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We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The
basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the
nuclear N-body density matrix. The body-fixed frame transformation is carried out in order to achieve an
electron density that reflects the internal symmetry of the system. We discuss the implications of this body-
fixed frame transformation and establish a Runge-Gross-type theorem and derive Kohn-Sham equations for the
electrons and nuclei. We illustrate the formalism by performing calculations on a one-dimensional diatomic
molecule for which the many-body Schrödinger equation can be solved numerically. These benchmark results
are then compared to the solution of the time-dependent Kohn-Sham equations in the Hartree approximation.
Furthermore, we analyze the excitation energies obtained from the linear response formalism in the single pole
approximation. We find that there is a clear need for improved functionals that go beyond the simple Hartree
approximation.
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I. INTRODUCTION

In the study of the interaction between electrons and nu-
clei, one often assumes that the electrons adjust their motion
adiabatically to the motion of the much heavier nuclei. The
decoupling of the electronic and nuclear motion that forms
the basis for the Born-Oppenheimer �BO� approximation is
only justified if the energy scales of the electronic and
nuclear excitations are well separated. When this condition is
violated a breakdown of the BO approximation can be ex-
pected. In metallic solids, for instance, this is almost cer-
tainly the case and the validity of the BO approximation is
therefore questionable for these systems. The coupling be-
tween electronic and nuclear motion turns out to play an
important role in many physical phenomena in solid state
physics and chemistry. In metallic solids the electron-phonon
coupling is essential in the description of electrical resistiv-
ity, Its most dramatic consequence may be that it gives rise to
the phenomenon of superconductivity �1�. Recently another
important example of a breakdown of the BO approximation
was observed in graphene �2�. In molecular systems the cou-
pling between electronic and nuclear motion can also give
rise to many interesting phenomena, such as the polaronic
motion in long molecular chains. A more difficult case is that
of molecules in strong laser fields, where there is a strong
coupling between ionization and dissociation dynamics and a
severe breakdown of the Born-Oppenheimer approximation.
Due to the large number of degrees of freedom a solution of
the Schrödinger equation is not possible in general. This ap-
plies even to the simplest possible system of the H2

+ mol-
ecule. The latter system has been the subject of many theo-
retical investigations that go beyond BO �3–6�. In the
presence of strong laser fields it is an extremely demanding

task to obtain the solution of the time-dependent Schrödinger
equation of H2

+ and larger molecules are inaccessible this
way.

Therefore there is a clear need for new methods that can
deal with the nonequilibrium dynamics of electrons and nu-
clei at a full quantum mechanical level. Time-dependent
density-functional theory �TDDFT� �7–9� is a strong candi-
date for such a method. One of the great virtues of TDDFT is
that the dynamics of the electrons can, in an exact manner, be
described by a set of effective one-particle equations, known
as the Kohn-Sham equations, in which the effective Kohn-
Sham potential is a functional of the density. This is a great
computational advantage. The situation is more complicated
if we consider the combined motion of electrons and nuclei,
i.e., we need to construct a density-functional theory for dif-
ferent types of particles. Such a multicomponent density-
functional theory �MCDFT� has been considered in detail for
equilibrium systems by Kalia and Vashishta �10� in the study
of electron-hole droplets. Similar versions of multicompo-
nent density-functional theory have been considered by
Capitani et al. �11� and Gidopoulos �12� to describe station-
ary non-Born-Oppenheimer ground states of electrons and
nuclei. However, these approaches have in common that in
the absence of external potentials the densities are constant
as a consequence of the fact that in that case the Hamiltonian
of the system is translationally and rotationally invariant.

In order to have the electron density display the internal
symmetries of the system a body-fixed frame transformation
needs to be carried out. This means in practice that the elec-
tronic coordinates are referred to a coordinate system at-
tached to the nuclei. Subsequently a density-functional
theory can be constructed in terms of intrinsic densities. This
has been done for the stationary �13,14� and time-dependent
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cases �15–17� by Kreibich and Gross. In this formalism the
basic variables are the electron density in body-fixed coordi-
nates and the diagonal of the nuclear density matrix. The
latter is a function of all the nuclear coordinates which
within a Kohn-Sham scheme is calculated from an equation
involving an effective and in general time-dependent poten-
tial that depends also on all nuclear coordinates. In this way
the formalism can easily be connected to a Born-
Oppenheimer picture in the stationary case. However, it
should be stressed that the Kohn-Sham scheme goes much
beyond BO in that it provides an exact scheme for a full
quantum treatment of electrons and nuclei.

This multicomponent density-functional theory has been
investigated in detail for the stationary case �13–15�. How-
ever, apart from some preliminary work �15–18� this has not
been the case for the time-dependent case. It is the aim of the
current paper to carry out such an investigation. The paper is
set up as follows. In Sec. II we discuss the coordinate trans-
formation that defines our starting Hamiltonian. In Sec. III
we give an overview of multicomponent density-functional
theory for time-dependent systems. In particular we discuss
the Runge-Gross theorems and some important conse-
quences of the body-fixed frame transformation. We then dis-
cuss the Kohn-Sham equations and their linearization. In
Sec. IV we illustrate the formalism for the case of a diatomic
molecule and we carry out some calculations for the case of
a one-dimensional model system that can be compared to
accurate solutions of the many-body Schrödinger equation.
Finally, in Sec. V we present our summary and conclusions.

II. THE BODY-FIXED FRAME

We start out by considering a system of Ne electrons with
laboratory frame coordinates ri where i=1. . .Ne, and Nn nu-
clei with laboratory frame coordinates R�, masses M�, and
charges Z� where �=1. . .Nn. The corresponding Hamil-
tonian is then given by

Ĥ�t� = T̂e�r�� + T̂n�R� � + Ŵee�r�� + Ŵnn�R� � + Ŵen�r� ,R� �

+ Ûext,e�r� ,t� + Ûext,n�R� ,t� . �1�

Here r� and R� denote the sets of electron and nuclear coordi-
nates. In this expression the electron and nuclear kinetic en-
ergy are given by

T̂e�r�� = − �
i=1

Ne �ri

2

2
, �2�

T̂n�R� � = − �
�=1

Nn �R�

2

2M�

. �3�

Atomic units ��e�=me=�=4��0=1� are used throughout this
article. The electron-electron, nuclear-nuclear, and electron-
nuclear Coulomb interactions in the system are represented
by

Ŵee�r�� = �
i�j=1

Ne 1

�ri − r j�
, �4�

Ŵnn�R� � = �
���=1

Nn Z�Z�

�R� − R��
, �5�

Ŵen�r� ,R� � = − �
i=1

Ne

�
�=1

Nn Z�

�ri − R��
. �6�

Finally the potentials due to the time-dependent external
field acting on the electrons and nuclei are represented by

Ûext,e�r� ,t� = �
i=1

Ne

u�ri,t� , �7�

Ûext,n�R� ,t� = �
�=1

Nn

U��R�,t� , �8�

where the nuclear potentials may be different for different
species of nuclei. In the absence of external fields the Hamil-
tonian which describes the system in the laboratory frame as
given in Eq. �1� is invariant under simultaneous arbitrary
translations and rotations of all particles. This implies that all
one-body ground-states observables, such as the electronic
and nuclear densities, are uniform and isotropic. To describe
the internal properties of the system it is therefore convenient
to introduce a body-fixed coordinate frame. Following
Kreibich and Gross �13� �see also Ref. �19�� we transform
the electronic coordinates to a frame attached to the nuclear
center of mass �CMN�

ri� = R�ri − RCMN� , �9�

where i=1. . .Ne. Here

RCMN =
1

Mnuc
�
�=1

Nn

M�R� �10�

denotes the nuclear center of mass, in which the total nuclear
mass is given by Mnuc=��=1

Nn M�, and the three-dimensional
orthogonal matrix R represents a rotation, which is uniquely
determined by three Euler angles �20�. These angles are
functions of the nuclear coordinates R� and specify the orien-
tation of the body-fixed coordinate frame with respect to the
laboratory frame. The dependence of the Euler angles on the
nuclear coordinates depends on the way we choose to fix the
orientation. This can, for instance, be done by diagonalizing
the nuclear inertia tensor �21–23� or by using Eckart-
conditions �20,24–30�. The optimal choice will depend on
the physical system being studied. A very elegant discussion
of the various choices is given in Ref. �31�.

The nuclear coordinates themselves are not transformed
to a body-fixed frame at this point. Introducing internal
nuclear coordinates may, however, also be desirable, but the
choice of such coordinates depends strongly on the proper-
ties that one wants to study for the electron-nuclear system at
hand. For example, to describe vibrations in molecules and
solids, introduction of normal coordinates is most appropri-
ate �19,20�, while for the description of molecular dissocia-
tion the use of Jacobi coordinates �32� is more suitable. To
keep the formalism flexible, the nuclear coordinates are left
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unchanged for the time being. Transformation to internal
nuclear coordinates can be done in the final equations, as we
will discuss with the example of the diatomic molecule. The
Hamiltonian of Eq. �1� describing the electron-nuclear sys-
tem in the laboratory frame can now be given in the body-
fixed coordinate frame, and reads

Ĥ�t� = T̂e�r��� + T̂n�R� � + T̂MPC�r��,R� � + Ŵee�r��� + Ŵnn�R� �

+ Ŵen�r��,R� � + Ûext,e�r��,R� ,t� + Ûext,n�R� ,t� . �11�

Since a transformation has been done to a noninertial coor-
dinate frame an additional mass polarization and Coriolis
�MPC� term

T̂MPC�r��,R� � = − �
�=1

Nn 1

2M�
��R�

+ �
i=1

Ne �ri�

�R�

· �ri��2

− T̂n�R� �

�12�

appears in the Hamiltonian �15,18,19�. The electron-electron

interaction Ŵee and electron kinetic energy T̂e have the same
form in the new and the old coordinates. The same is true for

the nuclear-nuclear interaction Ŵnn, the nuclear kinetic en-

ergy T̂n, and the external potential Ûext,n acting on the nuclei.
However, the electron-nuclear interaction and the external
potential acting on the electrons attain the forms

Ŵen�r��,R� � = �
i=1

Ne

�
�=1

Nn − Z�

�ri� − R�R� − RCMN��
, �13�

Ûext,e�r��,R� ,t� = �
i=1

Ne

u�R−1ri� + RCMN,t� . �14�

Note that the external potential Ûext,e, while still being a
one-body potential with respect to the electronic coordinates
r��, has turned into an Nn-body interaction with respect to the
nuclear coordinates R� . For notational simplicity we will de-
note u�r� ,R� , t�=u�R−1r�+RCMN, t�. The quantity

R�� = R�R� − RCMN� �15�

appearing in Eq. �13� is a so-called shape coordinate �31�, as
it is invariant under rotations and translations of the nuclear
frame work. As a consequence, the potential that the elec-
trons experience from the nuclei is invariant under transla-
tion and rotation of the nuclear coordinates, which was, of
course, exactly the purpose of our coordinate transformation.
This completes our discussion of the transformed Hamil-
tonian. In the next section we will show how this Hamilto-
ninian can be used to set up a time-dependent density-
functional theory.

III. TIME-DEPENDENT MULTICOMPONENT
DENSITY-FUNCTIONAL THEORY

A. Definition of the densities

We now consider a density-functional description of our
electron-nuclear system. We start out by defining the basic

variables of our formalism �13,15,17�. The electron density
is defined in the body-fixed frame as

n�r1�,t� = Ne�
�� ,s�
	 dr2� ¯ drNe

� 	 dR� ���r���� ,R� s�,t��2,

�16�

where the wave function ��r���� ,R� s� , t� is the solution of the
time-dependent Schrödinger equation for the Hamiltonian of
Eq. �11� and where �� and s� denote the electron and nuclear
spin coordinates. As a second basic variable we introduce the
diagonal of the nuclear density matrix

	�R� ,t� = �
�� s�
	 dNer�����r���� ,R� s�,t��2. �17�

This is an Nn-body quantity that is symmetric under inter-
change of space-spin coordinates of nuclei of the same type.
By introducing the nuclear density in this way we keep the
freedom to choose a transformation to internal coordinates in
our final expression that is suitable to the particular system
of interest. Furthermore, it turns out that by introducing
	�R� , t� rather than a single particle density per nuclear type
N��R� , t� as function of nuclear coordinates in an internal
frame, it is much easier to make a connection to the familiar
Born-Oppenheimer approach. The latter point is not surpris-
ing since, like 	�R� , t�, the Born-Oppenheimer surface is also
an Nn-body object. Finally for the quantities n and 	 we can
prove a Runge-Gross-type of theorem as we will do in the
next section. In the following we will, for the ease of nota-
tion, drop the primes on the electronic coordinates. From
now on all electronic coordinates are understood to refer to a
body-fixed frame unless explicitly stated otherwise.

B. The Runge-Gross theorem

Here we give a brief discussion of the Runge-Gross theo-
rem �33� for multicomponent systems as discussed by
Kreibich �15,17�. To this end we define the Hamiltonian

Ĥ�t� = T̂e�r�� + T̂n�R� � + T̂MPC�r� ,R� � + Ŵee�r�� + Ŵen�r� ,R� �

+ Ûext,e�r� ,R� ,t� + V̂e�r� ,t� + V̂n�R� ,t� , �18�

in which we introduced two potentials V̂e�r� , t� and V̂n�R� , t�
resulting from fields acting on the electrons and nuclei,

V̂e�r� ,t� = �
i=1

Ne

v�ri,t� , �19�

V̂n�R� ,t� = V�R� ,t� . �20�

Note that by setting V�R� , t�=Wnn�R� �+Uext�R� , t� and v�r , t�
=0 we retrieve the Hamiltonian of Eq. �11�. The potentials
v�r , t� and V�R� , t� are conjugate to the densities n�r , t� and
	�R� , t�, and are introduced to provide the usual mappings
between potentials and densities. We can now apply the
Runge-Gross theorem along the lines of Li and Tong �34�.
Two sets of densities 
n�r , t� ,	�R� , t�� and 
n��r , t� ,	��R� , t��,
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which evolve from a common initials state ��r��� ,R� s� , t0� un-
der the influence of two sets of potentials 
v�r , t� ,V�R� , t��
and 
v��r , t� ,V��R� , t�� always become different infinitesi-
mally later than t0 provided that at least one component of
the potentials differs by more then a purely time-dependent
function. Consequently, apart from the usual gauge freedom,
a one-to-one mapping between the set of time-dependent
densities and the set of potentials is established


v�r,t�,V�R� ,t�� ↔ 
n�r,t�,	�R� ,t�� �21�

for any given initial state. We further note that since the
external potential acting on the electrons in the body-fixed
frame attains the form of an electron-nuclear interaction

Ûext,e�r� ,R� , t�, the Runge-Gross mappings is still functionally
dependent on u�r ,R� , t�. Some consequences of this depen-
dence will be discussed later.

C. Consequences of the body-fixed frame transformation

One of the most notable consequences of the body-fixed
frame transformation is that some observables which are
one-body observables in the laboratory frame can appear as
many-body observables when expressed in the body-fixed
frame. As an example of this we consider the dipole moment
operator for a neutral system, which in the laboratory frame
is given by the expression

D̂�r� ,R� � = �
i=1

Ne

qeri + �
�=1

Nn

Z�R�, �22�

where qe=−1 is the charge of the electron. This operator has
the expectation value

D�t� = �
�� ,s�
	 dr�dR� D̂�r� ,R� ����r��� ,R� s�,t��2, �23�

where ��r� ,R� , t� is the solution of the time-dependent
Schrödinger equation in the laboratory frame. In the body-
fixed frame, on the other hand, the expectation value of the
dipole moment is given by

D�t� =	 dr�dR� D̂�r�,R� �	̃�r�,R� ,t� , �24�

where we defined the electron-nuclear density 	̃�r� ,R� , t� and

the dipole moment operator D̂�r� ,R� � as

	̃�r1�,R� ,t� = Ne�
�� ,s�
	 dr2� ¯ drNe

� ���r���� ,R� s�,t��2, �25�

D̂�r�,R� � = qe�R−1r� + RCMN� +
1

Ne
�
�=1

Nn

Z�R�, �26�

where ��r�� ,R� , t� is now the solution of the time-dependent
Schrödinger equation in the body-fixed frame. We see that
the rotation matrix R mixes the electronic and nuclear coor-
dinates. Therefore the dipole operator is no longer a simple
one-body form with respect to the nuclear coordinates. A

particular consequence for density-functional theory is that
D�n ,	��t� is not a simple functional of n and 	 in the body-
fixed frame coordinates. Nevertheless, we can split off a Har-
tree part and define an exchange-correlation part as follows:

D�n,	��t� =	 dr�dR� D̂�r�,R� �n�r�,t�	�R� ,t� + Dxc�n,	��t� .

�27�

This means in practice, for instance, that in order to calculate
the optical absorption of molecules one needs to develop
approximations for Dxc�n ,	��t�. However, it seems that just
taking the Hartree approximation is a reasonable approxima-
tion in the linear response regime.

A second consequence of the body-fixed frame transfor-

mation is that the external potential Ûext,e�r�� ,R� , t� of Eq. �14�
acting on the electrons in the body-fixed frame attains the
form of an electron-nuclear interaction. For this reason all
density-functionals defined through the Runge-Gross map-
ping are also implicit functionals of u�r� ,R� , t�. Therefore, if
we want to calculate the change in the density n and density
matrix 	 due to changes in the true external fields by means
of solving the Kohn-Sham equations, as we will do later, we
also need to specify how the exchange-correlation potentials
depend on u�r� ,R� , t�.

D. Multicomponent Kohn-Sham system

On the basis of the Runge-Gross theorem we can set up
the Kohn-Sham equations �15–17�. As usual we introduce an
auxiliary system with Hamiltonian

ĤS�t� = T̂e�r�� + T̂n�R� � + V̂S,e�r� ,t� + V̂S,n�R� ,t� �28�

and effective potentials

V̂S,e�r� ,t� = �
i=1

Ne

vS�ri,t� , �29�

V̂S,n�R� ,t� = VS�R� ,t� . �30�

The Kohn-Sham system of Eq. �28� represents a system in
which the interelectronic interaction as well as the interac-
tion between electrons and nuclei has been switched off. Ac-
cording to the Runge-Gross theorem there exists for a given
initial state at most one set of potentials 
vS�r , t� ,VS�R� , t��
determined up to purely time-dependent functions that pro-
duces the set of densities 
n�r , t� ,	�R� , t��. The effective po-
tentials, which henceforth will be denoted as Kohn-Sham
potentials, can therefore be regarded as functionals of n, 	
and the initial states of the true and the Kohn-Sham systems.
In the Kohn-Sham Hamiltonian the electronic and nuclear
motion have become separated. If the initial Kohn-Sham
wave function �S�r��� ,R� s� , t0� is chosen to be a product of a
nuclear and an electronic wave function then the time-
dependent Kohn-Sham wave function will also be such a
product, i.e.,

�S�r��� ,R� s�,t� = 
�r��� ,t���R� s�,t� , �31�

and the corresponding densities are given by
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	�R� ,t� = �
s�

���R� s�,t��2, �32�

n�r1,t� = Ne�
��
	 dr2 . . . drNe

�
�r��� ,t��2. �33�

The electronic and nuclear Kohn-Sham �KS� wave functions
then satisfy

0 = �i�t − T̂n�R� � − V̂S,n�R� ,t����R� s�,t� , �34�

0 = �i�t − T̂e�r�� − V̂S,e�r� ,t��
�r��� ,t� . �35�

Suppose that the initial electron KS wave function is a Slater
determinant of spin orbitals with spatial parts �i�r , t0�. Then
the electronic Kohn-Sham equations attain the form

i�t�i�r,t� = �−
�2

2
+ vS�r,t���i�r,t� , �36�

n�r,t� = �
i=1

Ne

��i�r,t��2. �37�

The nuclear Kohn-Sham equations �32� and �34� together
with the electronic Kohn-Sham equations �36� and �37� pro-
vide a self-consistent scheme to calculate the electronic den-
sity n and the Nn-body nuclear density 	. It remains to con-
struct good approximations for the Kohn-Sham potentials for
practical applications. More insight into these potentials is
obtained from the analysis in the next sections.

E. The action functional for the multicomponent
electron-nuclear system

Now we proceed to derive the multicomponent Kohn-
Sham equations from an action principle. Action principles
in TDDFT have been extensively discussed in the literature
�8,9,34,35�. An elegant way to introduce the action func-
tional uses the Keldysh time-contour technique of nonequi-
librium Green’s function theory �36–39�. For a recent intro-
duction aimed towards application in TDDFT we refer to
Ref. �40�. In analogy with the usual electronic time-
dependent density-functional theory we define a functional
of the external potentials v and V and for later purposes we
also indicate the functional dependence on the electron-
nuclear interaction u,

Ã�v,V,u� = i ln��0�Û�t0,t0���0
 , �38�

where the state �0 is the initial state of the system and the

evolution operator Û�t2 , t1� is defined as

Û�t2,t1� = TC exp�− i	
t1

t2

dtĤ�t�� . �39�

Here Ĥ�t� is the Hamiltonian of Eq. �18�, and TC denotes
time ordering along the Keldysh contour C. This contour
runs from t0 to the time t at which one wants to evaluate the
observables of interest and then back to t0 �39,40�. One can
readily derive �38,40� that


Ã


v�r,t�
= n�r,t� , �40�


Ã


V�R� ,t�
= 	�R� ,t� . �41�

Note that to obtain this result one needs to consider potential
variations that are general functions of the contour variable
and therefore in general different on the forward and back-
ward branch of the contour �37�. After differentiation the
quantities can be evaluated at a physical potential, i.e., one
that is identical on the forward and backward branch. We can
now perform a Legendre transformation with respect to the
potentials v and V to write the action as a functional of the
electron and nuclear densities,

A�n,	,u� = − Ã�v,V,u� + 	
C

dtdrn�r,t�v�r,t�

+ 	
C

dtdR� 	�R� ,t�V�R� ,t� , �42�

such that we have


A


n�r,t�
= v�n,	,u��r,t� , �43�


A


	�R� ,t�
= V�n,	,u��R� ,t� , �44�

where the external potentials are now to be regarded as func-
tionals of n and 	. A similar procedure can be carried out for
a noninteracting system with Hamiltonian equation �28�, i.e.,
we can define

ÃS�vS,VS� = i ln��S,0�ÛS�t0,t0���S,0
 �45�

where �S,0 is the initial state of the noninteracting system
with Hamiltonian equation �28�. This Hamiltonian has the
special feature that it can be written as the sum of a purely

electronic and a purely nuclear piece ĤS�t�= ĤS,e�t�+ ĤS,n�t�
where

ĤS,e = T̂e + V̂S,e, �46�

ĤS,n = T̂n + V̂S,n, �47�

where ĤS,e�t� and ĤS,n�t� are commuting. Therefore

ÛS�t2,t1� = ÛS,e�t2,t1�ÛS,n�t2,t1� �48�

where

ÛS,e/n�t2,t1� = TC exp�− i	
t1

t2

dtĤS,e/n�t�� . �49�

This equation is readily derived from the equations of motion
of the evolution operators and the fact that the nuclear and
electronic Hamiltonians commute. This means that if the ini-
tial state is a simple product �S,0=
0�0 of an electronic and
a nuclear wave function then
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ÃS�vS,VS� = ÃS,e�vS� + ÃS,n�VS� , �50�

where

ÃS,e�vS� = i ln�
0�ÛS,e�
0
e, �51�

ÃS,n�VS� = i ln��0�ÛS,n��0
n, �52�

where the subindex e /n on the ket denotes integration over
electronic and/or nuclear coordinates only. We can now de-

fine the Legendre transform of ÃS�vS ,VS�,

AS�n,	� = − ÃS�vS,VS� + 	
C

dtdrn�r,t�vS�r,t�

+ 	
C

dtdR� 	�R� ,t�VS�R� ,t� , �53�

with the following properties:


AS


n�r,t�
= vS�n��r,t� , �54�


AS


	�R� ,t�
= VS�	��R� ,t� . �55�

Note that due to the additive structure of Eq. �50� the poten-
tial vS�n� is a functional of n only and the potential VS�	� is
a functional of 	 only. Note that this is only true for initial
states that are a product of a nuclear and an electronic wave
function. Indeed in this case for a given n and 	 Eqs. �34�
and �35� can be inverted independently of each other to yield
vS and VS. Having defined the action functionals A�n ,	� and
AS�n ,	� we can define the exchange-correlation part
Axc�n ,	 ,u� of the action by the equation

A�n,	,u� = AS�n,	� −
1

2
	

C

dtdrdr�Wee�r,r��n�r,t�n�r�,t�

− 	
C

dtdrdR� Wen�r,R� �n�r,t�	�R� ,t�

− 	
C

dtdrdR� u�r,R� ,t�n�r,t�	�R� ,t� − Axc�n,	,u� ,

�56�

where we separated off a number of Hartree-type terms. Note
that, since the external potential acting on the electrons has
attained the form of an electron-nuclear interaction u�r ,R� , t�
in the body-fixed frame, there is also a Hartree-type term
involving this potential. We are now ready to discuss in more
detail the Kohn-Sham potential and their functional depen-
dencies. This will be done in the next section.

F. The effective potentials of the multicomponent system

The electronic and nuclear time-dependent effective po-
tentials are obtained as derivatives of the action of Eq. �56�
with respect to the electron n�r , t� and nuclear 	�R , t� densi-

ties. This yields expressions with the structure

v�n,	,u� = vS�n� − vH�n,	,u� − vxc�n,	,u� , �57�

V�n,	,u� = VS�	� − VH�n,u� − Vxc�n,	,u� , �58�

where we defined the Hartree-type potentials

vH�n,	,u��r,t� =	 dr�Wee�r,r��n�r�,t� +	 dR� �Wen�r,R� �

+ u�r,R� ,t��	�R� ,t� ,

VH�n,u��R� ,t� =	 drWen�r,R� �n�r,t� +	 dru�r,R� ,t�n�r,t� ,

�59�

and where we have introduced the exchange-correlation �xc�
potentials vxc�r , t� and Vxc�R� , t� by

vxc�r,t� =

Axc�n,	,u�


n�r,t�
, �60�

Vxc�R� ,t� =

Axc�n,	,u�


	�R� ,t�
. �61�

If we rewrite expressions �57� and �58�,

vS�n� = v�n,	,u� + vH�n,	,u� + vxc�n,	,u� , �62�

VS�	� = V�n,	,u� + VH�n,u� + Vxc�n,	,u� , �63�

we see that for the electronic Kohn-Sham potential the Har-
tree and xc terms must compensate the 	 and u dependence
of v�n ,	 ,u�, and similarly for the nuclear potentials the Har-
tree and xc terms must compensate the n and u dependence
of V�n ,	 ,u�. This behavior is reflected in the relations

� 
v�r,t�

	�R� ,t��

�
n,u

= − �Wen�r,R� ,t� + u�r,R� ,t��
�t,t��

− � 
vxc�r,t�

	�R� ,t��

�
n,u

, �64�

�
V�R� ,t�

n�r,t��

�
	,u

= − �Wen�r,R� ,t� + u�r,R� ,t��
�t,t��

− �
Vxc�R� ,t�

n�r,t��

�
	,u

, �65�

� 
v�r,t�

u�r�,R� ,t��

�
n,	

= − 	�R� ,t�
�r − r��
�t,t��

− � 
vxc�r,t�

u�r�,R� ,t��

�
n,	

, �66�
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� 
V�R� ,t�

u�r,R� �,t��

�
n,	

= − n�r,t�
�R� − R� ��
�t,t��

− � 
Vxc�R� ,t�

u�r,R� �,t��

�
n,	

, �67�

where 
�t , t�� is a contour 
 function �37�. We will use these
equations in the next section on linear response theory.

G. Linear response

In this section we will derive the linearized form of the
Kohn-Sham equations which will enable us to calculate lin-
ear response properties within the multicomponent formal-
ism. To do this we first write the Hamiltonian of the inter-
acting system in the body-fixed frame as

Ĥ�t� = Ĥ0 + Ĥ1�t� . �68�

Here Ĥ0 is the Hamiltonian of the unperturbed time-
independent system. Its explicit form is given by

Ĥ0 = T̂e�r�� + T̂n�R� � + T̂MPC�r� ,R� � + Ŵee�r�� + Ŵnn�R� �

+ Ŵen�r� ,R� � . �69�

The term Ĥ1 describes the perturbation

H1�t� = 
Ûext,e�r� ,R� ,t� + 
V̂e�r� ,t� + 
V̂n�R� ,t� . �70�

Within linear response the induced electronic and nuclear
densities are then given by


n�1� =	 d2�ee�1,2�
v�2� +	 d2��en�1,2� �
V�2� �

+	 d2=�e,en�1,2= �
u�2= � , �71�


	�1� � =	 d2�ne�1� ,2�
v�2� +	 d2��nn�1� ,2� �
V�2� �

+	 d2=�n,en�1� ,2= �
u�2= � . �72�

Here we introduced the notations i=riti, i�=R� iti and i==riR� iti.
The response functions are defined as the following set of
contour-ordered products:

�ab�1,2� = − i��t1,t2���0�TC�âH�1�b̂H�2����0
 , �73�

where ��t1 , t2� is a contour Heaviside function �37,40� and

where âH and b̂H are the Heisenberg representations �with

respect to Ĥ0� of the operators â and b̂. In our case â, b̂= n̂, 	̂

or n̂	̂, corresponding to the indices a, b=e, n and en, respec-
tively, which are defined as

n̂�r� = �
i=1

Ne


�r − ri� , �74�

	̂�R� �� = 
�R� � − R� � � �
�=1

Nn


�R�� − R�� �75�

when the equations are subsequently transformed to real time
form they attain the usual retarded form

�ab�1,2� = − i��t1 − t2���0��âH�1�, b̂H�2����0
 , �76�

where ��t� is now a real time Heaviside function. In practice
all the derivations are always carried out on the Keldysh
contour and the transformation to real time is carried out at
the end �this can be conveniently done using the conversion
table of Ref. �40��. Thus, the multicomponent electron-
nuclear system of interacting particles is described by the six
response functions which characterize the change of the elec-
tron and nuclear densities in the system due to the change of
the external potential in the system. The density changes
within the Kohn-Sham scheme are given by


n�1� =	 d2�S,ee�1,2�
vS�2� , �77�


	�1� � =	 d2��S,nn�1� ,2� �
VS�2� � . �78�

These equations do not contain the mixed response function
�S,en and �S,ne due to the fact that in the multicomponent
Kohn-Sham system electrons do not interact with the nuclei.
Using the chain rule for differentiation we can now derive
relations between the response functions for the interacting
and the Kohn-Sham system. We have, for instance,

�ee�1,2� =	 d3

n�1�

vS�3�


vS�3�

v�2�

=

n�1�

vS�2�

+	 d3

n�1�

vS�3�


vHxc�3�

v�2�

. �79�

Using


vHxc�3�

v�2�

=	 d4

vHxc�3�


n�4�

n�4�

v�2�

+	 d4�

vHxc�3�


	�4� �

	�4� �

v�2�

,

�80�

where vHxc=vH+vxc, we obtain

�ee�1,2� = �S,ee�1,2� +	 d3d4�S,ee�1,3�fHxc,ee�3,4��ee�4,2�

+	 d3d4��S,ee�1,3�fHxc,en�3,4� ��ne�4� ,2� , �81�

where we defined

fHxc,ee�1,2� =

vHxc�1�


n�2�
, �82�
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fHxc,en�1,2� � =

vHxc�1�


	�2� �
. �83�

Similarly, we can derive coupled equations for the other re-
sponse functions which can be summarized in the following
matrix equation:

� = �S + �S · fHxc · � , �84�

in which the dot product indicates a matrix product and an
integration over the repeated variables. In this equation we
defined the matrices

� = ��ee �en

�ne �nn
� ,

�S = ��S,ee 0

0 �S,nn
� ,

fHxc = � fHxc,ee fHxc,en

fHxc,ne fHxc,nn
� , �85�

where in the matrix fHxc we further defined

fHxc,ne�1� ,2� =

VHxc�1� �


n�2�
, �86�

fHxc,nn�1� ,2� � =

VHxc�1� �


	�2� �
. �87�

Here VHxc=VH+Vxc. We have now demonstrated how to ob-
tain the first-order density response to changes in the poten-
tials v�r , t� and V�R� , t� acting in the body-fixed frame, while
keeping the electron-nuclear interaction u�r ,R� , t� fixed. The
response functions involving the electron potential v are not
directly accessible in an experiment, however. Let us there-
fore investigate what happens if we keep the potentials fixed,
and change the electron-nuclear interaction, reflecting a
change in the external field acting in the laboratory frame.
We will need to analyze the response functions,

�e,en�1,2= � = �
n�1�

u�2= �

�
v,V

, �88�

�n,en�1� ,2= � = �
	�1� �

u�2= �

�
v,V

, �89�

which describe the changes in n and 	 when we change the
electron-nuclear interaction u for fixed potentials v and V.
We will now show that we can relate these response func-
tions to the matrix of response functions �. In order to do
this we have to analyze carefully the functional dependence
of the various quantities that we have introduced. Let us
therefore consider the situation in which we keep the densi-
ties n and 	 fixed. Then for each given u there is a unique
electron potential v and a unique nuclear potential V that
reproduce the fixed densities n and 	. Hence we can consider
these v and V for the given n and 	 to be functionals of u,
which we make explicit in the notation v�u� and V�u�. By
construction we have

n�v�u�,V�u�,u� = const, �90�

	�v�u�,V�u�,u� = const. �91�

We will assume that the functionals v�u� and V�u� are differ-
entiable for physically reasonable and smooth potentials u.
We can then differentiate these expressions with respect to u
to obtain

� 
n


v
�

V,u
�
v


u
�

n,	
+ � 
n


V
�

v,u
�
V


u
�

n,	
+ �
n


u
�

v,V
= 0,

�92�

�
	


v
�

V,u
�
v


u
�

n,	
+ �
	


V
�

v,u
�
V


u
�

n,	
+ �
	


u
�

v,V
= 0.

�93�

Several terms in these equations can be identified with the
electronic and nuclear response functions that we defined
earlier. In particular the last terms in these equations corre-
spond to the response functions of Eqs. �88� and �89�. We
thus see that these equations can be rewritten as

��e,en

�n,en
� = − ���
v/
u


V/
u
��

n,	
. �94�

From Eqs. �66� and �67� we see that the derivatives of the
potentials v and V with respect to the potential u are directly
expressible in terms of the derivatives of the Hartree-xc po-
tentials, i.e.,

�
v

u
�

n,	
= � −


vHxc


u
�

n,	
, �95�

�
V


u
�

n,	
= � −


VHxc


u
�

n,	
. �96�

In analogy to the density derivatives of the Hartree-xc poten-
tial, we define the u derivatives

fHxc,e,en�1,2= � =

vHxc�1�


u�2= �
, �97�

fHxc,n,en�1� ,2= � =

VHxc�1� �


u�2= �
. �98�

Hence our final equation for the �e/n,en response functions
becomes

��e,en

�n,en
� = � · � fHxc,e,en

fHxc,n,en
� . �99�

Equations �84� and �99� now completely determine the true
response functions of the interacting system in terms of
Kohn-Sham response functions and exchange-correlation
kernels. The remaining task is to develop approximations for
the Hartree-xc kernels fHxc that appear in our equations.
These kernels will be discussed in the next section.
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H. Properties of the response equations

We will now give a qualitative discussion of the proper-
ties of the response equations. For this purpose it is instruc-
tive to transform Eq. �84� to a form which is familiar from
the usual electronic density functional theory. We readily ob-
tain the equations

�ee = �S,ee + �S,ee�fHxc,ee + fHxc,en�̄nnfHxc,ne��ee, �100�

�ne = �̄nnfHxc,ne�ee, �101�

where we defined

�̄nn = �1 − �S,nnfHxc,nn�−1�S,nn. �102�

Similar equations for �nn and �en are obtained by interchang-
ing the labels e and n in these equations. Equation �100� has
an identical form as the equation of the density response
function of standard TDDFT �41�. The main difference is
that now an additional term fHxc,en�̄nnfHxc,ne is added to the
usual Hartree-xc kernel fHxc,ee and describes an additional
effective electron interaction which is mediated by the nu-
clei. It resembles the phonon-induced effective electron in-
teraction of diagrammatic many-body perturbation theory
where electrons interact with the nuclei through an effective
vertex fHxc,en which is propagated to other nuclei by means
of the “propagator” �̄nn �19�. The effect of this term is that it
introduces extra poles in the response function �ee with a
level spacing corresponding to molecular or phononic vibra-
tions. The response functions �̄ee and �̄nn can be interpreted
as response functions for the separate electronic and nuclear
components. This is reflected in the equations

�ee = �̄ee + �̄ee�fHxc,en�̄nnfHxc,ne��ee, �103�

�nn = �̄nn + �̄nn�fHxc,ne�̄eefHxc,en��nn. �104�

From these equations we see that the calculation of the re-
sponse functions can be performed in a two-step process.
The response functions �̄nn and �̄ee can be obtained sepa-
rately since they are determined by equations that only in-
volve purely electronic or purely nuclear quantities, al-
though, as discussed later, a dependency on the nuclear
motions is still introduced implicitly in the electronic equa-
tion through the fHxc,ee kernel and vice versa. In particular
the formal structure of the electronic problem is the one of
standard electronic TDDFT. In a second step we can intro-
duce the explicit couplings fHxc,en and fHxc,ne in combination
with the response functions �̄nn and �̄ee in order to obtain the
response functions �ee and �nn for the coupled electron-
nuclear system. Then the mixed response functions �ne and
�en are obtained from Eq. �101� and the one with indices n
and e interchanged. Finally the response functions �e,en and
�n,en are then determined from Eq. �99�.

We now make a few general remarks about the Hartree-xc
kernels. From Eq. �84� we find that they are determined by
the equation

� fHxc,ee fHxc,en

fHxc,ne fHxc,nn
� = ��S,ee

−1 0

0 �S,nn
−1 � − ��ee �en

�ne �nn
�−1

. �105�

We therefore see immediately that the terms fHxc,en and
fHxc,ne can be expressed solely in terms of the interacting
response functions. In contrast, the Hartree-xc kernels fHxc,ee
and fHxc,nn are determined by both the response functions of
the true and the Kohn-Sham system. In particular we see that
the expression for fHxc,ee will also involve the nuclear and
mixed electron-nuclear response functions.

Note that we still did not transform the nuclear coordi-
nates to a body-fixed frame. Consequently the Hamiltonian
of the system is still invariant under translations and rota-
tions of the nuclear coordinates only. Therefore, in general,
the response functions will also describe the continuous
spectra associated with the translational motion of the nuclei.
In order to have a proper description of rotational and trans-
lational motion it is therefore convenient to also transform
the nuclear coordinates to an internal coordinate system be-
fore solving the response equations. The actual choice of this
transformation is, of course, highly dependent on the type of
system that will be considered. We will illustrate the proce-
dure in the next section for the case of the diatomic mol-
ecule.

IV. EXAMPLE: THE DIATOMIC MOLECULE

A. The Hamiltonian

In this section we apply the formalism introduced above
to a diatomic molecule to illustrate the main features of the
multicomponent linear response theory. The Hamiltonian of
such an electron-nuclear system is given by

Ĥ�t� = −
�R1

2

2M1
−

�R2

2

2M2
− �

i=1

Ne �i
2

2
+ �

i�j

Ne 1

�ri − r j�
+

Z1Z2

�R1 − R2�

− �
i=1

Ne � Z1

�ri − R1�
+

Z2

�ri − R2���i=1

Ne

ri · E�t�

− �Z1R1 + Z2R2� · E�t� . �106�

Here R1 and R2 are the coordinates of the nuclei with masses
M1 and M2 and charges Z1 and Z2, respectively. The external
electromagnetic field is treated here in the dipole approxima-
tion where E�t� is the electric field on the light pulse. We
now introduce a convenient transformation: clearly the total
center-of-mass position RCM= �M1R1+M2R2+�i=1

Ne ri� / �M1

+M2+Ne� of the whole molecule and the internuclear vector
R=R1−R2 represent a favorable choice. We further trans-
form the electronic coordinates to a body-fixed frame at-
tached to the nuclei,

ri� = R�ri − RCMN� , �107�

where the nuclear center of mass is given by

RCMN =
M1R1 + M2R2

Mnuc
�108�

and the total nuclear mass is Mnuc=M1+M2. For the di-
atomic molecule the natural choice of a nuclear frame is to
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define the Euler angles by the requirement to have the inter-
nuclear axis parallel to the z axis in the body-fixed frame,
i.e., RR=Rez, where R= �R�. Note that for the diatomic mol-
ecule the rotation matrix R only depends on two Euler
angles � and � as we may put the Euler angle for the final
rotation around the z axis to zero. Thus, the complete set of
coordinates is �RCM,R ,� ,� ,ri��. In terms of these coordi-
nates the Hamiltonian attains the form �18,20�

Ĥ�t� = ĤCM�t� + Ĥmol�t� �109�

where

ĤCM�t� = −
�RCM

2

2Mtot
− QtotRCM · E�t� , �110�

Ĥmol�t� = −
�R

2

2�n
− �

i=1

Ne �i�
2

2
+ T̂MPC�r��,R� + �

i�j

Ne 1

�ri� − r j��

+
Z1Z2

R
− �

i=1

Ne

� Z1

�ri� −
M2

Mnuc
Rez� +

Z2

�ri� +
M1

Mnuc
Rez��

+ �qe�
i=1

Ne

R−1ri� − qnR� · E�t� , �111�

where we defined

Qtot = Z1 + Z2 − Ne, �112�

qn =
Z1M2 − Z2M1

M1 + M2
, �113�

qe =
Z1 + Z2 + M1 + M2

Mtot
, �114�

�n =
M1M2

M1 + M2
. �115�

The term T̂MPC= T̂MP+ T̂C is the sum of the mass polarization
and Coriolis terms which have the form

T̂MP = −
1

2�M1 + M2� �
i,j=1

Ne

�i� · � j�, �116�

T̂C = −
1

2�nR2� �

�R
R2 �

�R
+

1

sin �
� �

��
− iL̂e,y�

�sin �� �

��
− iL̂e,y�

+
1

sin2 �
� �

��
+ iL̂e,x sin � − iL̂e,z cos ��2�

+
1

2�n
�R

2 , �117�

where L̂e denotes the total electronic angular momentum

vector in the body-fixed frame. The mass-polarization term
depends only on the electronic coordinates and the Coriolis
term depends on the relative vector R and the transformed
electronic coordinates ri�. If the initial wave function is a
product of a center-of-mass wave function and a wave func-
tion of the internal coordinates then the time dependence of
the wave function of the internal coordinates is completely

determined by the Hamiltonian Ĥmol. We are now ready to
derive the Kohn-Sham equations for this system. This will be
done in the next section.

B. The Kohn-Sham equations

Let us now apply our multicomponent formalism to the
diatomic molecule. We first note that the molecular Hamil-

tonian Ĥmol�t� of Eq. �111� has the same structure of the
general transformed Hamiltonian of Eq. �11�. The main dif-
ference is that the set of nuclear coordinates in Eq. �11� is
replaced by the relative internuclear vector R. However,
since the structure of both Hamiltonians is identical we can
apply the formalism we derived without any problem to the
molecular internal Hamiltonian Equation �111�. The structure

of the terms Ûext,e and Ûext,n is given by

Ûext,e�r��,R,t� = qe�
i=1

Ne

R−1ri� · E�t� , �118�

Ûext,n�R,t� = − qnR · E�t� . �119�

If ��r��� ,Rs� , t� is a solution to the time-dependent

Schrödinger equation for Hamiltonian Ĥmol�t� then in anal-
ogy to Eqs. �16� and �17� we define the basic variables

n�r1�,t� = Ne�
�� ,s�
	 dr2� ¯ drNe

� 	 dR���r���� ,Rs�,t��2

�120�

where �� and s� as before denote the electronic and nuclear
spin coordinates. As a second basic variable we introduce the
density N�R , t� of the nuclear relative “particle”

N�R,t� = �
�� s�
	 dNer�����r���� ,Rs�,t��2. �121�

Corresponding to the HamiltonianĤmol�t� there is a Kohn-
Sham Hamiltonian in which the nuclear relative particle does
not interact with the electrons. If the initial state of this
Hamiltonian is a product of an electronic and a nuclear wave
function the Kohn-Sham wave function will have the form

�S�r���� ,Rs�,t� = 
�r���� ,t�X�Rs�,t� . �122�

The nuclear wave function, when it is an eigenstate of the Sz
and S2 operators, will have the general structure

X�Rs�,t� = ��R,t���s1,s2� , �123�

where � is the nuclear spin function. For example, for the
two protons in the hydrogen molecule the function ��R , t�
will behave under interchange of the nuclei similar to
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��R , t�= ±��−R , t�, depending on whether the spin function
is of singlet or triplet type. The electron density within the
Kohn-Sham scheme is calculated according to Eq. �33�
where the electronic Kohn-Sham wave function satisfies


i�t − T̂e�r��� − vS�n,N��r��,t��
�r���� ,t� = 0, �124�

where vS has the explicit form

vS�r,t� = qe�	 dRN�R,t�R−1r� · E�t� +	 dRW�r,R�N�R,t�

+	 dr�
n�r�,t�
�r − r��

+ vxc,U�n,N��r,t� . �125�

Assuming as before that the initial electronic wave function
has the form of a single Slater determinant then the elec-
tronic Kohn-Sham equation leads to the usual orbital equa-
tions

i�t�i�r,t� = �−
�2

2
+ vS�n,N��r,t���i�r,t� , �126�

n�r,t� = �
i=1

Ne

��i�r,t��2. �127�

In a similar way the nuclear density is calculated from

N�R,t� = ���R,t��2, �128�

where the nuclear Kohn-Sham equation is given by

�i�t +
1

2�n
�R

2 − VS�n,N��R,t����R,t� = 0. �129�

Here the nuclear Kohn-Sham potential has the explicit form

VS�R,t� =
Z1Z2

R
− qnR · E�t� + qeR−1�	 drrn�r,t�� · E�t�

+	 drW�r,R�n�r,t� + Vxc,U�n,N��R,t� , �130�

with

W�r,R� = −
Z1

�r −
M2

Mnuc
Rez� −

Z2

�r +
M1

Mnuc
Rez� . �131�

It only remains to specify how the exchange-correlation po-
tentials dependent on the densities and on the external poten-
tial to complete the Kohn-Sham scheme.

Note that in the exchange-correlation potentials intro-
duced in Eqs. �125� and �130� a number of rather compli-
cated interactions are hidden. First of all, as we discussed
earlier, there is the u dependence beyond the simple Hartree
terms. Secondly, the mass polarization and Coriolis terms are
incorporated in the exchange-correlation potentials as well.
This leads to the delicate question whether these terms,
which act as electron-nuclear interactions by means of dif-
ferential operators, can be incorporated effectively in a local
potential within a Kohn-Sham scheme. This is a fundamental
v ,V representability question in multicomponent density-

functional theory. At the moment we do not have a clear
answer to this question. We finally note that some approxi-
mate density functionals for the Coriolis and mass polariza-
tion terms were discussed by Kreibich �15�.

We will discuss in the next section the one-dimensional
diatomic molecules H2

+ and HD+ in which only one electron
is present. In these systems we can treat the mass polariza-
tion and Coriolis terms exactly �the Coriolis terms are zero
as there are no rotations in one dimension�, and use a simple
approximation for the exchange-correlation potentials.

C. Application to a model system

We will now consider a numerical example. For this we
use the standard model system of strong laser physics: a
one-dimensional molecule with one electron and two nuclei.
In recent years such models of reduced dimensionality
�42–44� were used successfully to analyze the strong-field
dynamics of atoms and molecules. In particular, they pro-
vided valuable insight in the influence of electron interac-
tions on strong field atomic dynamics, such as nonsequential
double ionization �45–49� and non-BO phenomena such as
the generation of even harmonics in intense laser fields �50�.
In this section we use the one-dimensional diatomic mol-
ecule with a softened electron-nuclear interaction �42� as a
benchmark to test approximate density functionals. The
Hamiltonian of the model is given by

Ĥ�t� = −
1

2M1

d2

dR1
2 −

1

2M2

d2

dR2
2 −

1

2

d2

dz2 +
Z1Z2

�R1 − R2�

− � Z1

��z − R1�2 + 1
+

Z2

��z − R2�2 + 1
�

+ zE�t� − �Z1R1 + Z2R2�E�t� . �132�

We now carry out a coordinate transformation and introduce
new coordinates

RCM =
z + M1R1 + M2R2

1 + M1 + M2
, �133�

z� = z −
M1R1 + M2R2

M1 + M2
, �134�

R = R1 − R2. �135�

As in the three-dimensional case this leads to a sum of a
center-of-mass Hamiltonian analogous to Eq. �110� and an
internal molecular Hamiltonian that has the explicit form

Hmol�t� = −
1

2�n

d2

dR2 −
1

2�e

d2

dz�2 +
Z1Z2

�R�

+ W�z�,R� + �qez� − qnR�E�t� , �136�

where �e= �M1+M2� / �M1+M2+1� and where we defined
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W�z�,R� = −
Z1

��z� −
M2

M1 + M2
R�2

+ 1

−
Z2

��z� +
M1

M1 + M2
R�2

+ 1

. �137�

The Hamiltonian of Eq. �136� is a one-dimensional simplifi-
cation of the Hamiltonian equation �111� of the diatomic
molecule for the case that we have only one electron. In one
dimension TC=0, and TMP simply leads to a reduced effec-
tive mass for the electron. In the one-dimensional model the
true Coulombic interaction is replaced by soft-Coulomb in-
teraction �42�. The main reason that we study this model
system is that for this system the time-dependent
Schrödinger equation can be solved numerically, yielding
��z� ,R , t� to any desired accuracy. We are therefore able to
produce benchmark results to which our approximate density
functional results can be compared. We obtain the ground
state �0�z� ,R� that we will use as initial state ��z� ,R , t0�
using the imaginary time propagation technique. Using the
same technique we also obtain the ground state for the Kohn-
Sham system �S,0�z� ,R�=�0�z���0�R�. By solving the time-
dependent Schrödinger and Kohn-Sham equations we obtain
the time-dependent densities. In the following we will calcu-
late the induced dipole moment

Dmol�t� =	 dRdz��qnR − qez�����z�,R,t��2

= qn	 dRRN�R,t� − qe	 dz�z�n�z�,t� �138�

for a weak applied field E�t�=E
�t− t0�, i.e., within the linear
response regime. In this expression n�z� , t� is the electron
density and N�R , t� the nuclear density. For this one-
dimensional case there are no exchange-correlation contribu-
tions to the dipole moment, so we can directly compare the
results obtained from the exact solution with the one ob-
tained using the density functional approach. It should be
noted that the total dipole moment also involves a term that
couples to the total center of mass of the molecule, i.e.,

D̂CM=QtotRCM. However, for investigating the internal exci-
tations of the molecule this term is not important. From the
dipole moment we can obtain the absorption spectrum by
taking the Fourier transform of Dmol�t�, i.e., Im ����
=Im
Dmol��� /E�.

In order to understand which peaks will appear in the
spectrum we will analyze the dipole matrix elements

Di0 =	 dRdz��qnR − qez���i
*�z�,R��0�z�,R� , �139�

where �i�z� ,R� are the eigenstates of Hamiltonian equation
�136� in the absence of the applied field. We will consider the
cases of the H2

+ and HD+ molecules where we note that for
H2

+ the constant qn in Eq. �138� is identically zero, whereas
for HD+ we have that qn= ± 1

3 �sign depending on the relative

position of the heavy and light mass with respect to the ap-
plied field�. Moreover, for the H2

+ system the unperturbed
Hamiltonian is invariant under the transformation z�→−z�
and R→−R. This means that the eigenstates will have either
even or odd parity under these transformations, i.e.,
�i�z� ,R�= ±�i�R ,−z�� and �i�z� ,R�= ±�i�−z� ,R�. Since
the ground state has even parity with respect to both inver-
sions, the transition dipole moment

di0
H2

+
= − qe	 dRdz�z��i

*�z�,R��0�z�,R� �140�

is only nonvanishing for the transitions to states that have
even parity with respect to the nuclear coordinate and odd
parity with respect to the electronic coordinate. Since in H2

+

there are no bound states with odd electronic parity up to the
dissociation energy, we expect no peaks in the absorption
spectrum up to the ionization energy and a broad continuum
above this energy. For HD+ on the other hand, there are no
special selection rules and therefore transitions from the
ground state to all possible eigenstates can give a contribu-
tion to the dipole moment. In particular, we expect that in
HD+ there will be transitions that within a Born-
Oppenheimer picture would correspond to vibrational exci-
tations in the lowest Born-Oppenheimer potential �and cor-
respond to transitions between states of even electronic
parity�. For HD+ the spectrum will then consist at low ener-
gies of a few vibrational peaks below the dissociation thresh-
old. These features are indeed observed in the calculated
absorption spectra that we will discuss later. Let us now con-
sider the same system within a density functional approach.
The Kohn-Sham equations of the system are then given for
the electronic subsystem by �for notational convenience we
will replace z� by z from now on�

0 = �i�t +
1

2�e

d2

dz2 − vS�z,t����z,t� ,

vS�z,t� = qeE�t�z +	 dRN�R,t�W�z,R� + vc�n,N��z,t� ,

�141�

and similarly for the nuclear subsystem by

0 = �i�t +
1

2�n

d2

dR2 − VS�R,t����R,t� ,

VS�R,t� = − qnE�t�R +
Z1Z2

�R�
+	 dzn�z,t�W�z,R�

+ Vc�n,N��R,t� , �142�

where n�z , t�= ���z , t��2 and N�R , t�= ���R , t��2. We used here
that in the one-electron system the exchange contribution to
the electronic Kohn-Sham potential exactly compensates the
Hartree contribution involving the electron density. The main
difficulty is now in finding appropriate approximations for
the correlation potentials vc and Vc. As a first step we will
take the simplest approximation in which we take vc=Vc
=0. This approximation we will denote as the Hartree ap-
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proximation because identical equations are obtained by re-
quiring the wave function action �15,16,18� to be stationary
for a Hartree product wave function of the form ��z� ,R , t�
=��z� , t���R , t� and for arbitrary variations in � and �. A
discussion of more advanced approximations is deferred to a
subsequent paper.

Let us now discuss the features that we expect in the
absorption spectrum of H2

+ and HD+ within this Hartree ap-
proximation. For the case of H2

+ there is no explicit driving
dipole field within the nuclear Kohn-Sham equation. There-
fore, for this system, the change in the nuclear potential is
only caused by a change of the Hartree potential. If the in-
duced electronic density is odd, i.e., 
n�z , t�=−
n�−z , t�, then
this first order change is zero since W�R ,z� is an even func-
tion of z. In that case the first order change 
N�R , t� is zero.
As result the only term first order in the field in the electronic
Kohn-Sham potential is the explicit dipole field itself. This
field induces an odd density change 
n�z , t�. From these con-
siderations we see that in H2

+ the Hartree density response

n�z , t� to a dipole potential 
v�z , t�=zE�t� is equal to the
bare Kohn-Sham response 
n=�S,ee
v. Consequently, the
peaks in the absorption spectrum of H2

+ simply correspond
to Kohn-Sham eigenvalue differences. Note that this is only
true for the response to a field that has odd parity 
v�−z , t�
=−
v�z , t�. For potentials with even parity the Hartree and
bare Kohn-Sham response will in general differ. From this
analysis we also see that no vibrational features appear in the
Hartree dipole response of H2

+. In the HD+ system, such
vibrational features will appear in the Hartree dipole re-
sponse, due to the lack of inversion symmetry. Therefore in
HD+ we will in general observe a shift of the excitation
energies with respect to the Kohn-Sham ones. We will inves-
tigate these shifts in more detail below using the single-pole
approximation �SPA� �41�.

We start by investigating the exchange-correlation ker-
nels. Within the Hartree approximation the fHxc kernels are
easily calculated to be

fHxc,ee�zt,z�t�� = 0, �143�

fHxc,nn�Rt,R�t�� = 0, �144�

fHxc,en�zt,R�t�� = W�z,R��
�t,t�� , �145�

fHxc,ne�Rt,z�t�� = W�z�,R�
�t,t�� , �146�

where 
�t , t�� is a contour 
 function �37�. Since fHxc,ee

= fHxc,nn=0 it immediately follows from Eq. �102� that �̄nn
=�S,nn and similarly that �̄ee=�S,ee. If we further define

Fee�zt,z�t�� =	 dRdR�W�z,R��S,nn�Rt,R�t��W�z�,R�� ,

�147�

Fnn�Rt,R�t�� =	 dzdz�W�z,R��S,ee�zt,z�t��W�z�,R�� ,

�148�

then we can write Eq. �100� and Eq. �104� in the form

�ee = �S,ee + �S,eeFee�ee, �149�

�nn = �S,nn + �S,nnFnn�nn. �150�

These equations have the familiar form of standard electronic
density-functional theory. We can therefore directly apply the
usual equations of the single-pole approximation �in case
they are valid�. We start from the Lehmann representation
�8,51� of the retarded form of the contour-ordered functions
�S,ee�zt ,z�t�� and �S,nn�Rt ,R�t�� transformed to the frequency
domain,

�S,ee�z,z�,�� = �
kl

nkl


kl�z�
kl
*�z��

�S,kl − �+ , �151�

�S,nn�R,R�,�� = �
ij

nij

Xij�R�Xij
*�R��

�S,ij − �+ , �152�

where the Kohn-Sham excitation energies �S,kl=�k−�l are
defined in terms of the eigenvalues �k/l of the electronic
Kohn-Sham equation of the stationary system, the factors
nkl=nk−nl in terms of the occupation numbers nk/l, with n0
=1 and ni�0=0, and the excitation functions 
kl�z�
=�k

*�z��l�z� in terms of the electronic eigenfunctions �k/l�z�.
Here �+=�+ i� with � a positive infinitesimal to ensure the
causality of the response functions. Similarly we define the
Kohn-Sham excitation energies �S,ij =Ei−Ej, with Ei/j the
eigenvalues of the nuclear Kohn-Sham equation, the factors
nij =ni−nj with ni/j the occupation numbers with n0=1 and
ni�0=0, and the excitation functions Xij�R�=�i

*�R�� j�R� with
�i/j�R� the eigenfunctions of the nuclear Kohn-Sham equa-
tion. One readily obtains the single pole approximations for
the electronic and nuclear excitation energies �kl and �ij,

�kl = �S,kl +	 dzdz�
kl�z�Fee�z,z�;�S,st�
kl
*�z�� ,

�153�

�ij = �S,ij +	 dRdR�Xij�R�Fnn�R,R�;�S,ij�Xij
*�R�� .

�154�

In these expressions Fee�z ,z� ;�� and Fnn�R ,R� ;�� are the
retarded forms of the contour-ordered functions Fee�zt ,z�t��
and Fnn�Rt ,R�t��, respectively, transformed to the frequency
domain. If we define the coupling strengths,

f ij,kl =	 dRdzXij�R�W�z,R�
kl�z� , �155�

then the single pole approximations for the excitation ener-
gies can also be written as

�kl = �S,kl + �
ij

nij

�f ij,kl�2

�S,ij − �S,kl
, �156�
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�ij = �S,ij + �
kl

nkl

�f ij,kl�2

�S,kl − �S,ij
. �157�

As the nuclear excitation energies are small compared to the
electronic ones, we expect a downward correction of the
lowest Kohn-Sham nuclear vibration energies.

Let us now discuss our numerical results. We start out by
comparing the exact nuclear potential to that obtained from
the Hartree approximation. Here the exact potential VS,0�R�
is readily obtained from the exact ground state nuclear den-
sity N0�R� by inversion of the nuclear Kohn-Sham equation

VS,0�R� =
1

�N0�R�
�E0 +

1

2�n

d2

dR2��N0�R� , �158�

where E0 is the ground state eigenvalue. This potential is
depicted for the HD+ case in Fig. 1 together with the one
obtained from the Hartree approximation. From these figures
it becomes clear that the Hartree potential has an incorrect
asymptotic value, leading to several bound even and odd
electronic states below the dissociation limit. The cause of
the wrong dissociation limit is discussed in detail in Refs.
�13–15,18�. Within the Hartree approximation the condi-
tional probability distribution ��z , t �R�= ���z ,R , t��2 /N�R , t�
of the electrons for a given nuclear separation is independent
of the nuclear separation equal to ��z , t �R�=n�z , t�. When the
energy is optimized one then finds a conditional electron
distribution that is reasonable for the equilibrium separation
but very unrealistic at large nuclear distances. This leads to
highly underestimated dissociation probabilities in strong
fields �15,16,18�. These deficiencies of the nuclear Hartree
potential also affect the linear response properties. The Har-
tree potential supports more bound states than the exact po-
tential thereby considerably influencing the shape of the ab-
sorption spectrum. Moreover the steep rise of the Hartree
potential causes the curvature of the nuclear potential to be
much too high compared to the exact nuclear potential,
thereby causing too large separations between the lowest
nuclear energy levels. We will discuss these points in more
detail below.

We next discuss the main features of the absorption spec-
tra. We first consider the absorption spectra obtained from an
exact solution of the time-dependent many-particle
Schrödinger equation. These are displayed in Fig. 2 for the
case of H2

+ and HD+. In the dipole response of the H2
+

system no low-lying excitations of vibrational character are
excited �nor are they visible� due to their vanishing dipole
oscillator strengths. The very low intensity peaks at low fre-
quency are artificial and depend on numerical parameters as
box size and grid spacing.

Let us now turn to the electronic excitations. We showed
that only odd-parity electronic excitations can have finite os-
cillator strength and will coincide with the Kohn-Sham exci-
tation energies. In Fig. 2 they form a broad continuum as
these excitations lie above the dissociation limit. For the
HD+ case parity symmetry is broken and therefore energy
levels of vibrational character are clearly visible at low fre-
quencies. For the HD+ system we also observe a broad con-
tinuum at larger frequencies corresponding to excitations of
electronic character. As inversion symmetry is broken in this
case they cannot be labeled as even and odd and will in
general also be shifted as compared to the bare Kohn-Sham
excitations.

Let us now see how the Hartree approximation performs.
The absorption spectra obtained within the Hartree approxi-
mation are displayed in Fig. 3. Regarding the low frequency
excitations we obtain a qualitatively similar picture as in the
exact case. The HD+ system displays vibrational excitations

FIG. 1. The exact and Hartree approximation for the nuclear
Kohn-Sham ground state potential for the one-dimensional HD+

model system.

FIG. 2. The exact absorption spectra of the one-dimensional
model systems H2

+ and HD+.

FIG. 3. The absorption spectra of the one-dimensional model
systems H2

+ and HD+ in the Hartree approximation.
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whereas they are absent in the H2
+ case. The spectrum at

higher energies is quite different from the exact case.
Whereas in the exact case we had a broad continuum we now
observe a sharp peak. This peak represents a bound excited
state of electronic character in the Hartree system. The ap-
pearance of this bound state is, as we discussed before, a
consequence of the wrong shape of the nuclear potential
within the Hartree approximation.

We finally discuss the excitation energies on the basis of
Eqs. �155�–�157�. In the H2

+ case only excitations of odd
electronic parity have nonvanishing dipole matrix elements.
However, for such excitations we see immediately from Eq.
�155� that f ij,kl=0 and consequently from Eq. �156� that there
will be no shift of the Kohn-Sham excitation. This is consis-
tent with the numerical data. The position of the main peak
in the Hartree absorption spectrum �see also the inset in Fig.
3� corresponds to great accuracy with the eigenvalue differ-
ence presented in Table I. Furthermore, as we discussed be-
fore, the nuclear vibrations are absent in the absorption spec-
trum of H2

+.
Let us next consider the case of HD+. In HD+ the nuclear

vibrational frequencies arises from the coupling of the lowest
nuclear and second electronic excitation. We find that for the
coefficients f ij,kl of Eq. �155� we obtain the largest contribu-
tion for the elements f = f01,02= f01,20= f10,02= f10,20
=0.022 434. From this we obtain the following order of mag-
nitude estimates for the shifts

�20 − �S,20 �
2�f �2�S,10

�S,20
2 − �S,10

2 = 2.4 � 10−5, �159�

�10 − �S,10 �
2�f �2�S,20

�S,10
2 − �S,20

2 = − 1.5 � 10−3. �160�

These shifts are much bigger for the nuclear energies than for
the electronic ones, and they are consistent with the numeri-
cal results obtained by time propagation of the Kohn-Sham
system �see Table I�. In the inset of Fig. 3 we see that the

main peak for HD+ is shifted upward as compared to that of
H2

+. This is due to a higher Kohn-Sham eigenvalue differ-
ence in HD+ plus the additional positive contribution that
shifts the bare Kohn-Sham eigenvalue difference upwards.

Let us finally consider the vibrational levels. In Fig. 4 we
compare for the HD+ case these nuclear excitation energies
obtained in the Kohn-Sham system using the Hartree ap-
proximation with those of the exact system. Only the lowest
vibrational excitation energy almost coincides with the exact
one, while the higher ones are at much too high energies. As
can be seen from Table I, the orbital energy differences are
nearly equally spaced, which reflects the nearly harmonic
ground-state nuclear potential near its minimum, but with a
too high separation as the curvature of this potential well is
too high. As mentioned before this is related to the wrong
large-R behavior of the nuclear potential in the Hartree ap-
proximation. Only the lowest vibrational excitation energy is
reduced considerably due to the coupling of the electronic
and nuclear subsystems, to an extent that it almost coincides
with the exact one. The higher vibrational excitations are
however only slightly corrected due to much smaller cou-
pling constants in combination with their higher excitation
energies. These small shifts cannot compensate for the large

TABLE I. The electronic and nuclear excitation energies �in a.u.� within the Hartree approximation for the
dipole response of the model H2

+ and HD+ molecules in comparison with the Kohn-Sham eigenvalue
differences. The electronic and nuclear Kohn-Sham eigenvalues are denoted by �i and Ei. Excitations with
vanishing oscillator strengths are indicated with an “x.”

H2
+ �Hartree�

i �i �S,i0 �i0 Ei �S,i0 �i0

0 −1.159910 −0.856120

1 −0.848653 0.311257 0.3113�6� −0.843674 0.012446 x

2 −0.490887 0.669023 x −0.831329 0.024791 x

HD+ �Hartree�
i �i �S,i0 �i0 Ei �S,i0 �i0

0 −1.160703 −0.857083

1 −0.848637 0.312066 0.3121�5� −0.846180 0.010903 0.0081�8�
2 −0.490792 0.669911 0.6700�7� −0.835375 0.021708 0.0217�3�
3 −0.824672 0.032411 0.0324�9�

FIG. 4. The exact and Hartree nuclear excitation spectra for the
one-dimensional HD+ model system.
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separation of the nuclear orbital energies, resulting in an in-
correct vibrational excitation spectrum within the Hartree ap-
proximation. There is therefore a clear need to study approxi-
mations for the Kohn-Sham potentials that go beyond the
simple Hartree approximation. For the ground state case sev-
eral improvements were proposed �15,14�. However, they are
difficult to generalize to the time-dependent situation. For the
time-dependent situation an approximate correlated form of
the wave function was developed and tested which greatly
improved the nuclear potential as well as the dynamics
�15,18�. However, the method is not strictly a density-
functional scheme and it remains to be investigated if theo-
retical models within the same spirit can be made to fit
within a density-functional approach.

V. SUMMARY AND CONCLUSION

In this paper we developed the time-dependent version of
the multicomponent density-functional approach to treat
electron-nuclear systems in external time-dependent fields.
For this it is important to introduce a body-fixed frame in
which the electron density reflects the symmetry of the inter-
nal degrees of freedom rather than those of the external po-
tentials in the laboratory frame �which would lead to con-
stant densities in the absence of perturbations�. The nuclear
particles are described by a diagonal many-body density ma-
trix which depends on all coordinates of the nuclei. In the
Kohn-Sham picture this density matrix is calculated from an
equation with a time-dependent potential that depends on all
nuclear coordinates. For the diatomic molecule in the station-
ary case this potential turns out to be very close to the famil-
iar Born-Oppenheimer potential. However, the Kohn-Sham

scheme goes far beyond the Born-Oppenheimer picture in
allowing an exact quantum description of the motion of the
nuclei.

As a consequence of the body-fixed frame transformation
the external potential acting on the electrons, which is a one-
body potential in the laboratory frame, becomes a many-
body potential u with respect to the nuclear coordinates in
the body-fixed frame. As a consequence the expectation
value of the dipole operator, when expressed as a density
functional in the terms of the electron density in the body-
fixed frame and the nuclear diagonal density matrix, acquires
an exchange-correlation part. For a given potential u one can
establish a Runge-Gross-type theorem that guarantees the
uniqueness of a one-to-one mapping between body-fixed
frame densities and potentials. The functional dependence of
this mapping on u leads in a linear response formulation to
the appearance of two extra response functions that describe
the response to potential u. We illustrated the formalism for
the example of a diatomic molecule and we performed cal-
culations on a model system for which the many-body
Schrödinger equation could be solved numerically. These
benchmark results were then compared to the solution of the
time-dependent Kohn-Sham equations in the Hartree ap-
proximation. Furthermore, we analyzed the excitation ener-
gies obtained from the linear response formalism in the
single pole approximation. We found that within the Hartree
approximation the spacing in the vibrational spectrum is too
large. However, the lowest vibrational level was found to be
in accordance with the exact result. We found that there is a
clear need for improved functionals that go beyond the
simple Hartree approximation. This will be the topic of a
subsequent publication.
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