor of

10. For this system, the �SC quickly becomes larger than �Q
as the electric field is increased and EX is marked by a circle
for this energy. Above EX we again see � closely follows
�SC.

At 1 �K we see there are many potential resonances be-
fore EX, marked by a triangle. Below the critical field � �red
solid line� has a series of potential resonances which reach
up to �Q �red dotted line�. Then as the electric field is in-
creased near and above EX, � becomes larger than �Q and
roughly follows the trend of �SC �red dashed line�. It is worth
noting that � has many fluctuations due to potential reso-
nances in many partial waves and ��M�’s.

Now turning our attention to RbK, we have plotted �
�solid lines�, �SC �dashed lines�, and �Q �dotted lines� for the

(b)

(a) (c)

(d)

FIG. 4. �Color online� Electric field dependence of the total cross section �solid lines� and approximate total cross section �dashed lines�
at various energies for RbCs in �a� and RbK in �b�. In �a� and �b� the energies of the curves in descending order are 0.1 �brown�, 1 �red�, 10
�blue�, and 100 �black� �K. Electric field dependence of the approximate thermally averaged cross at various temperatures for RbCs �c� and
RbK �d�. The temperatures of the curves in descending order are 1 �circle�, 5 �open circle�, 10 �square�, 25 �open square�, 50 �open triangle�,
and 100 �triangle� �K.
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same collision energies, 1 �red�, 10 �blue�, and 100 �K
�black�. There are some similarities to RbCs, but there is a
very important difference in the behavior of the scattering
cross section at 1 �K: for all electric fields �Q
�SC. This
fact brings up an important quantity EQ, the energy at which

�Q=�SC�E→ � � or, for a maximally polarized molecule �SC,
EQ is the energy at which �Q equals �SC. For collision ener-
gies below EQthe scattering will always be dependent on the
details of the interaction, �Q
�SC.

To explore Fig. 5�b� more thoroughly we look at the cross
sections for 100 �K. We see that � �solid black line� roughly
follows �SC �dashed black line� when the field is greater than
EX. Here many partial waves are contributing to the scatter-
ing. Again the critical field is marked by a circle and square
for both 10 and 100 �K, respectively. As the collision energy
is decreased the variation in the cross section as a function of
electric field is greater. This can be seen in both 1- and
10-�K cross sections. At 1 �K for all electric fields �Q �dot-
ted red line� is greater than �SC �dashed red line�, because
E�EQ. Satisfying the inequality �Q
�SC does not imply
that �
�SC or �=�Q. Rather it signifies the scattering will
be sensitive to the scattering processes which occur. Thus
when the scattering is in the quantum mechanical regime it
depends on the short range details of the system and will
exhibit resonance behavior. This is in contrast to when �SC

�Q. When this inequality is true, we expect ���SC as is
shown in Figs. 5�a� and 5�b�.

To explore the interplay of �SC and �Q we analytically
determine EX as a function of energy. The critical field is of
fundamental importance because it denotes the field near
which the character of the scattering changes from interac-
tion sensitive to semiclassical. Equating �SC�E� and �Q and
solving for the critical field we find

EX

E0
=
 6.7b


m3�4E − b
, �11�

where is b= �8	cQ /0.608cSC�=1.29 and m, �, and E are in
units of amu, D, and K, respectively. We have plotted this
critical field in Fig. 5�c� for many different molecules includ-
ing LiH �brown�, RbK �black�, KLi �blue�, RbCs �red�, and
CsLi �green�. The parameters used for this figure are listed
below:

Molecule � �D� E0 �V/cm� m �amu� EQ ��K�

LiH 5.88 77500 8 2.7

RbK 0.76 3000 128 2.4

KLi 3.53 4320 48 0.1

RbCs 1.30 780 220 0.06

CsLi 5.51 1850 140 0.0007

Fig. 5�c� has interesting features, the most important of
which is that it divides the electric-field–energy parameter
space into two regions which have qualitatively different
scattering character. Above the curve with a large electric
field or high energy, the scattering is semiclassical and the
scattering is essentially determined by physical parameters of
the system: m, E, and ��� as shown in Eq. �9�. Below the
curve, for low energy or low electric field, the molecular
scattering is sensitive to the details of the interaction and will
be characterized by resonances and large variations in �.

(b)

(a)

(c)

FIG. 5. �Color online� Comparisons of � �solid lines�, �SC

�dashed lines�, and �Q �dotted lines� show the change of character
in scattering for both RbCs �a� and RbK �b�. Sets of curves ��, �SC,
and �Q� are given for different energies, and in descending order the
sets are for 1 �red�, 10 �blue�, and 100 �black� �K. The critical
electric field, when �SC=�Q, is indicated by a symbol for each
energy, and these symbols are also shown in �c�. �c� The critical
electric field in units of E0 is plotted as a function of energy for
various molecules. For a particular molecule, the scattering is semi-
classical in character when the electric field is greater than EX and
the collision energy is greater than EQ. The scattering is quantum
mechanical when either the electric field is less than EX or the
collision energy is less than EQ. The parameters of the molecules
are given in the text.
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The two regions are labeled such that above the curves the
scattering is semiclassical and below the scattering is quan-
tum mechanical. Relating these curves back to the total cross
section shown in Figs. 5�a� and 5�b�, we have included the
symbols in �c�. This offers a feel for how the character
changes above and below EX for a few energies.

The energy below which all scattering is quantum me-
chanical, EQ, is determined when �Q=�SC�EX→ � �. This en-
ergy is most easily determined as the denominator on the
right-hand side of Eq. �11� goes to zero and is

EQ =
b2

m3�4 . �12�

This reveals for heavier and more polar molecules that the
semiclassical scattering will occur at a lower energy, sup-
pressing quantum mechanical scattering. This is most evident
in Fig. 5�c� for CsLi, a heavy and very polar molecule,
whose EQ is 0.7 nK compared with the polar but light LiH
for which EQ is 2.7 �K or the not very polar RbK for which
EQ is 2.4 �K. It is important to notice that the scaling of EQ
is m−3 and �−4. This shows that the mass of the molecule
plays a significant role, almost as significant as the dipole, in
determining the character of the scattering as the collision
energy it lowered.

To show polar molecules present a unique opportunity to
study semiclassical scattering consider 52Cr �1�. This system
has a magnetic-dipole moment of 6 bohr magneton. If we
make the appropriate conversions for this magnetic-dipole
moment and put it into the current theory, we find EQ
�1 K. This shows the scattering will always be quantum
mechanical �E�EQ� and there will never be scattering of a
semiclassical character in this atomic system.

VI. CONCLUSION

We have studied the collisions of RbCs and RbK in an
electric field at various energies and temperatures. This work
found the full scattering cross section is a computationally
intense calculation where a large number of partial waves
and many blocks of total M are required to converge the total
cross section. An approximate cross section is introduced and

works well to provide a cost effective method to obtain a
thermally averaged cross section. At large electric fields and
at relatively high energies the semiclassical scattering cross
section approximates the total cross section well.

This work has illustrated how dipolar interactions alter the
scattering. The most notable is that an electric-field nonzero
partial-wave cross section does not go to zero as the scatter-
ing energy goes to zero. Furthermore, resonant control of the
interaction will only exist to a limited extent for polar mol-
ecules. The electric field in general induces large total cross
sections. It cannot be used to “turn off” the two-body inter-
actions unless the zero-field scattering length is greater than
zero.

The primary finding of this work is that scattering can be
classified as semiclassical and quantum mechanical. Semi-
classical scattering is relatively simple where the scattering is
determined by the scattering energy �E�, the molecular mass
�m�, and induced dipole moment of the molecule ����� as
shown in Eq. �9�. Quantum mechanical scattering is behavior
defined by resonantly large cross sections and is sensitive to
the phase shift acquired by the scattering process. We have
found a simple form of the critical electric field �EX� at which
the character of the scattering changes as a function of en-
ergy. Additionally we have found the collision energy �EQ�
below which all scattering will be quantum mechanical.

An exciting feature of Fig. 5 is one can study the transi-
tion of a gas from quantum mechanical to semiclassical scat-
tering, simply by turning on an electric field. This transition
in scattering character might signify a phase transition as was
recently suggested for a two-dimensional gas of polar
molecules when their interactions have been modified with
microwave fields �6�.
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