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The increasing interest in the Müller density-matrix-functional theory has led us to a systematic mathemati-
cal investigation of its properties. This functional is similar to the Hartree-Fock �HF� functional, but with a
modified exchange term in which the square of the density matrix ��x ,x�� is replaced by the square of
�1/2�x ,x��. After an extensive introductory discussion of density-matrix-functional theory we show, among
other things, that this functional is convex �unlike the HF functional� and that energy minimizing �’s have
unique densities ��r�, which is a physically desirable property often absent in HF theory. We show that
minimizers exist if N�Z, and derive various properties of the minimal energy and the corresponding mini-
mizers. We also give a precise statement about the equation for the orbitals of �, which is more complex than
for HF theory. We state some open mathematical questions about the theory together with conjectured
solutions.
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I. INTRODUCTION

The basic goal of density-functional theory is to express
the energy of a quantum-mechanical state in terms only of its
one-particle density ��r� and then to minimize the resulting
functional �the “density functional”� with respect to ��r� �un-
der the subsidiary condition that �R3��r�dr=N=number of
electrons� in order to calculate the ground-state energy of the
system, which could be an atom or a molecule or a solid.
Although the first—and by far most used and important den-
sity functional in theory, computation, and mathematical in-
vestigation of multielectron systems—is the Thomas-Fermi
functional �Lenz �1��, strong interest in the subject was trig-
gered by Hohenberg and Kohn �2�. We refer the reader inter-
ested in the recent developments to the books by Eschrig �3�
and Gross and Dreizler �4� and the review �5�.

While this program is possible in principal, experience
has shown that it is far from easy to guess the appropriate
functional—especially if one wants the functional to be uni-
versal and not simply “tuned” to the particular kind of atom
or molecule under investigation. There are also pitfalls con-
nected with the admissible class of functions to use in the
variational principle �5,6�.

Whereas the external potential energy can easily be ex-
pressed in terms of the one-particle density, it is not known
how to express the kinetic energy and the interaction energy
in terms of ��r�. Going from density- to density-matrix-
functional theory eliminates the first problem altogether,
since all expectations of one-particle operators can be ex-
pressed in term of the one-particle density matrix. The den-
sity matrix analogue of the Hohenberg-Kohn density-
functional program was established by Gilbert �7�. See also
�8�.

The most difficult component of the density functional to
estimate is the exchange-correlation energy �which we shall
henceforth simply call exchange energy�, and it is that en-
ergy that will concern us here. Owing to this and other dif-
ficulties, it has been the tendency recently to replace the
energy as a functional of ��r� by a functional of the one-
body density matrix, ��x ,x��. In this way it is hoped to have
more flexibility and achieve, hopefully, more accurate an-
swers.

Fermions have spin and it is convenient to write a parti-
cle’s coordinates as x= �r ,�� for a pair consisting of a vector
r in space and an integer � taking values from 1 to q. Here q
is the number of spin states for the particles which—in the
physical case of electrons—is equal to 2. �In nuclear physics
one sometimes considers q=4.� We shall, however, call the
particles electrons. Similarly we write for any function f de-
pending on space and spin variables

� f�x�dx = �
�=1

q �
R3

f�r,��dr , �1�
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i.e., �dx indicates integration over the whole space and sum-
mation over all spin indices. This allows us to write the
density matrix � as an operator on the Hilbert space of
spinors � for which ����x��2dx��. Its integral kernel is
��x ,x��.

The Schrödinger Hamiltonian we wish to consider is

H = �
i=1

N 	−
	2

2m
�i

2 − e2Vc�ri�
 + e2R , �2�

where

Vc�r� = �
j=1

K
Zj

�r − R j�
�3�

is the Coulomb potential of K
1 fixed nuclei acting on the
N electrons. The jth nucleus has charge +Zje�0 and is lo-
cated at some fixed point R j �R3. We define the total nuclear
charge by Z�� j=1

K Zj. The electron-electron repulsion R is
given by

R = �
1�i�j�N

�ri − r j�−1. �4�

If one is interested in minimizing over the nuclear posi-
tions R j, one also has to take into account the nucleus-
nucleus repulsion e2U, of course, which is given by

U = �
1�i�j�K

ZiZj�Ri − R j�−1. �5�

Since we will not be concerned with this question but rather
consider the nuclei to be fixed, we will not take this term into
consideration here.

A. Hartree-Fock exchange energy

The best known density-matrix-functional associated with
Eq. �2� is the Hartree-Fock �HF� functional

EHF��� =
	2

2m
tr�− �2�� − e2�

R3
Vc�r����r�dr

+ e2D���,��� − e2X��� , �6�

where ���r�=��=1
q ��x ,x�=��=1

q ��r ,� ,r ,�� is the particle
density,

D��,�� =
1

2
�

R3
�

R3

��r���r��
�r − r��

drdr�, �7�

and where the exchange term is �note the sign in Eq. �6��

X��� =
1

2
� � ���x,x���2

�r − r��
dxdx�. �8�

As is well known, this functional EHF is the expectation
value of H in a determinantal wave function 
 made of
orthonormal functions �i,


�x1,x2, . . . ,xN� = �N ! �−1/2 det �i�x j��i,j=1
N , �9�

in which case

��x,x�� = �
i=1

N

�i�x��i�x��*. �10�

It is also well known that any one-body density matrix
� for fermions always has two properties �in addition to
the obvious requirement of self-adjointness, i.e., ��x ,x��
=��x� ,x�*� which are necessary and sufficient to ensure that
it comes from a normalized N-body state satisfying the Pauli
exclusion principle, see, e.g., �5,9�:

0 � � � 1 as an operator and tr � = N , �11�

where tr denotes the trace��dx��x ,x��sum of the eigenval-
ues of �. A simple consequence of Eq. �11� is that the spin-
summed density matrix �tr� ���r ,r��=����r ,� ,r���, which
acts on functions of space alone, satisfies

0 � tr� � � q as an operator and tr�tr� �� = N .

�12�

The HF � in Eq. �10� has N eigenvalues equal to 1, and
the rest equal to 0, but one could ignore this feature and
apply Eq. �6� to any � satisfying Eq. �11�. If we do this, then
we can define the HF energy �for all N
0� by

EHF�N� = inf
�

�EHF���:0 � � � 1,tr � = N
 . �13�

�We say “infimum” in Eq. �13� instead of “minimum” be-
cause there may be no actual minimizer—as occurs when
N�Z=� jZj.� A HF energy minimizer does exist when N
�Z+1, at least, and possibly for larger N’s as well �10,11�.

It is a fact �12� �see also �13�� that EHF�N� is the infimum
over all �’s of the determinantal form �10�, i.e., the determi-
nantal functions always win the competition in Eq. �13�.
Therefore, EHF�N�
E0�N�, where E0�N� is the true ground
state energy of the Hamiltonian �2�.

Thus, the HF density-matrix-functional has the advantage
of providing an upper bound to E0, but it cannot do better
than HF theory. We know, however, that this is often not very
good, numerically, especially for dissociation energies.

Another disadvantage of EHF is that the energy minimizer
�HF �if there is one� may not be unique although, in some
cases, it is known to be unique �see �14� for the Dirac-Fock
equations�. In fact it follows from Hund’s rule that in many
cases the spatial part of the wave function has a nonzero
angular momentum and cannot, therefore, be spherically
symmetric.

A third point to note is that in HF theory the electron
Coulomb repulsion is modeled by D��� ,���−X���. This en-
ergy really should be �R3�R3 �r−r��−1��2��r ,r��drdr�, how-
ever, where ��2��r ,r�� is the two-particle density, i.e., the
spin summed diagonal part of the two-particle density ma-
trix. In effect, one is replacing ��2��r ,r�� by G�2��r ,r��
= 1

2���r����r��− 1
2��,��=1

q ���x ,x���2. It is not possible for this

G�2� to be the two-body density of any state because that
would require that �R3G�2��r ,r��dr�= N−1

2 ��r�. This condition
fails unless the state is a HF state �because even the total
integral is wrong, namely, ��G�2�drdr��N�N−1� /2 unless
we have a HF state�.
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B. Müller’s square-root exchange-correlation energy

There is an alternative to EHF���, which we will call
EM��� �Müller �15��. It replaces the operator � in X��� by
�1/2. This means the operator square root �note that � is
self-adjoint and positive as an operator, so the square root is
well defined�. Thus, ��x ,x��=�dx��1/2�x ,x���1/2�x� ,x��. In
terms of spectral representations, with eigenvalues �i and
orthonormal eigenfunctions �i �the “natural orbitals”�,

��x,x�� = �
i=1

�

�i�i�x��i�x��*

and

�1/2�x,x�� = �
i=1

�

�i
1/2�i�x��i�x��*. �14�

There is no simple formula for the calculation of �1/2�x ,x��
in terms of ��x ,x��, unfortunately, but there is an integral
representation, which we shall use later.

Thus,

EM��� =
	2

2m
tr�− �2�� − e2�

R3
Vc�r����r�dr + e2D���,���

− e2X��1/2� , �15�

and

EM�N� = inf
�

�EM���:0 � � � 1,tr � = N
 . �16�

The functional EM��� was introduced by Müller �15� and
was rederived by other methods by Buijse and Baerends
�16�. A similar functional was introduced by Goedecker and
Umrigar �17�, the chief difference being that �17� attempts to
remove an electron “self-energy” by omitting certain diago-
nal terms that arise when Eq. �16� is explicitly written out
using the expansion of � into its orbitals �14�. In particular,
quite analogous to density-functional theory, explicit correc-
tions terms have been added to correct the overestimate of
binding energies using Müller’s functional �Gritsenko et al.
�18��.

From now on we will use atomic units, i.e., 	=m=e=1.
To get some idea of the magnitudes involved we can look at
hydrogen. Numerical computations ��18�, Fig. 6� and ��19�,
Fig. 3.1� suggest that EM�1��−0.525. This is to be com-
pared with the true energy, −0.5.

It might be wondered how Müller’s exchange energy
compares to the old Dirac −����r�4/3dr. As remarked after
Lemma 2, and as found earlier by Cioslowski and Pernal
�20�, X��1/2� cannot be bounded by C����r�4/3dr for any C.

Müller �15� also considered using �p�x ,x���1−p�x� ,x�
for some 0� p�1 in place of ��1/2�x ,x���2
=�1/2�x ,x���1/2�x� ,x�, which satisfies the integral condition
stated in A.1 below, but he decided to take p=1 /2 because
this yields the smallest value of X, and hence the largest
energy. �The proof is analogous to apb1−p+a1−pbp
2�ab
for positive numbers a ,b.�

Müller’s functional �15� has several advantages, the first
of which is as follows.

A.1. The quantity that effectively replaces ��2��r ,r�� in
the functional is now

1

2
���r����r�� −

1

2 �
�,��=1

q

��1/2�r,�,r�,����2,

and this satisfies the correct integral condition

1

2
� ����r����r�� − �

�,��=1

q

�1/2�x,x���1/2�x�,x��dr�

=
N − 1

2
���r� .

On the other hand, ���r����r��−��,��=1
q ��1/2�x ,x���2 is not

necessarily positive as a function of r ,r�, whereas the HF
choice ���r����r��−��,��=1

q ���x ,x���2
0 �which is true for
any positive semidefinite operator�. This nonpositivity is a
source of some annoyance. In particular, it prevents the ap-
plication of a standard method �21� for proving a bound on
the maximum N.

A.2. A special choice of � is a HF type of �, namely, one
in which all the �i are 0 or 1. In this special case �1/2=� and
the value of the Müller energy equals the HF energy. Thus,
the Müller functional is a generalization of the HF func-
tional, and its energy satisfies EM�N��EHF�N� �because, as
we remarked above, the minimizers for the HF problem al-
ways have this projection property�.

Later, we shall propose that the quantity ÊM�N�=EM�N�
+N /8 should be interpreted as the binding energy; it is not

obvious that ÊM�N� satisfies such an inequality, however. In-
deed, it does not, in general, as the hydrogen example shows
�−0.525+1 /8�−0.5�.

A.3. The original Müller functional seems to give good
numerical results when few electrons are involved. More-
over, EM�N� appears to satisfy EM�N��E0�N� for all electron
numbers N, i.e., it is always a lower bound. We shall prove
this inequality when N=2 in the last section. �Numerical ac-
curacy of larger electron numbers seem to require appropri-
ately modified functionals. We refer the reader interested on
numerical results and improved density matrix functionals to
the papers of Buijse and Baerends �16�, Staroverov and Scu-
seria �22�, Herbert and Harriman �23�, Gritsenko et al. �18�,
Poater et al. �24�, Lathiotakis et al. �25�, and Helbig �19�.�
Since we are primarily interested in the structure of the un-
derlying theory rather than numerical results, we concentrate
on the unmodified original Müller functional despite the
above mentioned numerical deficiency for large electron
number. The Müller functional can be viewed as a prototype
of density matrix functionals with simple structures, but
which are potentially useable as the basis of more elaborate
functionals, e.g., �17,18,26,27�.

C. Convexity and some of its uses

A key observation about EM��� is that it is a convex func-
tional of �. This means that for all 0���1 and density
matrices �1, �2 �not necessarily with the same trace and not
necessarily satisfying ��1�
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EM
„��1 + �1 − ���2… � �EM��1� + �1 − ��EM��2� . �17�

�Note that the convex combination ��1+ �1−���2 satisfies
the conditions in Eq. �16� if �1 and �2 both satisfy the con-
ditions.� The convexity is a bit surprising, given the minus
sign in the exchange term of EM, and it will lead to several
important theorems. One is that the electron density ���r� of
the minimizer �if there is one� is the same for all minimizers
with the same N, and hence that the density of an atom is
always spherically symmetric. This contrasts sharply with
HF theory, whose functional �6� is not convex, and it can
contradict the original Schrödinger theory �since an atom can
have a nonzero angular momentum in its ground state�. Also,
the Dirac estimate for the exchange energy, −��4/3 is not
convex; it is concave, in fact.

Some writers �28� regard the retention of symmetry as a
desirable property for an approximate theory; one speaks of
the “symmetry dilemma” of HF theory �which means that
while symmetry restriction of HF orbitals improves the over-
all symmetry it raises the minimum energy�. Müller theory
has no symmetry dilemma.

From another perspective the sphericity of an atom might
be seen as a drawback since real atoms sometimes have a
nonzero angular momentum, and such states are not spheri-
cally symmetric. Sphericity is not a drawback, in fact, since
density matrix-functional theory deals with density matrices
obtained from all N-particle states, including mixed ones
�because the only restriction we impose is that the eigenval-
ues of � lie between 0 and 1, and this condition precisely
defines the set of � obtained from the set of mixed states, not
the set of pure states�. In the case of atoms there is always a
mixed state with spherical symmetry, namely, the projection
onto all the ground states, divided by the degeneracy. This is
the state that one sees �in principle� when looking at an atom
at zero temperature �Lüders’s projection postulate �29��.

A second consequence of convexity is that the energy
EM�N� is always a convex function of N, as it is in Thomas-
Fermi theory, for example �12,30�. This means that as we
add one electron at a time to our molecule, the �differential�
binding energy steadily decreases. Such a property is not
known to hold for the true Schrödinger energy E0�N�.

The convexity of EM��� is not at all obvious. All the terms
except −X��1/2� are clearly convex. In fact, the term
D��� ,��� is strictly convex as a function of the density ���r�
�strict inequality in Eq. �17� when ��1

���2
� since the Cou-

lomb kernel �r−r��−1 is positive definite. It is this strict con-
vexity that implies the uniqueness of ���r� when there is a
minimizer.

To show convexity of EM���, therefore, we have to show
concavity �like Eq. �17� but with the inequality reversed�
of the functional X��1/2�. First, we write �r−r��−1

=��B��r�*B��r��d� where � is in some parameter-space
�. There are many ways to construct such a decomposition.
One way is due to Fefferman and de la Llave �31�, which we
shall use in the following, in which the functions B� are all
characteristic functions of balls in R3 and � parametrizes
their radii and centers. Another way is �r−r��−1

=C�R3 �r−z�−2 �r�−z�−2dz. Anyway, it suffices now to prove

that �dxdx��1/2�x ,x��B�r�*�1/2�x� ,x�B�r�� is concave in �,
for any fixed function B�r�. We can write this in abstract
operator form as tr �1/2B†�1/2B. The concavity of such func-
tions of � was proved by Wigner and Yanase �32� in connec-
tion with a study of entropy.

Convexity also holds for Müller’s general p functional,
which we mentioned earlier. It uses �p�x ,x���1−p�x� ,x� in
the exchange term. The fact that tr �pB†�1−pB is concave for
all 0� p�1 was proved in �33� and plays a role in quantum
information theory �34�.

Another important use of the convexity of EM��� is to
significantly simplify the question of the spin dependence of
��r ,� ,r� ,���. For concreteness, let us assume the usual case
of two spin states �q=2�, but the conclusion holds for any q.
In the HF problem it is not obvious how � should depend on
� ,�� and usually one makes some standard a priori assump-
tion, such as that �HF�r ,� ,r� ,���=�↑,↑�r ,r� , ���,↑���,↑
+�↓,↓�r ,r� , ���,↓���,↓. In the Müller case this problem does
not arise. Note that the functional EM is invariant under si-
multaneous rotation of � and �� in spin-space. �This means
that we regard � as a 2�2 matrix whose elements are func-
tion of r ,r�. The spin rotation is then just a 2�2 unitary
transformation of this matrix.� If we take any ��r ,� ,r� ,���
and average it over all such simultaneous rotations we will
obtain a new �̃ whose energy EM��̃� is at least as low as that
of the original � �by convexity�. But �̃ is clearly spin-space
rotation invariant, which means it must have the form

�̃�r,�,r�,��� =
1

2
�̂�r,r�� � I , �18�

where I is the 2�2 identity matrix. The subsidiary condi-
tions become

tr �̂ �� �̂�r,r�dr = N and 0 � �̂ � 2. �19�

The change from 1 to 2 in Eq. �19� is to be noted. Often �̂ is
called the spin-summed density matrix.

The conclusion is that to get the correct minimum energy
one can always restrict attention to the simpler, spin-
independent �̂, but with the revised conditions �19�. This is a
significant simplification relative to HF theory. In much of
the following we utilize the formal notation x instead of r,
but the reader should keep in mind that one can always as-
sume that � has the form �18� and all spin summations be-
come trivial.

A question will arise: Although it is possible to choose �
in the form �18�, are there other possibilities? They will cer-
tainly exist if �̂ is not unique �but we conjecture that it is
unique since its density is unique, as we said�. Even if �̂ is
unique we still might have other possibilities, however, when
N is small. For example, we could take ��x ,x��= �̂�r ,r��
���,↑���,↑, but this density matrix is bounded above by 1
only if �̂�1 �not �2�. This situation can arise if N is small,
but we expect that it does not arise when N�1. In any case,
we show that, for large N and Z, �̂ has at least one maximal
eigenvalue, namely 2 �see Proposition 8�.

In short, it is likely that whatever the Müller functional
has to say about the energy, it probably has little to say,
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reliably, about the spin of the ground state. Unlike HF theory,
we do not have to worry about spin here. This does not mean
that HF theory is necessarily better as concerns spin. Some-
times it is �35�, and sometimes it is not �36�.

In the atomic case EM��� is also rotationally invariant and
we can apply the same logic used above for the spin to the
simultaneous rotation of r ,r� in �̂�r ,r��. The conclusion is
that we may assume the following computationally useful
representation:

�̂�r,r�� = �
�=0

�

�
m=−�

�

���r,r��Y�,m��r�Y�,m
* ��r��

=
2 � + 1

4�
�
�=0

�

���r,r��P��cos �� , �20�

where r= �r�, r�= �r��. The Y�,m are normalized spherical har-
monics, �r is the angle of the vector r, etc., P� is the �th
Legendre polynomial, and � is the angle between r and r�.
Another way to say this is that we can assume that the eigen-
functions of �̂�r ,r�� are radial functions times spherical har-
monics Y�,m and that the allowed m values occur with equal
weight. This observation can simplify numerical computa-
tions.

Any other symmetry can be treated in a similar way. For
example, in the case of a solid there is translation invariance
of the lattice of nuclei. By wrapping a large, finite piece of
the lattice on a torus �periodic boundary conditions� we have
a finite system with translation invariance and we can con-
clude, as above, that we can assume that �̂�r ,r�� is also
translation invariant, which means that �̂�r ,r��, viewed as a
function of r+r� and r−r� is periodic in the variable r+r�.

One obvious symmetry is complex conjugation �i→−i� in
the absence of a magnetic field. Convexity implies that in the
spin-independent formulation any minimizing � must be
real, as shown in Proposition 9 of Sec. IV B.

D. The Müller equations

If the Müller functional has a minimizing � �with tr �
=N� then this � satisfies an Euler equation. A minimizer does
exist if N�Z as we show in Theorem 2. It is not altogether a
trivial matter to write down an equation satisfied by a mini-
mizing �. Conversely, one can ask whether a � that satisfies
this equation is necessarily a minimizer. We partly answer
these questions in several ways.

�1� Suppose that � satisfies tr �=N and that � minimizes
EM���, i.e., EM���=EM�N�. Then we conclude �by definition
of the minimum� that

EM
„�1 − t�� + t��… 
 EM��� �21�

for all admissible �� with tr ��=N and for all 0� t�1. Con-
versely, if tr �=N and if Eq. �21� is true for all such �� and
for some 0� t�1 �with t possibly depending on ��� then � is
a minimizer. Alternatively, it suffices to require that for all
such ��,

d

dt
EM

„�1 − t�� + t��…�t=0 = lim
t↓0

1

t
�EM

„�1 − t�� + t��… − EM����


 0. �22�

To see that � is a minimizer we exploit the convexity of
the functional EM, which implies that EM(�1− t��+ t��)
� �1− t�EM���+ tEM����, and hence, from Eq. �21� or Eq.
�22�, that EM����EM����. �Note that the convexity also im-
plies that EM(�1− t��+ t��) is a convex function of t in the
interval �0,1�, which, in turn, implies that the right deriva-
tive defined in Eq. �22� always exists.�

To summarize, we say that the equation defining a mini-
mizer is Eq. �22� �for all ���. To make this more explicit we
have to compute the derivative in Eq. �22�.

�2� The variational equations are most conveniently writ-
ten down in terms of �1/2, the square root of a minimizer. In
Proposition 10, we will show that �1/2�r ,r�� satisfies the
following variational equation. Let �� denote the effective
potential ���r�=Vc�r�−����r�� �r−r��−1dr�, where ���r�
=����x ,x�=��� ��1/2�x ,x���2dx� denotes the particle den-
sity. Then

	−
1

2
�r

2 −
1

2
�r�

2 − ���r� − ���r�� −
1

�r − r��
− 2�
�1/2�x,x��

= �
i

2ei�i�x��i�x��*, �23�

where ��−1 /8, ei�0 and �i�x� is an eigenfunction of �1/2

with eigenvalue 1, i.e., ��1/2�x ,x���i�x��dx�=�i�x� for all i.
Note that the number of �i’s corresponding to eigenvalue 1 is
necessarily less than N.

Conversely, is it true that any �1/2 satisfying 0��1/2�1
�as an operator� and tr��1/2�2=tr �=N which is a solution to
Eq. �23� under the constraints mentioned above, is a mini-
mizer of EM���? Unfortunately, we can answer this question
affirmatively only if we know that the density ���r� does not
vanish on a set of positive measure. Presumably such a van-
ishing does not occur, but we do not know how to prove this
and leave it as an open problem.

�3� As a practical matter it is the fact that � satisfies Eq.
�23� that is important because it gives us equations for the
orbitals of �. A minimizer � can be expanded in natural
orbitals � j�x� as

��x,x�� = �
j

� j� j�x�� j�x��*

with corresponding occupation numbers �eigenvalues� 0
�� j �1. Then �1/2�x ,x��=� j� j

1/2� j�x�� j�x��*. Multiplying
Eq. �23� by �i�x�� and integrating over x� yields an eigen-
value equation for the �i�x�, namely

�	−
1

2
�2 − ��
�1/2 + �1/2	−

1

2
�2 − ��
���i�

− �Z� + 2��i
1/2���i� = 2ei��i� . �24�
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Here, Z� is the operator with integral kernel

Z��x,x�� = �1/2�x,x���r − r��−1. �25�

Taking the product with �� j�, this implies, in particular, that

�� j�−
1

2
�2 − ����i� −

1
��i + �� j

�� j�Z���i� = �� + ei��ij .

�26�

�See also Pernal �37� who derived—although merely on
a formal level—similar equations for more general func-
tionals.�

�4� We shall show that � has no zero eigenvalues unless
the density ���r� vanishes identically on a set � of positive
measure. We do not expect such a set to exist but we do not
know how to exclude this possibility. Any nonzero, square
integrable function that vanishes identically outside � is a
zero eigenvalue eigenfunction of �. In any case, there are no
other zero eigenvalue eigenfunctions.

Hence the orbitals � j�x� form a complete set in L2�R3 \��.
Formally, we can thus rewrite Eq. �26� as an eigenvalue
equation for a linear operator H� on L2�R3 \��. Let

H� = −
1

2
�2 − �� − X�, �27�

where X� is the nonlocal exchange operator with matrix el-
ements ��i �X� �� j�= ���i+�� j�−1��i �Z� �� j�. Alternatively,
one can write

X� =
1

�
�

0

� 1

� + s
Z�

1

� + s
�sds . �28�

The variational equations are then

H��� j� = ��� j� �29�

for all j with 0�� j �1, where ��−1 /8 is the chemical
potential. Notice that all eigenvalues in Eq. �29� are identi-
cal, namely, �.

In the subspace in which � has eigenvalue 1, which can
only be finite dimensional since tr �=N, there is an orthonor-
mal basis such that

H��� j� = �� + ej��� j� �30�

with all ej �0. The finite collection of numbers �+ej consti-
tutes all the eigenvalues of H� that are less than �.

The reason we say that Eqs. �29� and �30� are formal is
that the operator H� is only formally defined by Eq. �27�.
Both �2 and X� are unbounded operators. Their sum is de-
fined as a quadratic form �i.e., expectation values� but this
form does not uniquely define the operator sum. If we knew
that there are no zero eigenvalues then the set � would be
empty and �2 would be defined as the usual Laplacian on R3,
but if R3 \� has a boundary there are many extensions of �2

with different boundary conditions, and this prevents the pre-
cise specification of Eqs. �29� and �30�. There is no problem
with the matrix elements in Eq. �26�, however, since the �i
vanish on the boundary of R3 \�.

On the other hand, Eq. �23�, which is an equation for the
function �1/2�x ,x��, is true on the whole space. It is not nec-

essary to impose any boundary conditions and �2 is just the
usual Laplacian—whether or not the set � is empty.

Surely � is empty, in fact, and the practical quantum
chemist can freely use Eqs. �29� and �30�.

E. Other considerations about the Müller functional

Let us conclude this introduction with a list of other sig-
nificant questions about EM�N� and with statements about
what we can prove rigorously.

Q1. If there are no nuclei at all �K=0�, and if we try to
minimize EM��� �with tr �=N, however� it is clear that there
will be no energy minimizing �. There will, of course, be a
minimizing sequence �i.e., a sequence �n, n=1,2 , . . . . such
that EM��n�→EM�N� as n→��. Such a sequence will tend to
“spread out” and get smaller and smaller as it spreads �al-
ways with tr �n=N�. What, then, is EM�N�? We prove that it
is exactly given by

EM�N� = − N/8 when all Zj = 0. �31�

�If the units are included the energy is −�me4 /8	2�N.� A
similar calculation in the context of the homogeneous elec-
tron gas was done by Cioslowski and Pernal �20�.

This situation is reminiscent of Thomas-Fermi-Dirac
theory �12� where, in the absence of nuclei, the energy equals
−�const�N. This negative energy comes from balancing the
kinetic energy against the negative exchange. In such a case
it is convenient to add +�const�tr � to EM��� �with �const�
=1 /8 in our case� in order that EM�N��0 when there are no
nuclei.

Another way to say this is that the energy, −1 /8, is the
self-energy of a particle in this theory. It has no physical or
chemical meaning but we have to pay attention to it. It is the
quantity

ÊM�N� = EM�N� +
N

8
�32�

that might properly be regarded as the energy of N electrons

in the presence of the nuclei, i.e., −ÊM�N� is the physical
binding �or dissociation� energy. We do not insist on this
interpretation, however. On the other hand, if we are inter-
ested in the binding energy with fixed N �e.g., the binding
energy of two atoms to form a molecule� then it makes no

difference whether we use the difference of ÊM�N� or EM�N�.
The motivation here is to ensure that the ground state

energy of free electrons is zero. This can be compared with
the formulation in �17� in which the “self-energy” correction
is obtained by omitting certain diagonal terms in the energy
�when the energy is written in terms of the orbitals of ��.
This procedure does not have a natural physical interpreta-
tion and, more importantly, does not appear to give the zero
energy condition for free electrons.

This consideration leads us to the functional

ÊM��� = EM��� +
1

8
tr � �33�

and its corresponding infimum ÊM�N�. Note that ÊM��� is
also a convex functional of � since the new term tr � /8 is
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linear, and hence convex. Likewise, ÊM�N� is a convex func-
tion of N.

Having added this term, and with nuclei present, ÊM�N�
will qualitatively look like the Thomas-Fermi �TF� energy,

ETF�N�. That is, ÊM�0�=0 and ÊM�N� decreases monotoni-
cally, and with nondecreasing derivative, as N increases
��30�, Fig. 1 of Ref. �12��. It is bounded below, that is,

ÊM�N� 
 ÊM��� , �34�

where ÊM��� is some finite, negative constant. We shall
prove this here. These features are displayed schematically in
Fig. 1.

There is another feature of ETF�N� that we believe to be

true for ÊM�N�, but leave as an open question. At a certain
critical value Nc of the electron number ETF�N� stops de-
creasing and becomes constant for all N
Nc. When N�Nc
the excess charge N−Nc just leaks off to infinity. In TF
theory Nc is the neutrality point Z=�Zj, but this need not be
so in other theories. In the original Schrödinger theory �2� Nc
is greater than Z for many atoms �since stable, negative ions
exist� but we know it is less than 2Z+1 �21�. In the Thomas-
Fermi-Weizsäcker theory, Nc is approximately Z+ �const�
�12,38�. We do not know how to prove that there is a finite

Nc for ÊM�N�, but we believe there is one.
Q2. The main problem that has to be addressed is whether

or not there is a � that minimizes ÊM��� in Eq. �16�. If Nc

�� we know that there is no minimizer when N�Nc, so we
obviously do not expect to prove the existence of a mini-
mizer for all N.

The way around this problem, as used in �30�, for ex-
ample, is to consider the relaxed problem

Ê�
M�N� = inf

�
�ÊM���:0 � � � 1,tr � � N
 . �35�

The relaxation of the number condition allows electrons to
move to infinity in case N is larger than the maximal number
of electrons that can be bound. In Proposition 4 we show that

Ê�
M�N�= ÊM�N� for all N.

The difference is that while the ÊM problem may not have

a minimizer we prove that the Ê�
M problem �35� has a mini-

mizer for all N. The proof is more complicated in several
ways than the analogous proof in TF theory �12,30�. A mini-
mizer, which we can call ���N�, will have some particle
number tr ���N��N��N. It then follows from standard ar-
guments using convexity �and strict convexity of D�� ,���
that the following is true, as displayed in Fig. 1.

If N��N then ���N�=���N�� and ÊM�N�= �const�
= ÊM�N��, i.e., the original problem �16� has no minimizer.

If N�=N then ���N� is also a minimizer for the original
problem �16�. That is, the relaxed problem and the original
problem give the same minimizer and the same energy. In

this case, ÊM�N�� ÊM�N�� for all N��N. The largest N with
this property is equal to Nc.

It might occur to the reader that nothing said so far pre-
cludes the possibility that Nc=0, but this is not so. We prove
that Nc
Z�total nuclear charge.

Q3. How many orbitals are contained in a minimizing �?
We shall prove that � has infinitely many positive eigenval-
ues. This feature also holds for the full Schrödinger theory
�Friesecke �39� and Lewin �40��, whereas there are only N in
HF theory. We believe that � has no zero eigenvalues �in the
“spin-summed” version�, but cannot prove this. In other
words, we believe that the eigenfunctions belonging to the
nonzero eigenvalues span Hilbert space �they form a com-
plete set�. We can, however, prove that the eigenfunctions of
the spin-summed � are a complete set on the support of
���r�, namely, on the set of r�R3 for which ���r��0. Pre-
sumably, this is the whole of R3.

This introduction is long, but we hope it serves to clarify
our goals and results, since the rest of the paper is unavoid-
ably technical.

F. Open problems

For the reader’s convenience we give a brief summary of
some of the open problems raised by this work, some of
which are discussed at various places in this paper.

�1� What is the critical value of the total electron charge,
Nc, beyond which there is no energy minimizing � and the

energy ÊM�N� is constant? Is Nc finite and can one give up-
per and lower bounds to it? In particular is Nc�Z, i.e., can
negative ions exist? �We prove Nc
Z and we prove that

ÊM�N� is bounded below, for all N, by a Z-dependent con-
stant.�

�2� Is EM�N�� the true Schrödinger ground state energy?
�We prove this for N=2.� Can anything be said, in this re-

gard, about ÊM�N�=EM�N�+N /8?
�3� Is the spin-summed energy minimizing � unique?

�We prove that all minimizers have the same density ��r�,
however.�

FIG. 1. Schematic diagram of the energy dependence on the
particle number N. The lower, dashed curve is the Müller energy

EM�N� and the upper, solid curve is ÊM�N�=EM�N�+N /8, in which
the “self-energy” −N /8 has been subtracted. Beyond the value Nc

each curve is linear, whereas for N�Nc each is strictly convex and
there is an energy minimizing density matrix.
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�4� Is the domain on which the unique ��r��0 equal to
the whole of R3 �except, possibly, for sets of measure zero�?
If so, this would imply that the spin-summed � does not have
a zero eigenvalue.

�5� What are the qualitative properties of the density ��r�?
How does it fall off for large �r�? What is its behavior near
the nuclei?

�6� In this theory do atoms bind to form molecules?
�Recall that there is no binding in Thomas-Fermi theory
�30�.�

II. THE CASE Z=0

As noted in the Introduction the energy of free electrons
EM�N� is not zero but is proportional to N. To be precise,
EM�N�=−N /8 �in atomic units� when there are no nuclei, and
comes about from the negative exchange energy −X��1/2�.
This negative energy could be −� were it not for the positive
kinetic energy, which controls it and leads to a finite result.
We shall prove that the direct Coulomb repulsion term,
D��� ,��� plays no role here because it is quadratic in �,
whereas the terms we are concerned with are homogeneous
of order 1. We would get −N /8 even if we omitted the direct
term. Similarly, the value −N /8 is independent of the number
of spin states q. Moreover, the assumption ��1 is not
needed in the proof.

In this section, Z=�Zj =0, and we are considering the
functional

EM��� � tr	−
1

2
�2�
 + D���,��� − X��1/2� , �36�

and the minimal energy EM�N� in Eq. �16�. We also consider
the relaxed energy E�

M�N� for which, in analogy with Eq.
�35�, the condition tr �=N is replaced by tr ��N.

We always assume that �−�2+1�1/2�1/2�S2, the
set of Hilbert-Schmidt operators, so tr(�1−�2��)
=��dxdx�����1/2�x ,x���2+ ��1/2�x ,x���2���. We use the
usual notation for Lp-norms, namely,

� f �p = 	� �f�x��pdx
1/p

and � f �� = sup
x

��f�x��
 .

Proposition 1. If Z=0, then for any N�0,

EM�N� = E�
M�N� = − N/8 �37�

and there is no minimizing �.
Proof. Lower bound: We use the lower semiboundedness

of the hydrogenic Hamiltonian �i.e., for an imaginary nucleus
with Z=1 /2, located at r��

−
1

2
�r

2 − �2�r − r���−1 
 −
1

8
�38�

for all r��R3, together with the fact that D��� ,���
0 to get

EM��� 

1

2
� � 	��r�

1/2�x,x���2 −
��1/2�x,x���2

�r − r��

dxdx�


 −
1

8
� � ��1/2�x,x���2dxdx�

= −
1

8
tr � .

This proves the lower bound on EM�N� and E�
M�N�.

To prove the nonexistence of a minimizer we denote by
g�r−r�� the ground state of −�r

2− �r−r��−1, i.e.,

g�r − r�� = �−1/2e−�r−r��, �39�

and note that the inequality 
 in Eq. �38� is strict �i.e., it is
��, except for multiples of the function g�r−r��. Hence the
above lower bound on EM��� is strict unless �1/2�x ,x��
=c����r��g�r−r��. By self-adjointness, c��� has to be a con-
stant, and since ��S1, the set of trace class operators,
c���=0. But this means that there exists no minimizer.

Upper bound: We define a trial density matrix � by defin-
ing its square root:

�1/2�x,x�� = ��r�*g�r − r����r��q−1/2��,��. �40�

Here, g is the same as in Eq. �39� and � is a smooth function
which will be specified later. Note that this definition makes
sense, since the operator whose kernel is given on the right
side of Eq. �40� is non-negative. This follows from the posi-
tivity of ĝ, the Fourier transform of g, given by

ĝ�p� =
23/2

�

1

�1 + �p�2�2 .

An easy calculation shows that

tr�− �r
2�� =� � ����r��2���r���2�− �r

2g�r − r���g�r − r��

+ ����r��2g�r − r��2���r���2
drdr�.

Using the eigenvalue equation for g one finds

tr�− �r
2�� = 2X��1/2� −

1

4
tr �

+� � ����r��2g�r − r��2���r���2drdr�.

The upper bound will follow from this if we can find func-
tions �L �where L is some free parameter� such that for �L
defined via �L,

�L � 1, as an operator, tr �L → N , �41�

� � ���L�r��2g�r − r��2��L�r���2drdr� → 0,

and D���L
,��L

� → 0 �42�

as L→�. We shall choose �L of the form �L�r�
=L−3/4��r /L� for a fixed smooth function �
0 satisfying
���4

4=N.
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We note that for any L2 function � �and with ¯̂ denoting
the Fourier transform�

��,�L
1/2�� = �2��3/2� ĝ�p����̂L���p��2dp

� �2��3/2�ĝ����L��
2 ���2

2,

which is less than or equal to ���2
2 for L large, since ��L��

→0. This implies the first condition in Eq. �41�. To check the
second one, we write

tr �L = �2��3/2� �g2�̂�p����L
2 �̂�p��2dp .

Now ���L
2 �̂�p��2=L3 � ��2�̂�Lp��2, which converges to N��p� as

L→� �recall that ���4
4=N�. Therefore

tr �L → �2��3/2�g2�̂�0�N = N .

To check conditions �42� we estimate �again using that
�g�2=1�,

� � ���L�r��2g�r − r��2�L�r��2drdr�

� ��L��
2 � ���L�r��2dr = L−2����

2 ����2.

Moreover,

D���L
,��L

� =
1

2L
� � �2�r��L�r��L�r���2�r��

�r − r��
drdr�

where �L�r�=L3�g2(L�r−r��)�2�r��dr�. Since �L�r�
→�2�r� as L→�, we conclude that D���L

,��L
�=L−1D��4�

+o�L−1� by dominated convergence.
Hence Eq. �42� holds, and the proof is complete. �
Remark: One might ask whether X��1/2� can be bounded

from above in terms of the usual Dirac type estimate for the
exchange energy, ����r�4/3dr �cf. �12��. However, this is not
the case, as the following example shows: define �L, as in the
proof of Proposition 1, by �L

1/2�x ,x��=L−3/2��r /L�g�r
−r����r� /L�q−1/2��,��, and carry out calculations similar to
those done above. We find that

X��L
1/2� → ���4

4� �g�r��2

2�r�
dr ,

� ��L
�r�4/3dr � L−1���16/3

16/3,

� ��L
�r�dx → ���4

4.

Hence a bound in terms of the 4 /3-norm cannot hold. This
example can be traced back to Cioslowski and Pernal �20�.

III. MINIMIZER IN THE CASE Z�0

We return here, and in the remainder of this paper, to the
general case in which all Zj �0. We investigate the func-

tional ÊM in Eq. �33� and the corresponding relaxed minimi-
zation problem given in Eq. �35�. Our goal is to show that
there is an energy minimizing � for this problem and that its
trace is tr �=N whenever N�Z=� jZj. The main result of
this section is contained in the following two theorems,
whose elaborate proof will be given in several parts.

Theorem 1. For any Z�0 and N�0 one has Ê�
M�N�

�0 and the infimum �35� is attained.
As explained in the Introduction, we do not know how to

prove that the minimizer is unique. The strict convexity of
the direct energy D��� ,���, however, does imply that all
minimizing �’s have the same �spin summed� density ���r�.

Theorem 2. Assume that N�Z. Then a minimizer of Eq.
�35� has trace N.

In particular, this result implies that in the original prob-
lem �16� the infimum is achieved in case N�Z. The critical
number Nc mentioned in the Introduction is thus at least Z.

A. Proof of Theorem 1

By Proposition 1, the functional ÊM��� is non-negative, if
Z=0. By using a trial density matrix, we will first show that
it assumes negative values as soon as Z is positive.

Lemma 1. For any Z�0 and N�0 one has Ê�
M�N��0.

Proof. Without loss of generality we may assume that
there is only one nucleus of charge Z located at the origin
r=0. We use the same family �L of trial density matrices as
in the proof of the upper bound in Proposition 1. Using the
same estimates, we have

ÊM��L� = − Z tr�r�−1�L +
1

L
D��4� + o�L−1� as L → � .

�43�

Since L3�g2(L�r−r��)�2�r��dr�→�2�r�, we have tr �r�−1�L

=L−1� �r�−1�4�r�dr+o�L−1�. Hence,

ÊM��L� = L−1	− Z� �r�−1�4�r�dr + D��4�
 + o�L−1�

�44�

as L→�. For Z�0 and N= ���4
4 small enough, the term in

large parentheses can clearly be made negative by an appro-

priate choice of �. This shows that Ê�
M�N��0 for small N,

and hence for all N. �
Proposition 2. Let Z�0 and N�0. There exists a mini-

mizing sequence � j for Eq. �35� which converges in S1, the
space of trace-class operators, i.e., there is a � such that
tr �� j −� � →0.

Before giving the proof of this proposition, we collect
some useful auxiliary material.

Lemma 2. For every ��0

� �
��r−r����


��1/2�x,x���2

�r − r��
dxdx� � 4� tr�− �2�� �45�

and

X��1/2� �
�

4
tr�− �2�� +

1

4�
tr � . �46�
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Proof. The first inequality can be easily deduced from
Hardy’s inequality, which states that

− �2 

1

4�r�2
. �47�

For the second inequality, we use the well-known expres-
sion for the ground state energy of the hydrogen atom,
namely,

− �2 −
z

�r�

 −

z2

4
, �48�

from which it follows �with z=2 /�� that for every x�,

1

2
� ��1/2�x,x���2

�r − r��
dx �

�

4
� ���1/2�x,x���2dx

+
1

4�
� ��1/2�x,x���2dx . �49�

The lemma follows by integrating over x�. �
Lemma 3. Let ��r� satisfy ���r� � �1. Then

X��*�1/2�� � X„��*���1/2
… .

Proof. For convenience we introduce the characteristic
function of a ball of radius r centered at z,

Bz,r�r� = �1, �r − z� � r

0, �r − z� 
 r .
�50�

Writing the Coulomb kernel as

�r − r��−1 =
1

�
�

0

� �
R3

Bz,r�r�Bz,r�r��dz
dr

r5 �51�

�Fefferman and de la Llave �31��, we get

X��� =
1

2�
�

0

� �
R3

tr��Bz,r�Bz,r�dz
dr

r5 . �52�

It follows from �� � �1 and the monotonicity of the operator
square root that

�*�1/2� = ���*�1/2����*�1/2���1/2

� ��*�1/2�1/2��1/2

= ��*���1/2.

Hence

tr��*�1/2�Bz,r�
*�1/2�Bz,r�

� tr���*���1/2Bz,r��*�1/2��1/2Bz,r� .

The assertion follows now from Eq. �52�. �
Proof of Proposition 2. We choose an arbitrary mini-

mizing sequence � j for Eq. �35� and, after passing to a

subsequence �if necessary�, assume that tr � j→ Ñ� �0,N�. It
follows from Eq. �46� and the hydrogen bound,
trZk �r−Rk�−1�� �Zk� /4Z�tr�−�2��+ �ZkZ /��tr � that

1

2
�1 − ��tr�− �2�� j � ÊM�� j� +

1

�
�Z2 + 1/4�tr � j . �53�

Hence the sequence �−�2+1�1/2� j�−�2+1�1/2 is bounded in
S1 and, by the Banach-Alaoglu theorem �see �41�� there ex-
ists a � such that, after passing to a subsequence �if neces-
sary�, tr K� j→ tr K� for any operator K such that �−�2

+1�−1/2K�−�2+1�−1/2 is compact. This compactness condi-
tion is satisfied if K is simply multiplication by some func-
tion f �Lp�R3� for some 3 /2� p�� �see ��42�, Sec. 13.4��.
In this case we have that

� f�r���j
�r�dr = tr f� j → tr f� =� f�r����r�dr . �54�

In particular, we can take f in Eq. �54� to be the Coulomb
potential since this potential can be written as the sum of two
functions, one of which is in Lp�R3� and the other in Lq�R3�
with 3 /2� p�3 and 3�q��.

Note that 0���1 and, by the lower semicontinuity of
the S1-norm,

M = tr � � lim inf
j→�

tr � j = Ñ � N .

We claim that ��0 �and hence M �0�. Indeed, by Proposi-

tion 1 one has ÊM�� j��−� for some ��0 and all sufficiently
large j. Hence tr Vc� j 
� and by Eq. �54� also tr Vc�
�.

Clearly, � j⇀� in the sense of weak operator conver-

gence. If M = Ñ, then also tr � j→ tr �, and thus � j→� in S1

�see Theorem A.6 in �43�� and we are done.

We are thus left with the case M � Ñ. Our strategy will be
to construct a minimizing sequence � j

0 out of the � j which
converges to � in S1. We choose a quadratic partition of
unity, ��0�2+ ��1�2�1, where �0 is a smooth, symmetric de-
creasing function with �0�0�=1, �0�r��1 if �r � �0 and
�0�r�=0 if �r � 
2. For fixed j, tr��0�r /R��2� j is a continuous
function of R which increases from 0 to tr � j. If we restrict
ourselves to large j, then tr � j �M and we can choose an Rj
such that tr��0�r /Rj��2� j =M. We write � j

��r�=���r /Rj� and
� j

�=� j
�� j� j

� for �=0,1.
We claim Rj→�. To see this, assume the contrary,

namely, that there is a subsequence that converges to some
R��. Then, for this subsequence, � j

0�r�2→�0�r /R�2

strongly in any Lp. Since ��j
⇀�� weakly in Lp for 1� p

�3 by Eq. �54�, one has

� � j
0�r�2��j

�r�dr →� �0�r/R�2���r�dr .

But, by definition, the left side is independent of j and equals
�� j

0�r�2��j
�r�dr=M =����r�dr. This is a contradiction, since

�0�r�2�1 almost everywhere and ��0.
Therefore limj→�Rj =�. We note that � j

0
⇀� in the sense

of weak operator convergence. �It suffices to check the weak
convergence on functions of compact support, since the � j

0

remain uniformly bounded.� By construction, tr � j
0=tr �, so

that � j
0→� in S1 �again by Theorem A.6 in �43�� and it

remains to prove that � j
0 is a minimizing sequence.
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For the kinetic energy we use the IMS formula �44�

tr�− �2� j� = tr�− �2� j
0� + tr�− �2� j

1� − tr����� j
0�2 + ��� j

1�2�� j� .

Since Rj→�, one has ���� j
0�2+ ��� j

1�2��→0 and therefore

tr�− �2�� j = tr�− �2�� j
0 + tr�− �2�� j

1 + o�1� . �55�

For the attraction term we use again that Rj→�, so
tr �r−Rk�−1� j

1→0 and

tr�r − Rk�−1� j = tr�r − Rk�−1� j
0 + o�1� . �56�

For the repulsion term we use that ��j
0 ���j

pointwise and
get

D���j
,��j

� 
 D���j
0,��j

0� . �57�

Finally, we turn to the exchange term, which we write as

X�� j
1/2� = X�� j

0� j
1/2� j

0� + X�� j
1� j

1/2� j
1� + 2X�� j

0� j
1/2� j

1� .

We shall show that

X�� j
1/2� � X„�� j

0�1/2
… + X„�� j

1�1/2
… + o�1� . �58�

It follows from Lemma 3 that X�� j
�� j

1/2� j
���X��� j

��1/2�. To
show that the off-diagonal term tends to zero we decompose,
for any ��0,

X�� j
0� j

1/2� j
1� =� �

��r−r����/2


�� j
0�r�� j

1/2�x,x��� j
1�r���2

2�r − r��
dxdx�

+� �
��r−r��
�/2


�� j
0�r�� j

1/2�x,x��� j
1�r���2

2�r − r��
dxdx�.

The term with the singularity is controlled by Eq. �45�,

� �
��r−r����/2


�� j
0�r�� j

1/2�x,x��� j
1�r���2

2�r − r��
dxdx�

� � tr�− �2�� j
0� j

1/2�� j
1�2� j

1/2� j
0 � � tr�− �2�� j

0� j� j
0.

This can be made arbitrarily small by choosing � small. For
j large enough, Rj �A for any A�0. We decompose the term
without singularity into two pieces,

� �
��r−r��
�/2


�� j
0�r�� j

1/2�x,x��� j
1�r���2

2�r − r��
dxdx�

�� �
��r−r��
�/2,�r�
A


�� j
0�r�� j

1/2�x,x���2

2�r − r��
dxdx�

+� �
��r��A


�� j
1/2�x,x��� j

1�r���2

2�r − r��
dxdx�

� �−1� �
��r�
A


� j
0�r�2�� j

1/2�x,x���2dxdx�

+ �2�Rj − A��−1� � �� j
1/2�x,x���2dxdx�

= �−1 tr ���r�
A
� j
0 + �2�Rj − A��−1 tr � j .

In the next to last line we used that �r−r� � 
Rj −A if
�r � �A and � j

1�r���0. Since � j
0→� in S1, one has

tr ���r�
A
� j
0→ tr ���r�
A
�. This can be made arbitrarily

small by choosing A large. Since Rj→�, the term
�2�Rj −A��−1 tr � j converges to 0. This proves Eq. �58�.

Collecting Eqs. �55�–�58� we find that

ÊM�� j� 
 ÊM�� j
0� + 	−

1

2
tr �2� j

1 − X�� j
1� +

1

8
tr � j

1
 + o�1� .

We have shown in the proof of Proposition 1 that the term in
large parentheses is non-negative. Hence

lim inf
j→�

ÊM�� j� 
 lim inf
j→�

ÊM�� j
0� ,

which shows that � j
0 is a minimizing sequence. This con-

cludes the proof. �
Proposition 3. Let � j→� in S1. Then

lim inf
j→�

ÊM�� j� 
 ÊM��� . �59�

Proof. The bound �53� shows that E=lim infj→�ÊM�� j�
�−�. Moreover, we may assume that E��, for otherwise
there is nothing to prove. After passing to a subsequence �if
necessary�, we may assume that ÊM�� j�→E. As in the proof
of Proposition 2 there exists a � such that, after passing to a
subsequence if necessary, tr K� j→ tr K� for any operator K
such that �−�2+1�−1/2K�−�2+1�−1/2 is compact. In particu-
lar, Eq. �54� holds. By weak lower semicontinuity we infer
that

tr	−
1

2
�2 + 1/8
� � lim inf

j→�
tr	−

1

2
�2 + 1/8
� j . �60�

Now we turn to the repulsion term. Since D���j
,��j

� is
bounded we may, passing to a subsequence �if necessary�,
assume that ��j

converges weakly to some � with respect to
the D-scalar product. With the help of Eq. �54� one con-
cludes that �=��. Weak lower semicontinuity with respect to
the D-norm implies that

D���,��� � lim inf
j→�

D���j
,��j

� . �61�

The continuity of the attraction term follows from Eq. �54�,
since �r�−1�L3/2+Lp for p�3, therefore

lim
j→�

tr Vc� j = tr Vc� . �62�

Finally, we prove continuity of the exchange term. Similarly
as in the proof of Proposition 2 we decompose, for any
��0,

�X�� j
1/2� − X��1/2��

�� �
��r−r����/2


�� j
1/2�x,x���2 + ��1/2�x,x���2

2�r − r��
dxdx�

+� �
��r−r��
�/2


��� j
1/2�x,x���2 − ��1/2�x,x���2�

2�r − r��
dxdx�.

According to Lemma 2 the term involving the singularity is
bounded by � tr�−�2��� j +��, which can be made arbitrarily
small (recall that tr�−�2�� j +��� is bounded). To treat the
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term without the singularity we use the fact that the mapping
K� �K�1/2 is continuous from S1 to S2 �see Example 2 after
Theorem 2.21 in �43��. Hence � j

1/2→�1/2 in S2, and we can
bound

	� �
��r−r��
�/2


��� j
1/2�x,x���2 − ��1/2�x,x���2�

2�r − r��
dxdx�
2

�� � �� j
1/2�x,x�� − �1/2�x,x���2dxdx�

�� �
��r−r��
�/2


��� j
1/2�x,x��� + ��1/2�x,x����2

4�r − r��2
dx�dx�

� �� j
1/2 − �1/2�2

22�−2 tr�� j + �� .

The first factor tends to zero by the convergence of � j
1/2

mentioned before, and the second one remains bounded.
Hence we have proved that

lim
j→�

X�� j
1/2� = X��1/2� . �63�

By collecting Eqs. �60�–�63� we arrive at Eq. �59�. �
Proof of Theorem 1. According to Proposition 2, there

exists a minimizing sequence that converges strongly to

some �. By Proposition 3, this � is a minimizer of ÊM. �

B. Proof of Theorem 2

Assume that N�Z. Under this assumption we shall show

that a � minimizing ÊM��� satisfies tr �=N.
Assuming the contrary, we shall find a trace class operator

�
0 such that for ��= �1−� �� � ��+�� and all sufficiently
small ��0,

ÊM���� � ÊM��� . �64�

The factor �1−� �� � � guarantees that 0����1 for 0��
� ���−1. If tr ��N, which we assume, then also tr ���N for
small � and Eq. �64� leads to a contradiction since � was
assumed to be a minimizer.

To prove Eq. �64� we use convexity for the homogeneous

terms in the functional ÊM and expand the repulsion term
explicitly. This leads to

ÊM���� � ÊM��� + ��tr�− �2 − �� + 1/8�� − X��1/2��

− �R1 + �2R2, �65�

where

���r� = Vc�r� −� ���r��
�r − r��

dr�,

R1 = ����ÊM��� + D���,����,

R2 = D��� − �����,�� − ������ .

Now we proceed similarly as in the proof of Proposition 1,
letting �=�L depend on a �large� parameter L. More pre-
cisely, we define �L by

�L
1/2�x,x�� = L−3/2��r/L�g�r − r����r�/L�q−1/2��,��,

�66�

with g as in Eq. �39� and �
0 a smooth function satisfying
���4

4=1. Asymptotically, for large �r�, ���r���Z−tr �� �r�−1,
which is positive by our assumption. It follows similarly to
the proof of Proposition 1 that

tr�− �2 − �� + 1/8��L − X��L
1/2�

= −
Z − tr �

L
� �r�−1�4�r�dr + o�L−1� .

It remains to show that the terms R1 and R2 are relatively
small. In the proof of Proposition 1 and in Eq. �43� we
showed that ��L � =O�L−3� and D���L

,��L
�=O�L−1�, which

implies that R1=O�L−3� and R2=O�L−1�. We can then choose
L large enough and � small enough to conclude Eq. �64�.

This finishes the proof of Theorem 2.

IV. FURTHER PROPERTIES

A. Properties of the minimal energy

Recall that EM�N� as defined in Eq. �16� is the lowest
energy of EM��� under the condition tr �=N. This energy is

closely related to Ê�
M�N� defined in Eq. �35�.

Proposition 4. For any Z�0 and N�0 one has EM�N�
= Ê�

M�N�−N /8.
What this proposition really says is that EM�N�+N /8 is a

monotone nondecreasing function of N. This, in turn, follows
from the fact that we can always add mass �N far away from
the nuclei, with an energy as close as we please to −�N /8.
This was shown in the proof of Theorem 2, and we shall not
repeat the argument.

Proposition 5. For any Z�0 the energies Ê�
M�N� and

EM�N� are convex functions of N. They are strictly convex for
0�N�Z.

Proof. By Proposition 4 it suffices to consider Ê�
M�N�. The

convexity follows from the convexity of the functional.
Moreover, from Theorem 2 we know that minimizers for 0
�N�N��Z have different traces, and hence different den-
sities. The strict convexity thus follows from the strict con-
vexity of D�� ,�� in �. �

We now prove that the energy is bounded from below
uniformly in N for fixed Z.

Proposition 6. There is a constant C�0 �independent of
N and the charges and positions of the nuclei� such that for

all Z�0 and N�0, Ê�
M�N�
−CZ3.

Remark: The proof below does not use the property that
��1 and this results in the exponent 3, which is not optimal
in the fermionic case. Without the restriction ��1, the ex-
ponent 3 is optimal, however.

Proof. First, let us consider the atomic case with a nucleus
of charge Z located at the origin R=0. We consider
��x ,x��=�1/2�x ,x�� as a wave function in L2�R6� and find
after symmetrization

FRANK et al. PHYSICAL REVIEW A 76, 052517 �2007�

052517-12



ÊM��� =
1

2���−
1

2
�r

2 −
1

2
�r�

2 − Z�r�−1 − Z�r��−1 −
1

�r − r��
+

1

4
��� + D���,��� .

By the positive definiteness of the Coulomb kernel, D��� ,���
2D��� ,�Z�−D��Z ,�Z� for any �Z. Hence

ÊM��� 

1

2���−
1

2
�r

2 −
1

2
�r�

2 − VZ�r� − VZ�r�� −
1

�r − r��
+

1

4
��� − D��Z,�Z�

with VZ�r�=Z �r�−1−��r−r��−1�Z�r��dr�. We shall choose �Z

in such a way that

−
1

2
�r

2 −
1

2
�r�

2 − VZ�r� − VZ�r�� −
1

�r − r��
+

1

4

 0. �67�

From this it follows that ÊM���
−D��Z ,�Z�. Actually, we
shall choose �Z of the form �Z�r�=Z4��Zr� for some fixed
�, which yields D��Z ,�Z�=Z3D�� ,��.

To prove Eq. �67� we make an orthogonal change of vari-
ables, s= �r−r�� /�2, t= �r+r�� /�2, so that the operator on
the left side of Eq. �67� becomes

	−
1

2
�s

2 −
1

�2�s�
+

1

4
 +
1

4
�− �t

2 − 4VZ��t + s�/�2�


+
1

4
�− �t

2 − 4VZ��t − s�/�2�
 .

The operator in the first set of parentheses is non-negative
�see Eq. �48��. Hence it suffices to choose � such that
the operator −�t

2−4VZ��t+a� /�2� is non-negative of any
a�R3. Note that VZ�t�=Z2V�Zt� with V�r�= �r�−1

−��r−r��−1��r��dr�. After scaling and translation, we have
to prove that −�r

2−8V�r�
0. For this we choose � a non-
negative, spherically symmetric function with ��dx=1 and
with support in ��r � �1 /32
. Then by Newton’s theorem
V�r�=0 for �r � 
1 /32, and for �r � �1 /32 one has 8V�r�
�1 / �4 �r�2�, so −�r

2−8V�r�
0 by Hardy’s inequality �47�.
This concludes the proof in the atomic case.

In the molecular case we proceed as follows: We recall
that we are not taking account of the �fixed� nuclear repul-
sion U, and this means that we can freely place the nuclei at

locations that minimize the energy ÊM�N�. We assert that the
best choice of the R j is one in which they are all equal and,
by translation invariance, this common point can be the ori-
gin. The problem thus reduces to the atomic case with a
nucleus whose charge is the total charge Z. That the optimum
choice is equal R j follows from the fact that for any � the
attractive energy for nucleus j is −����r� �r−R j�−1dr and the
best possible energy is obtained by placing all the R j at the
point R that maximizes this integral. �

B. Properties of the minimizer

Proposition 7. Let � be a minimizer of Eq. �35� and let
M�= �r :���r��0
. Then the null-space of the spin-summed
density matrix, N tr� �, coincides with the set of L2�R3� func-
tions that vanish identically on M�.

Another way to say this is that if tr� � has a zero eigen-
value then the eigenfunction vanishes wherever the density
�� is non-zero. In particular, if ���0 almost everywhere
then 0 is not an eigenvalue of the spin-summed density ma-
trix tr� �.

Proof. Write �tr� ���r ,r��=� j� j� j�r���r��* with � j ortho-
normal and 0�� j �q. Then R3 \M�=� j�r :� j�r�=0
, and if
�=0 a.e. on M� then obviously ���0. Conversely, let �
�Ntr� � and consider

�� = tr� � + �������� − ��1���1�� .

One has tr ��=tr ��N, 0����1 for 0����1 and

��
1/2 = �tr� ��1/2 + �������� + ���1 − � − �����1���1� .

As noted in the Introduction, it follows from convexity that

minimizing ÊM for density matrices 0���1 with q spin
states is equivalent to minimizing under the condition 0��
�q without spin. Hence

E�
M�N� � ÊM���� = ÊM��� − ��C��� + O��� ,

where

C��� =� � ��r�*�1/2�r,r����r��
�r − r��

drdr�

= �
j

�� j� � ��r�*� j�r�� j�r��*��r��
�r − r��

drdr� 
 0.

Since � is a minimizer, one has C���=0, which by the posi-
tive definiteness of the Coulomb kernel means �� j

*=0 a.e.
for all j. Hence �=0 a.e. on M�. �

At the other end of the spectrum of �, we comment on the
eigenvalue 1 of the minimizer. Consider the minimization
problem �35� without the constraint ��1,

Ê�
boson�N� = inf�ÊM���:� 
 0,tr � � N
 . �68�

This energy can be interpreted as the ground state energy of

N bosons in the Müller model. Obviously, Ê�
boson�N�

� Ê�
M�N� with equality for N�1. For large values of N we

expect them to differ, however.

Proposition 8. Assume that Ê�
boson�N�� Ê�

M�N� for some N
and Z. Then any minimizer � of Eq. �35� has at least one
eigenvalue 1.

Proof. Assume, on the contrary, that ��1 and let �b de-
note a minimizer for Eq. �68�. �The existence is shown in the
same way as in the proof of Theorem 1.� Then ��= �1−���
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+��b satisfies tr ���N and 0����1 for sufficiently small
��0. Moreover, by convexity,

ÊM���� � �1 − ��Ê�
M�N� + �Ê�

boson�N� � Ê�
M�N� ,

contradicting the fact that � is a minimizer. �

It is not difficult to see that Ê�
M�N��N1/3Z2 for large N

and Z, while Ê�
boson�N��NZ2. Hence clearly Ê�

boson�N�
� Ê�

M�N� for large N and Z.
Lathiotakis et al. �45� find numerically that in fact occu-

pation numbers that correspond to core electrons of large
atoms all have the value one.

Proposition 9. Let ��x ,x�� be a minimizer of ÊM��� for
some N and let �̂�r ,r��=����r ,� ,r� ,�� be the spin-summed
minimizer. Then �̂�r ,r�� is necessarily real.

Proof. It suffices to show that �̂1/2 is real. Write
�̂1/2�r ,r��=A�r ,r��+ iB�r ,r��, where A is real and symmet-
ric and B is real and antisymmetric, whence iB is self-
adjoint. Define �=A2−B2, noting that both A2 and −B2 are
positive �semidefinite�. The kinetic and potential energy of �
and � are equal. Moreover, the densities ���r� and ���r� are
equal. Therefore, we just have to show that the exchange
terms favor �, i.e., X��1/2��X��1/2�.

To prove this assertion use the concavity of X�·� to con-
clude that X��1/2�
X��A � �+X��B � �, where �A � =�A2 and
�B � =�B†B=�−B2. On the other hand, X��1/2�=X�A�+X�B�,
with the obvious meaning that X�A�= 1

2 � �A�r ,r���2 �r
−r��−1drdr� and similarly for X�B�.

To conclude the proof we have to show that X��A � �

X�A� and X��B � ��X�B� if B�0. For the first, we write
A=A+−A− and �A � =A++A−, where A± are both positive op-
erators. Clearly, the cross term �A+�r ,r��A−�r� ,r� �r
−r��−1drdr�
0 since �r−r�� is positive definite. The same
argument applies to iB=B+−B−, but now we want to show
that �B+�r ,r��B−�r� ,r� �r−r��−1drdr��0 unless B=0.

To show this we use the fact that the positive definiteness
of the Coulomb kernel implies that ���r ,r����r� ,r� �r
−r��−1drdr� is �operator� monotone in � and in �. Therefore,
it suffices to show positivity for selected eigenfunctions of
B±. That is, we replace B+�r ,r�� by eigenfunctions
�+�r��+�r��* and similarly we replace B−�r ,r�� by
�−�r��−�r��*.

Since iB is imaginary and antisymmetric, however, its
positive and negative spectra are equal, apart from sign, so
B± have the same spectrum. Moreover, B± are complex con-
jugates of each other. Therefore, for every �+�r� there is a
�−�r� and the two functions are complex conjugates of each
other. In short, it suffices to show strict positivity of
���r�2���r��*�2 �r−r��−1drdr�, but this is true as long as the
function � is not identically zero �since the Coulomb kernel
is positive definite�. �

Finally, we show that a minimizer of ÊM��� satisfies the
variational equation �23�, as claimed in the Introduction.

Proposition 10. Let � be a minimizer of ÊM���. Then

	−
1

2
�r

2 −
1

2
�r�

2 − ���r� − ���r�� −
1

�r − r��
− 2�
�1/2�x,x��

= �
i

2ei�i�x��i�x��*. �69�

Here, ���r�=Vc�r�−����r���r−r��−1dr� denotes the effective
potential, ��−1 /8 is the chemical potential, ei�0 and the
�i�x� are eigenfunctions of � with eigenvalue 1.

Proof. Let � be the slope of a tangent to the curve EM�N�
at N. Since EM�N� is convex, such a tangent always exists,
although it may not be unique in case the derivative of
EM�N� is discontinuous at this point.

Since � is a minimizer of ÊM���, its square root �1/2 mini-
mizes the expression

F��� = tr�−
1

2
�2 − Vc�r� − ���2 + D���2,��2� − X���

�70�

among all � with 0���1, irrespective of the trace of �2. In
fact, it is even a minimizer if one relaxes the condition �

0. This follows from the fact that X����X��� � � for any
self-adjoint operator �, which was shown in the proof of
Proposition 9.

Consequently, �1/2 is a minimizer of Eq. �70� subject to
the constraint −1���1. From this we conclude that for any
self-adjoint � with finite trace such that, for small �, �1/2

+���1+ terms of order �2,

� d

d�
F��1/2 + ����

�=0

 0. �71�

The derivative can easily be calculated to be

tr��	−
1

2
�2 − ��
�1/2 + �1/2	−

1

2
�2 − ��
 − Z�

− 2��1/2��� , �72�

where Z� is defined in Eq. �25�. The condition on � is that
��i �� ��i��0 for all ��i� with � ��i�= ��i�. Hence we con-
clude that

	−
1

2
�2 − ��
�1/2 + �1/2	−

1

2
�2 − ��
 − Z� − 2��1/2

= �
i

2ei��i���i� , �73�

with ei�0. �
The variational equation �69� was obtained by varying

�1/2 instead of �. If � does not have a zero eigenvalue
�which, for a spin-invariant minimizer �, is the case if ��

does not vanish on a set of positive measure, see Proposition
7�, then these variations are equivalent. Hence we conclude
that Eq. �69� is actually equivalent to � being a minimizer in
case � has no zero eigenvalue. �See the discussion in Sec.
I D.�
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C. Virial theorem

A well-known property of Coulomb systems is the virial
theorem, which quantifies a relation between the kinetic and
potential energies. We state it here for an atom.

Proposition 11. Let K=1 �i.e., consider an atom� and let

� be a minimizer for Ê�
M�N�. Then

2 tr	−
1

2
�2�
 = tr�Z�r�−1�� − D���,��� + X��1/2� . �74�

Proof. For any ��0 the density matrix �� defined by
���x ,x��=�3���r ,� ,�r� ,��� is unitarily equivalent to � and
hence satisfies 0����1 and tr ��=tr ��N. Since � is a
minimizer, the function

ÊM���� = �2 tr	−
1

2
�2�
 − � tr�Z�r�−1�� +

1

8
tr �

+ �D���,��� − �X��1/2�

has a minimum at �=1. This implies the assertion. �

V. THE MÜLLER FUNCTIONAL AS A LOWER BOUND
TO QUANTUM MECHANICS

We are able to show that the Müller energy EM�N� �with-
out the addition of N /8� is a lower bound to the true
Schrödinger energy when N=2, but with arbitrarily many
nuclei. The situation for N�2 is open. As we remark below,
our N=2 proof definitely fails when N�2.

Consider the N-particle Hamiltonian �2� in either the sym-
metric or the antisymmetric N-fold tensor product of
L2�R3 ,Cq�. For a symmetric or antisymmetric � we recall
that the one-particle density matrix �� is defined by

���x,x�� = N� ��x,x2, . . . ,xN���x�,x2, . . . ,xN�*dx2 ¯ dxN.

Proposition 12. Assume that N=2. Then for any symmet-
ric or anti-symmetric normalized �,

���H��� 
 EM���� .

Proof. Since �� �� j=1
2 �− 1

2� j
2−Vc�r j�� ���=tr�− 1

2�2

−Vc�r����, we have to prove that

� ���x1,x2��2

�r1 − r2�
dx1dx2 +� ���

1/2�x,x���2

2�r − r��
dxdx�


� ���x1,x1����x2,x2�
2�r1 − r2�

dx1dx2.

By Eq. �51� it suffices to prove that for any characteristic
function � of a ball �or, more generally, for any real-valued
function ��

2� ��r1����x1,x2��2��r2�dx1dx2

+� ��r����
1/2�x,x���2��r��dxdx�


 	� ��r����x,x�dx
2

. �75�

Introducing 
 as the �non-self-adjoint� operator in L2�R3�
with kernel �2��x ,x��, we can rewrite the previous inequal-
ity as

tr �
†�
 + tr ���
1/2���

1/2 
 �tr ����2. �76�

The proof of this inequality can be found in �46�. For com-
pleteness, we present the proof here.

Note that 

†=��, so 
=��
1/2V for a partial isometry V.

Since � is �anti� symmetric, 
†
=C��C, where C denotes
complex conjugation. Hence V†��V=C��C and, since the
square root is uniquely defined,

V†��
1/2V = C��

1/2C . �77�

We write �=��
1/2 for simplicity and consider the quadratic

form

Q�A,C� =
1

4
�2 tr A†�C� + tr A†�VCV†� + tr VA†V†�C�� .

We consider this quadratic form on the real vector space of
real operators, i.e., operators satisfying

CAC = A . �78�

Note that Q�A ,A�= 1
2 �tr A†�A�+tr A†�VAV†�� and that, by

Schwarz’s inequality,

�tr A†�VAV†��2 � �tr A†�A���tr VA†V†�VAV†�� .

Recalling Eqs. �77� and �78� we thus see that Q is
positive semidefinite. This implies in particular that
Q�� ,1�2�Q�� ,��Q�1,1�. This is the desired inequality �76�,
since Q�1,1�=tr ��=2, Q���= 1

2 �tr ����+tr ��V�V†��
= 1

2 �tr ����+tr �
�
†� and

Q�1,�� =
1

4
�3 tr ��2 + tr �V†�2V� = tr ���.

Here we used Eq. �77� once more. �
The obvious generalization of inequality �75� to N
3 is

not true, as �47� shows. But this does not mean that the
Müller energy is not a lower bound to the true energy. There
is some numerical evidence for this, as mentioned in A.3 of
Sec. I B.
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