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Experimentally obtained Stark-recurrence spectra taken at low principal quantum numbers show unusual
degrees of orbit profile asymmetry. To clearly illustrate the semiclassical mechanisms behind this behavior a
numerical experiment is performed where orbit profiles �recurrence strength as a function of scaled energy� are
found from computed Stark spectra. These spectra are generated for a wide range of quantum defects assuming
a highly simplified excitation and core structure which represents a semiclassical system restricted to s-wave
scattering. It is noted that at low quantum numbers, the expected dominant nonhydrogenic feature of recurrence
spectra is scattered orbits whose scaled actions are unresolved from existing hydrogenic orbits. The semiclas-
sical orbit profiles obtained from absorption spectra are compared with semiclassical closed-orbit theory.
Closed-orbit theory successfully predicts the systematic shifting of recurrence strength as a function of quan-
tum defect. In the limited parameter space investigated it is found that the distribution of recurrence strength is
influenced primarily by interference with scattered combinations containing a primitive orbit repetition. The
systematic shifting of recurrence strength as a function of quantum defect is attributed to a relative phase shift
between the contributing orbits.
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I. INTRODUCTION

In this paper closed-orbit probabilities �recurrence
strengths� for orbits within a nonhydrogenic Stark system are
computed numerically using two distinct methods. One is a
direct computation using semiclassical closed-orbit theory;
the other involves identifying recurrences, which can be cor-
related with closed orbits, from a computed Stark spectrum.
Significant portions of this paper are devoted to a review of
the basic concepts and practical considerations of computing
recurrence spectra. These two distinct computations are then
compared with one another to identify the semiclassical
mechanism behind observed asymmetries in the recurrence
strength along orbit profiles �orbit probability as a function
of scaled energy�. Beyond interpreting the specific observed
asymmetries in experimental argon and helium data, these
computations are performed over a wide range of quantum
defect parameters �a measure of core influence�, allowing for
a more general semiclassical interpretation of the quantum
defect.

Closed-orbit theory �COT� asserts that the spectral fea-
tures of a highly excited atomic system are dictated by the
classical trajectories, originally launched from the core that
return and close at the core. COT is semiclassical, and the
computed recurrence strength includes effects of wave inter-
ference between classical trajectories that neighbor one an-
other in classical action. In atomic systems, the core region
must be treated quantum mechanically, so the complete
theory includes the opportunity for wavelike behavior near
the core. In the absence of any quantum mechanical influ-
ences the recurrence strength represents the classical orbit
stability �1�.

In practice, an experimentally observed spectrum may be
taken under conditions of classical scaling. Sinusoidal oscil-
lations within the observed spectrum are then extracted via a
Fourier transform and directly interpreted as recurrence
strengths. This technique of obtaining scaled absorption

spectra and translating them into semiclassical recurrence
strengths is known as recurrence spectroscopy �2,3�. The
final result is an interpretation of absorption spectra in terms
of a coherent collection of classical orbits. �It is tempting to
interpret recurrence spectra classically, but this interpretation
is oversimplified because recurrence strengths include
nonclassical influences.�

Presented here are recurrence spectra for the nonhydro-
genic Stark system generated from quantum-computed ab-
sorption spectra and primitive closed-orbit theory. Recur-
rence spectra found from computed absorption spectra
reproduce the asymmetric recurrence strengths seen in ex-
perimental argon data, and this asymmetry was directly
linked to an asymmetry in the absorption spectra �4�. More
generally, if the quantum defect is treated as a continuous
variable, as it is increased from zero, the oscillator strength
distribution across the Stark manifold cycles from symmetric
�integer defects� to asymmetric �noninteger defects� and back
again. Similar to the interpretation of the argon spectra, the
cyclic shift of oscillator strength in Stark spectra as a func-
tion of quantum defects can be directly associated with a
cyclic shift in recurrence strength. The recurrence strengths
extracted from computed absorption spectra in this paper, as
expected, demonstrate the cyclic shifting of recurrence
strength as a function of quantum defects. To provide a semi-
classical interpretation, these computations are then com-
pared with semiclassical closed-orbit theory calculations. In
this analysis classical orbits are added as necessary to recre-
ate the observed recurrence patterns. While the collection of
core-scattered orbits may be complex, it is found that com-
bination orbits involving a single-scattering event with a
primitive parallel-orbit repetition are responsible for the
shifting recurrence strengths. The interference of the hydro-
genic orbit with the collection of nonhydrogenic combination
orbits is what generates the observed systematic shifting of
recurrence strength within orbit profiles.
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II. STARK OSCILLATOR STRENGTHS

The technique of recurrence spectroscopy allows one to
take spectroscopic data, obtained experimentally or via quan-
tum calculations, and turn them into recurrence spectra,
thereby allowing for a semiclassical interpretation of quan-
tum spectra. Absorption spectra based on quantum mechani-
cal computations are more flexible than their experimental
counterparts, and specific atomic and excitation parameters
have been selected to simplify the subsequent semiclassical
interpretation. Because nature has provided us with a discrete
set of atoms, each with an entire set of quantum defects,
direct correlations between the quantum defect parameter
and recurrence strength are not easily demonstrated with cal-
culations for the alkali-metal series. To obtain a clearer un-
derstanding of inner-core influences on a highly excited
Stark state, quantum calculations were performed on atomic
systems with assigned s-quantum defects ��s� ranging from 0
to 2. The higher-angular-momentum defects ��p ,�d ,� f , . . . �
were set to zero, implying that semiclassically all core scat-
tering can be interpreted as s-wave scattering. Experimental
excitation of Rydberg states is commonly restricted to s-p
transitions or, even less desirable, some combination of p-s
and p-d transitions. The classical interpretation of such tran-
sitions is the simultaneous launch of trajectories with an ini-
tial angular distribution described by the spherical harmonic
function Ylm�� ,�� �5�. An absorption spectrum computed for
a p-s transition is then understood to represent a uniform
launching distribution Y00�� ,��, eliminating the need to con-
sider the initial launching angle probabilities when interpret-
ing recurrence spectra.

All Stark spectra were calculated using the matrix diago-
nalization technique described by Zimmerman et al. �6�. Fur-
ther details of the calculation method can be found in Ap-
pendix A. The basis set consisted of all zero-field atomic
states within the n=17–34 manifolds. Figures 1�a� and 1�b�
show the results of the calculation for �s=0.2 and �s=0.8 in
the vicinity of the n=20–21 manifolds. The oscillator
strengths, represented by grayscale, are calculated for a tran-
sition into an s ,m=0 state. Thus the intensity scale is also a
distribution map of the “s character” within the manifold. At
zero field all the oscillator strength is contained within the
nondegenerate s state. As the external electric field strength
is increased the s state mixes with the rest of the manifold,
redistributing the oscillator strength. In general, for a quan-
tum defect whose modulus is less than 0.5 the oscillator
strength is preferentially distributed to the nearest redshifted
Stark states. Conversely, when the modulus of the quantum
defect is greater than 0.5 the oscillator strength of the emerg-
ing s state is mixed into the neighboring blueshifted Stark
states.

III. COMPUTING RECURRENCE SPECTRA FROM
ABSORPTION SPECTRA

In the Stark system, the classical Hamiltonian

H =
p2

2
−

1

r
+ Fz , �1�

where z is parallel to the direction of the external electric
field and F is the field strength �atomic units�, can be trans-

formed to a set of scaled coordinates r̃, p̃, and z̃ defined as

r = F−1/2r̃, p = F1/4p̃, z = F−1/2z̃ . �2�

The Hamiltonian, rewritten in terms of the scaled coordi-

nates, becomes H̃= p̃
2 − 1

r̃ + z̃ or H̃=H /�F, suggesting a scaled
energy

� = E/�F , �3�

where E is the energy of the excited electron from ionization
�5�. If the scaled energy is maintained as a constant, then the
scaled Hamiltonian is independent of the external field
strength and the classical dynamics remains unchanged. The
energy of the excited electron can be increased as long as the
external field is modified to maintain a constant scaled en-
ergy. In doing this, the electron orbit becomes larger, but the
classical dynamics remains unchanged, so in effect the clas-
sical orbits are expanding in size. As an electron, launched
from the core, returns, it is capable of interfering with itself.
The probability of absorption of the photon that leads to
excitation is dependent on this interference. The constructive
or destructive nature of the interference, and ultimately the
photon absorption probability, is dependent on the phase of
the returning electron. To first order the phase can be deter-
mined by the WKB approximation and the classical action S,
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FIG. 1. Stark maps in the vicinity of n=21–22 for a quantum
defects of 0.2 and 0.8. Grayscale covers two decades of oscillator
strength.
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� =
1

�
� pdl=

1

�
S , �4�

and in scaled coordinates the final oscillator strength density
contribution from a single closed orbit Df�� ,F−1/4� can be
written

Df��,F−1/4� = Ck���sin�2	

�
S̃���F−1/4 − 
� , �5�

where Ck is the recurrence amplitude of the orbit, S̃ is the

scaled action �S= S̃navg
�−2��, and 
 is a phase factor that

takes into account the effects of a nonhydrogenic core and
caustics. If an absorption spectrum is obtained under condi-
tions of constant � �scanning both E and F appropriately�, a
single closed orbit �expanding in size� will contribute a sinu-
soidal variation in the absorption spectrum with respect to
F−1/4, a parameter also known as w. Because the initial ex-
citation is quantum mechanical in nature, electrons are
launched simultaneously in all directions �in our case, be-
cause of the p-s transition, all directions contribute with
equal probability� and every one of these closed orbits con-
tributes a sinusoidal variation to the final absorption spec-
trum. To extract the amplitude coefficients �Ck� from the
data, a scaled absorption spectrum is taken along a line of
constant scaled energy � and then interpolated with data
points spaced equally with respect to the parameter w. Tak-
ing the power spectrum of the scaled absorption spectra gen-
erates a recurrence spectrum whose x axis is the scaled ac-
tion and y axis is the recurrence strength �proportional to
Ck

2�,

�Cm,k,n�2 � Ak
2ỹm�� f

m,k�ỹm��i
m,k��sin �i

m,k sin � f
m,k� , �6�

and in the case of an s-state excitation the launching angle
probability distribution ỹm��� reduces to a constant. The
square of the classical amplitude, A2, referred to as the clas-
sical stability, can also be found from the two-dimensional
Jacobian, where

Aj�t� =
1

�J�t�
, J�t� = 	

dr

dt

d�

dt

dr

d�i

d�

d�i

	 . �7�

For closed-orbit theory, the Jacobian and classical amplitude
need only be calculated upon return to the core, not along the
entire path �5,7�. Peaks in the recurrence spectrum can be
correlated with classical trajectories, where the recurrence
strength is directly proportional to the classical stability.
Classical calculations are then used to identify the scaled
action locations of specific closed orbits. Figures 2�a�–2�c�
show the recurrence maps generated from hydrogen ��s=0�
and the Stark spectra in Figs. 1�a� and 1�b�, respectively. The
recurrence map is a series of recurrence spectra displayed as
a function of the scaled energy parameter �. In the recurrence
maps of Fig. 2, the grayscale represents the recurrence
strength. Orbits are typically identified by the number of os-
cillations in hyperbolic coordinates �u ,v�, which are adapted
to aid in solving the equations of motion �Appendix C�.

To simplify orbit identification the scaled action �S̃� for
each recurrence spectra has been stretched �multiplied� by a
factor of �−2�. This stretch causes all orbits with a constant
period ratio �motion along u and v hyperbolic coordinates� to
lie on approximately vertical lines �8�. To avoid using the
term “scaled-scaled action” I will refer to this stretched scale

as the scaled ratio R̃.

FIG. 2. Recurrence maps generated from hydrogen Stark map in
the n=20–30 range and for quantum defects �=0, 0.2, and 0.8,
respectively. Grayscale represents the recurrence strength. The dot-
ted box represents the area around the classically identified 12 /13

period ratio orbit and occurs at R̃
12.5.
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IV. GENERAL OBSERVATIONS OF RECURRENCE MAPS

I will first summarize some of the previously noted struc-
tures visible in the recurrence maps of Fig. 2. Continuous
groups of recurrence strength lying along vertical lines in the
recurrence maps locate orbits of constant period ratio. In
semiparabolic space, the equations of motion for hydrogen
are separable and the period ratio is the ratio of u to v oscil-
lations. We define the orbit profile as the recurrence strength
versus scaled energy for an orbit with a given period ratio.
This can be extracted from a recurrence map by integrating
the strength over a small range of scaled action. An orbit
with a constant period ratio reacts against the external field
as the scaled energy is increased �8�. Figure 3 shows the
trajectories for the 12 /13 period ratio orbit for low
��=−3.34�, medium ��=−3�, and high ��=−2.78� scaled en-
ergy. Notice that the number of orbital oscillations is 12 for
the downhill-oriented orbit �electron moving with external
field� and 13 for the uphill-oriented orbit �electron working
against external field�. For higher scaled energy, one reaches
the classical bifurcation where the 12 /13 orbit becomes the
13th repetition of the primitive uphill orbit. At lower scaled
energy this same orbit reaches a bifurcation with the 12th
repetition of the primitive downhill orbit. Assuming a uni-
form probability for all possible launching angles, the recur-
rence strength for a given orbit should be nearly symmetric
with respect to the bifurcation boundaries.

In Fig. 2 the classical bifurcation limits of the 12 /13 orbit
are the upper and lower bounds of the small dotted region.
As noted in a previous paper, recurrence strength exists be-
yond the classical region as a result of quantum tunneling not
predicted in a pure classical model �9�. Recurrence maps also
organize in band structures. The first obvious band �series of
orbits running from lower left corner of map to upper right�
is composed of orbits with a period ratio i / �i+1�. The second
band is composed of orbits with period ratio i / �i+2� and a
less visible third band with period ratio i / �i+3�. Also visible
in the second band of nonhydrogenic maps is a regular
modulation of the recurrence strength as a function of orbit
type �10,11�. Finally, several groups have identified core
scattering as the mechanism that generates combination or-
bits at actions equal to the sum of two hydrogenic orbits
�12–16�. Evidence of these combination recurrences are seen
in the �=0.8 recurrence map as faint lines between the pri-
mary orbit locations in the first band.

V. CLASSICAL AMPLITUDE AND ORBIT PROFILE
SYMMETRY

The recurrence strength is semiclassical and contains the
effects of nonclassical behavior near the core in addition to

the effects of classical stability of individual orbits. The
quantum mechanical influences during the initial launching,
because of our transition choice p-s, have been effectively
eliminated. The recurrence strength variations observed
along an orbit profile can now be reduced to the classical
orbit stability and interference between orbits upon return to
the core. For a single orbit the classical stability can be com-
puted by integrating the equations of motion �Appendix C�
and calculating the Jacobian. Plotting the square of the re-
turning amplitude of an orbit with a specific period ratio as a
function of launching angle �which can be directly related to
the scaled energy �� will return an orbit profile. Figure 4
shows a select region of a recurrence map for hydrogen gen-
erated from computed absorption spectra. The recurrence

strength has been integrated from R̃=8.25 to 8.75 to generate
the orbit profile to the right of the map. The square of the
classical amplitude �thick gray line� deviates significantly
from the spectrally derived recurrence strength. One differ-
ence is that the classical orbit stability approaches a singu-
larity near the classical orbit bifurcations which occur at the
scaled actions indicated by horizontal dotted lines. This arti-
fact is explained if one accounts for diffraction of the retun-
ing electron �17�. The other deviations between the profiles
can be accounted for if one considers interference between
the primary 8 /9 orbit and nearby primitive orbit repetitions.
The primitive uphill orbit is launched parallel to the external
field and the downhill is initially launched antiparallel to the
external field. The u9 and d8 primitive repetitions are close
in action to the 8 /9 orbit, thus contributing to the total
strength coherently. The interference between these orbits
causes oscillations along the orbit profile as a function of
scaled energy. In the limit of high n, if the spectra are taken
over a relatively large range of energies, the spectrally de-
rived profile will approach the classical.

Both of the profiles shown in Fig. 4 are very nearly sym-
metric with respect to the classical bifurcation locations. Ap-
pendix B identifies and addresses two small contributors to
orbit profile asymmetry in hydrogen, but thus far there have
been no specific semiclassical mechanisms proposed that

FIG. 3. Classical trajectories of the 12 /13 period ratio orbit at
different �. The force exerted on the orbiting electron by the exter-
nal electric field is pointing down.

FIG. 4. �Color online� Left, recurrence map of hydrogen in the
vicinity of the 8 /9 orbit generated from the absorption spectra ex-
tending from the center of the n=55 to 65 manifolds. Right, orbit
profile is the thin line �integrated strength from R=8.25 to 8.75�,
and the classical stability is shown as a thick gray line. The inte-
grated recurrence strength scale �x axis� is in arbitrary units.

M. L. KEELER PHYSICAL REVIEW A 76, 052510 �2007�

052510-4



would generate the degree of orbit profile asymmetry ob-
served in experiment or the orbit profiles associated with Fig.
2. Orbit profiles were calculated for the 12 /13 orbit from
each of our computed recurrence maps. Each orbit profile
was obtained by integrating the recurrence strength over the

range R̃=12.25–12.75. With this we could observe the evo-
lution of a single orbit profile as a function of quantum de-
fect. Figure 5 shows the results of these calculations.

The extreme levels of orbit asymmetry seen in quantum
defects 0.4, 0.8, 1.4, and 1.8 cannot be explained by classical
stability computations of a single orbit or by artifacts of the
finite range of basis functions used in the quantum calcula-
tion. Note the reduction in orbit strength when comparing
quantum defects of 0, 1, and 2. This is presumably caused by
the classical orbit strength being scattered into other orbits at
higher actions �9�.

VI. ORBIT SCATTERING MANIFESTED IN THE
ABSORPTION SPECTRUM

The orbit profiles of Fig. 5 show systematic recurrence
asymmetry along orbit profiles �4�. We can look for the
source of this asymmetry in the absorption spectra itself. For
nonhydrogenic atoms, the oscillator strength of Stark mani-
folds is asymmetric due to the lifted degeneracy at zero field
and subsequent mixing of oscillator strength at higher fields.
After performing a power spectrum on the scaled version of
this manifold and obtaining a recurrence map, the asymmetry
in oscillator strength can be directly correlated to an asym-
metry in recurrence strength. In theory, if one were to start
with hydrogen and increase the quantum defect as a continu-
ous parameter, the asymmetry in oscillator strength across
the Stark manifold would shift continuously back and forth
from the redshifted states to the blueshifted. Subsequently,
the recurrence strength in the region of a specific orbit type
would be shifted back and forth from downhill to uphill char-

acter. This observation is important, but not surprising con-
sidering the mathematical relationship between an absorption
spectrum and its corresponding recurrence spectrum. The
shifting of strength within a recurrence map has been attrib-
uted to interference between orbits �10�, but it is important to
note that a shifting of oscillator strengths can only influence
the distribution of recurrence strengths within a recurrence
spectrum. Scattered orbits whose action occur at uniquely
nonhydrogenic peak locations must originate from new spec-
tral frequencies generated by avoided crossings. Both the
oscillator strength distribution and avoided crossings play a
role in the final distribution of recurrence strengths, but at
low values of n, the distribution of oscillator strengths be-
comes the dominant nonhydrogenic feature of the spectrum.
For example, the n=11 and 12 Stark manifolds do not cross
and have no avoided crossings until the field reaches the
classical ionization limit at �=−2. In contrast, the n=95 and
98 manifolds cross through intermediate manifolds and make
contact at much lower fields, around �=−5. At very high
quantum numbers, oscillator strength distributions found at
low field strengths are quickly homogenized as overlapping
manifolds mix. Thus, for high quantum numbers, state mix-
ing reduces the impact of asymmetrically distributed oscilla-
tor strengths found at low fields and avoided crossings are
the dominant nonhydrogenic feature of the spectrum. In
these recurrence spectra, one would expect to find most scat-
tered combination orbits at scaled actions not seen in hydro-
gen. For low quantum numbers, an asymmetric oscillator
strength distribution can persist at even moderate field
strengths and this becomes the dominant nonhydrogenic fea-
ture. This implies that the nonhydrogenic signatures of a re-
currence map obtained from spectra at low quantum numbers
will be a shifting of recurrence strength among peaks already
found in hydrogen. In this case the new distribution of recur-
rence strength can be attributed to interference with scattered
orbits whose actions are unresolved from the actions of hy-
drogenic orbits.

VII. ASYMMETRY IN ORBIT PROFILES AND PRIMITIVE
CLOSED-ORBIT THEORY

A simple recurrence spectrum can be generated from in-
tegrating the equations of motion. Peaks, infinitely narrow,
located at the scaled actions of closed orbits, have heights
that are equal to the classical stability. But when trying to
interpret recurrence strengths derived from absorption spec-
tra over a finite range of energies, nonclassical effects in the
region of the core become increasingly influential. In a single
recurrence spectrum every orbit can potentially interfere with
every other orbit; mathematically, this is realized by a sum of
sinc functions in contrast with a sum of classical � functions:

RS�S̃� = ��
k

Dk
sin�axk�

axk
�2

, �8�

where

xk = S̃k − S̃, a = 	�− 2��np − nq� , �9�

and the index k identifies individual trajectories. The width
of the sinc function is determined by the range �principal

FIG. 5. 12 /13 orbit profiles as a function of quantum defect
obtained from computed Stark-spectra in the n=20–30 range. Ver-
tical axis represents relative recurrence strength �arbitrary units�,
with the base line of each profile in line with the corresponding
quantum defect. Vertical lines indicate the classical bifurcation lo-
cations for the 12 /13 orbit.
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quantum number range np–nq� of the spectrum to be mod-
eled. The effective half-width of individual orbit recurrences
is

�S̃ = ��n�− 2��−1 �10�

or �R̃=�n−1. In the limit of high n, where the density of
states and spectral range are high, the sinc distribution ap-
proaches a classical � function. For finite-width peaks the
phase of the electrons returning to the core must be defined
for every scaled action, and this phase is incorporated into
the amplitude Dk:

Dk = Cke
i�bS̃−k�, �11�

where

b = 	�2��n1 + n2� �12�

and �k represents an additional phase that carries contribu-
tions from classical turning points and the nonhydrogenic

core. In terms of R̃, orbit recurrence strengths a distance �R̃
from the central orbit action experience a phase shift of

� = 	�R̃�n1 + n2� . �13�

In the limit of high n, the phase changes rapidly as a function
of scaled action and its influence becomes unobservable. The
phase contributions from classical turning points and quan-
tum defects are detailed elsewhere �18� and can be reduced
to

k = 2	� − 	�k/2, �14�

where �k is known as the Maslov index. In semiparabolic
coordinates the Maslov index advances by 1 each time the
orbit crosses the u or v axis, or at a classical focus. Each time
the orbit crosses the origin �k is increased by 2. A computer
code was written to search for closed orbits and record a list
of scaled action, classical amplitude �Ck�, and phase ��k�. A
second program uses that list to compute the recurrence
spectra based on the summation of sinc functions. As a
check, recurrence strengths for hydrogen were computed for
the primitive repetitions and 12 /13 orbit and compared with
the spectrally derived strengths.

For hydrogen, the primitive repetitions u13 and d12 are in
close proximity with the 12 /13 period ratio orbit and the
results of this can be seen in the first panel of Fig. 7. The u13
and d12 primitive repetitions pass through the core region 13
and 12 times, respectively, each time losing an additional
2	� in phase, whereas the 12 /13 orbit experiences this ad-
ditional phase shift only once. The resulting orbit profile,
taking the interference between the primitive repetitions into
account, still suffers from the classical singularity near the
bifurcation points. To simulate the effects of diffraction the
classical stability is convoluted with a Gaussian function.
The half-width of the function, in this case ��=0.5, is cho-
sen to optimize the agreement with the spectrally derived
computation. As the quantum defect is increased the relative
phases between the primitive repetitions and the primary or-
bit shift, causing the interference to also shift. But because of
the nearly symmetric placement of the primitive orbits with

respect to the primary orbit, this interference, independent of
the quantum defect, still produces nearly symmetric orbit
profiles and cannot explain the recurrence strength variations
seen in Figs. 2 and 5.

A nonhydrogenic core also leads to the possibility of core-
scattered combination orbits. As a launched orbit returns to
the core, scattering can occur into a completely different or-
bit, forming a combination orbit where the action of the
newly formed orbit is the sum of the parent orbits and the
recurrence amplitude is proportional to the product of the
parent amplitudes:

S̃combination = S̃1 + S̃2 and Ccombination = C1C2P��� , �15�

with an additional 	 phase shift introduced �2�.
Because the semiclassical theory is being used to model a

system with s-quantum defects, the returning electron is scat-
tered in all directions with equal probability. The classical
amplitude of the combination is the product of the parent
classical amplitudes multiplied by a scattering factor P���.

The 12 /13 orbit was selected because of the limited pos-
sible contributions from combination orbits. The strongest
combination orbits will necessarily originate from the stron-
gest orbit recurrences, with multiple-scattering combinations
being less probable. The strongest orbits lower in action than
the 12 /13 orbit are the preceding 11 /12, 10 /11, and 9 /10
period ratio orbits. These can scatter and form combinations
of orbits with repetitions of the primitive uphill and downhill
orbits. The classical amplitude of the primitive repetitions is
proportional to 1 /�j where j is the number of repetitions.
The relative phase between a combination orbit and the pri-
mary orbit should be independent of the quantum defect, but
because one of the combination orbit parents is a primitive
repetition, the additional phase introduced by the core into
the repetition is inherited by the combination orbit. The rela-
tive phase between the primary and combination orbit will
evolve with a changing quantum defect and can be written

� = �j − 1��s2	 . �16�

Because this shift in phase is a continuous function of the
quantum defect, the interference between the 12 /13 and
combination orbits also varies in a continuous way. In the
vicinity of the 12 /13 orbit, the 12th and 13th primitive uphill
and downhill repetitions are weak when compared with scat-
tered orbit combinations such as the 10 /11 combined with a
single primitive uphill repetition orbit �10 /11+u2 orbit�. The
six strongest orbits which influence the measured 12 /13 orbit
profile are the 11 /12+u1, 11 /12+d1, 10 /11+u2, 10 /11
+d2, 9 /10+u3, and 9 /10+d3. These represent the few com-
binations of strong orbits that fall within reasonable range of
the 12 /13 orbit action. The combinations involving downhill
repetitions fall at actions higher than the 12 /13 orbit, and
combinations with uphill repetitions are found at slightly
lower actions. The combinations with primitive repetitions
for one parent �such as 10 /11+u3� fall further from the
12 /13 in action and are slightly weaker due to the 1 /�j
dependence of the repetition amplitude �where j is the rep-
etition number� �14�. Although the combinations involving a
single primitive orbit are the strongest contributors �11 /12
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+u1, 11 /12+d1�, because their phase does not shift with
respect to the primary orbit as a function of quantum defect,
they cannot be considered to be the source of shifting orbit
recurrence strength �function of quantum defect�. Figure 6
shows recurrence maps in close vicinity of the 12 /13 orbit.
These maps represent the recurrence strength using contours
and were computed using primitive closed orbit theory. The
map on the left was computed using just the isolated 12 /13
orbit, whereas the map on the right includes, in isolation,
only the neighboring combination orbits. The classical orbit
actions are indicated by dotted lines. In the limit of high n,
these orbits would remain distinct classical entities, but in
the quantum range investigated �n=20–30� each orbit has a

scaled action half-width of approximately �R̃=1 /�n=0.1.
The six orbits contributing to the graph on the right of Fig. 6
are unresolved as individual orbits and interfere to form the
coherent structure shown. The final measured orbit profile

along the 12 /13 orbit �integrated strength from R̃
=12.25 to 12.75� will consist of the coherent addition of
these two graphs. As the quantum defect is changed the scat-
tered orbits containing a primitive repetition will shift in
phase with respect to the primary orbit.

Figure 7 shows the results from primitive closed-orbit
theory for the coherent addition of all seven orbits as a func-
tion of quantum defect. The results qualitatively reflect the
same regular shift in recurrence strength as the quantum cal-
culations. The shift in strength is caused by interference with
the combinations involving a primitive repetition �10 /11
+u2, 10 /11+d2, 9 /10+u3, 9 /10+d3�. Multiple-scattering
orbits such as 10 /11+u1+d1, 9 /10+u2+d1, and 9 /10+d2
+u1 were introduced without qualitatively changing the
shifting of recurrence strengths as a function of quantum
defect.

VIII. SUMMARY

For low fields and low quantum number ranges, specifi-
cally n=20–30 and ��−2.7, the oscillator strength across
the Stark manifold shifts between blue and red as a function
of quantum defect. Investigating this distribution of oscilla-
tor strengths using recurrence spectroscopy techniques it is
found that a corresponding shift in recurrence strengths be-
tween downhill- and uphill-oriented orbits also occurs. Small
asymmetries in orbit profiles are generated in spectrally de-
rived recurrence maps due to the use of a finite basis, but this
alone does not explain the observed asymmetries in nonhy-
drogenic orbit profiles. Using primitive closed-orbit theory it
is found that the effective recurrence strength as a function of
scaled energy �orbit profile� is strongly influenced by inter-
ference of a primary orbit with scattered combination orbits.
Because the combination orbits contain repetitions of the up-
hill and downhill orbits, the relative phase of the combina-
tion orbits with respect to the main orbit is dependent on the
quantum defect. The collective interference evolves as a
function of quantum defect to reproduce the observed asym-
metries in computed recurrence maps. This mechanism is
consistent with the idea that with low quantum numbers,
oscillator strength distributions are the dominant nonhydro-
genic spectral feature and these can be correlated with scat-
tered orbits which occur at actions indistinguishable from
hydrogenic orbits.

FIG. 6. Maps illustrating the contributions to recurrence strength
in the vicinity of the 12 /13 orbit. On the left is a contour plot of
recurrence strength for the 12 /13 orbit with a dotted line locating
the classical action. On the right is the contour plot of recurrence
strength for the six strongest scattered orbits. The classical orbit
actions are indicated by dotted lines. The recurrence strength in this
map represents the coherent addition of all six combination orbits
�without the 12 /13 orbit�. Each map covers the same range of ac-
tion and scaled energy with contours covering an order of magni-
tude in recurrence strength.

FIG. 7. COT-derived recurrence maps in the vicinity of the
12 /13 orbit for different quantum defects. Each map covers the

range �=−3.7–2.5 and R̃=12.25–12.75, with the recurrence
strength indicated by a grayscale. As the quantum defect is in-
creased combination orbits shift in action and phase with respect to
the main orbit producing a shifting in recurrence strength across the
orbit profile.
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APPENDIX A: CALCULATION OF STARK ABSORPTION
SPECTRA

Details of this calculation can be found in Reference �19�.
The Stark absorption spectra were obtained using matrix di-
agonalization, the basis set being the field-free nonhydro-
genic wave functions. The wave equation can be separated
into radial and angular components, where the solution to the
angular equation is the same as that in hydrogen. Substitu-
tions to the radial wave equation

�2R

�r2 +
2

r

�R

�r
+ �2W +

2

r
−

l�l + 1�
r2 R = 0, �A1�

where W represents the known eigenvalues,

W = − �n − �l�−2/2, �A2�

can be made to generate an equation of the form that is easily
solved using the Numerov algorithm. Making the substitu-
tions x=ln�r� and Y�x�=R�r transforms the wave equation
into

d2Y

dx2 = g�x�Y�x� , �A3�

where

g�x� = 2e2x�−
1

r
− W� + �l +

1

2
�2

,

and this equation is integrated inward from large distances,
where Y�x� is small. A square Hamiltonian matrix is com-
puted, consisting of all the n , l states from n=17–34, mea-
suring 460 cells on a side. With each element the external
field is considered as a small perturbation �nlm�z�F
+H0�n�l�m��. This matrix, once diagonalized, returns a new
set of eigenvalues and eigenvectors, W , l ,m, each of which is
a linear combination of n , l ,m nonhydrogenic states. A new
matrix is computed based on these eigenstates �Wlm�z�F
+H0�W�l�m�� and diagonalized to find the next set of eigen-
states. Off-diagonal elements associated with quantum states
separated by energies greater than �1+�� /n3 were considered
insignificant and not computed. Off-diagonal elements could
also be eliminated due to the nature of dipole interactions
with the angular components of the wave functions. The os-
cillator strengths for p-s transitions were determined by a
sum of p-s dipole transition amplitudes, weighted according
to the field-free state composition of the individual Stark
eigenstates. The computer algorithm was tested by generat-
ing the Stark spectrum of lithium and comparing with previ-
ously published Stark maps �3�.

APPENDIX B: ASYMMETRIES FOUND IN FINITE
QUANTUM REGIMES

The classical predictions include a slight asymmetry, par-
ticularly close to bifurcations due to the fact that uphill-

oriented trajectories are classically more stable than their
downhill counterparts. This effect is small compared to both
the observed asymmetry in experimental argon recurrence
maps and unexpectedly, computed hydrogen recurrence
maps. The discrepancy with hydrogen computations is an
artifact of a finite quantum system and is not directly
accounted for in primitive COT.

Quantum mechanically the transition oscillator strength
varies as n−3. For a finite spectrum far from the continuum
this is a source of asymmetry and produces orbit profiles
artificially weighted to the uphill-oriented trajectories. This
artifact can be easily corrected in computed spectra by elimi-
nating the n−3 dependence when computing oscillator
strengths. Experimental Stark spectra could be corrected by
treating n as a continuous variable and simply weighting the
signal strength by n3. �This corrective procedure is only ap-
proximate because of n-manifold mixing.� In the limit of
high n the oscillator strength differences between red and
blue Stark states is negligible, leading to the expected sym-
metric distribution. Figure 8 shows the asymmetry artifact in
the case of the 8 /9 orbit profile obtained from computed
Stark-spectra in the n=55–65 range.

APPENDIX C: SOLVING THE EQUATIONS OF MOTION
IN SEMIPARABOLIC SPACE

With hyperbolic coordinates u and v defined with their
corresponding momentum, the scaled Hamiltonian can be
written and separated:

u = �r̃ + z̃, v = �r̃ − z̃, pu = p̃�v + p̃zu, pv = p̃�u − p̃zv ,

�C1�

Ĥ =
1

2

pu
2 + pv

2 − 4

u2 + v2 +
1

2
�u2 − v2�, separated, �C2�

1

2
pu

2 +
1

2
u4 − �u2 − 1 = �,

1

2
pv

2 +
1

2
v4 − �v2 − 1 = − � .

�C3�

Here � controls how the energy of the system is distributed
between the u and v motions and can be directly related to
the initial launching angle:

FIG. 8. The 8 /9 orbit profile obtained from computed hydrogen
Stark spectra in the n=55–65 range. The black line is a profile
computed with true oscillator strength, the dotted, gray line is a
profile computed with the true oscillator strengths xn3.
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� = cos��i� . �C4�

Inspection of the separated Hamiltonian yields potentials for
the u and v coordinates:

Vu =
1

2
u4 − �u2, Vv = −

1

2
v4 − �v2. �C5�

Taking the derivative yields two separate force equations

Fu = − 2u3 + 2u�, Fv = 2v3 + 2v� . �C6�

With a known launching angle and scaled energy these equa-
tions can be solved using Euler’s method. The classical paths
followed in semiparabolic space closely resemble Lissajou
figures.
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