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The path-integral Monte Carlo approach is used to study the coupled quantum dynamics of the electron and
nuclei in hydrogen molecule ion. The coupling effects are demonstrated by comparing differences in adiabatic
Born-Oppenheimer and nonadiabatic simulations, and inspecting projections of the full three-body dynamics
onto the adiabatic Born-Oppenheimer approximation. Coupling of the electron and nuclear quantum dynamics
is clearly seen. The nuclear pair correlation function is found to broaden by 0.040a0, and the average bond
length is larger by 0.056a0. Also, a nonadiabatic correction to the binding energy is found. The electronic
distribution is affected less than the nuclear one upon inclusion of nonadiabatic effects.
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I. INTRODUCTION

There are a number of phenomena in molecular and
chemical physics which are influenced by the quantum be-
havior of both nuclei and electrons, rovibrational dynamics
being a good example; see Refs. �1–3� and references
therein. In case of light-mass nuclei, protons in particular,
treatment of the quantum nature of the nuclei is essential
�4–6�. This has proven to be important in a description of the
hydrogen bond, for example �7�.

The hydrogen molecule ion �H2
+�, being the simplest mol-

ecule, has been studied extensively �8�, and it has often been
used as an example or a test case for an improved method or
accuracy �9–14�. In addition to the free molecule, H2

+ influ-
enced by an electric or magnetic field is a well studied sub-
ject �15–21�. Furthermore, there is interest in descriptions
that are not restricted to Born-Oppenheimer �BO� or other
adiabatic approximations �22–28�. Such extensions can be
easily realized by using quantum Monte Carlo �QMC� meth-
ods �29,30�, for example.

Among the QMC methods the path-integral MC �PIMC�
formalism offers a finite-temperature approach together with
a transparent tool to trace the correlations between the par-
ticles involved. Though computationally extremely demand-
ing, with some approximations it is capable of treating low-
dimensional systems, such as small molecules or clusters
accurately enough. Some examples found in the literature are
H �31�, HD+, and H3

+ �32� and H2 clusters �33–37� with spe-
cial attention laid on 4He �38–42�. The approximations in
these approaches relate to ad hoc–type potentials describing
the interactions between particles.

In this work we evaluate the density matrix of the full
three-body quantum dynamics in a stationary state and finite
temperature. This is what we call “all-quantum” �AQ� simu-
lations. Second, the electronic part only is evaluated as a
function of internuclear distance in the spirit of the BO ap-
proximation, and third, the adiabatic nuclear dynamics is
evaluated in the BO potential curve. These allow us to dem-
onstrate the nonadiabatic electron-nuclei coupling by a pro-
jection of the AQ dynamics onto the adiabatic approxima-
tions.

We need to approximate the −1/r Coulomb potential of
electron-nucleus interactions at short range to make the

calculations feasible. We realize this with a carefully tested
pseudopotential �PP�. Also, the absent �ortho� or negligible
�para� exchange interaction of nuclei is not taken into ac-
count. Finally, we want to emphasize that our purpose is to
simulate a finite-temperature mixed state including correla-
tions exactly, which is a challenging task for other methods.
However, if high-accuracy zero-kelvin computations are pre-
ferred, one should turn to other methods such as the varia-
tional Monte Carlo �VMC� method, for example. For conve-
nience, we have chosen 300 K, which essentially, but not
exactly, restricts the system to its electronic ground state.

We begin with a brief introduction to the theory and meth-
ods in the next section. This includes a description of the PP
and tools and concepts for the analysis in the following sec-
tion. Then we carry on to the results. Throughout the paper
atomic units are used: hartrees �EH� for energies and Bohr
radius �a0� for distances.

II. THEORY AND METHODS

For a quantum many-body system in thermal equilibrium
the partition function contains all the information of the sys-
tem �43�. The local thermodynamical properties, however,
are included in the density matrix from which all the prop-
erties of the quantum system may be derived �44�. The nona-
diabatic effects are directly taken into account in the PIMC
approach. In addition, finite-temperature and correlation ef-
fects are exactly included.

A. Path-integral Monte Carlo approach

According to the Feynman formulation of statistical quan-
tum mechanics �45� the partition function for interacting dis-
tinguishable particles is given by the trace of the density
matrix,

Z = Tr�̂��� = lim
M→�

� dR0 dR1 dR2 ¯ dRM−1 �
i=0

M−1

e−S�Ri,Ri+1;��,

�1�

where �̂���=e−�Ĥ, S is the action, �=1/kBT, �=� /M, and
RM =R0. M is called the Trotter number, and it characterizes
the accuracy of the discretized path. In the limit M→� we
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are ensured to get the correct partition function Z, but in
practice sufficient convergence at some finite M is found,

depending on the steepness of the Hamiltonian Ĥ.
In the primitive approximation scheme of the PIMC for-

malism the action is written as �46�

S�Ri,Ri+1;�� =
3N

2
ln�4���� +

�Ri − Ri+1�2

4��
+ U�Ri,Ri+1;�� ,

�2�

where U�Ri ,Ri+1 ;��= �
2 �V�Ri�+V�Ri+1�� and �=�2 /2m.

Sampling of the configuration space is carried out using
the Metropolis procedure �47� with the bisection moves �48�.
This way the kinetic part of the action is sampled exactly and
only the interaction part is needed in the Metropolis algo-
rithm. The level of the bisection sampling ranges from 3 to 6
in our simulations, respectively with the increase in the Trot-
ter number. The bisection sampling turns out to be essential
with large Trotter numbers to achieve feasible convergence,
for nuclei in particular. Total energy is calculated using the
virial estimator �49�.

B. Extrapolation of expectation values

The Trotter scaling procedure �32� for expectation values
is used to obtain estimates for energetics in the limit
M→�. To use this procedure one needs expectation values
with several different Trotter numbers. For the Trotter num-
ber M the scaling scheme is

�Â�� = �Â�M + 	
i=1

N
c2i

M2i , �3�

where coefficients c2i are constants for a given temperature
and N represents the order of extrapolation. In this paper
N=2 has been used for the energies of H2

+, and N=3 for
hydrogen atom energies; see Figs. 1 and 2.

C. Pseudopotential of the electron

For the hydrogen molecule ion the potential energy is

V�r1,r2,R� = −
1

r1
−

1

r2
+

1

R
, �4�

where ri= 
r−Ri
 and R= 
R1−R2
, r being the coordinates of
the electron and R the internuclear distance. Equation �4� sets
challenges for the PIMC approach arising from the singular-
ity of the attractive Coulomb interaction �50,51�, which in
this work is replaced by a PP of the form �52�

VPP�r� = −
erf��cr�

r
+ �a + br2�e−�r2

. �5�

The parametres �c=3.8638, �=7.8857, a=1.6617, and
b=−18.2913 were fitted using direct numerical solution to
give the exact ground-state energy of hydrogen atoms and
the wave function accurately outside a cutoff radius of about
0.6a0. Also, a number of lowest-energy orbitals of the hydro-
gen atom are obtained accurately outside the same cutoff
radius �53�. Because the bond length of H2

+ is about 2a0, it is
expected that bonding of the hydrogen molecule ion be-
comes properly described.

Hydrogen atom reference energies for different Trotter
numbers are shown in Fig. 1, where triangles are obtained
from infinite nuclear mass and circles are from AQ simula-
tions. Extrapolated ground-state values are −0.4947�1�EH

and −0.4938�3�EH for infinite nuclear mass and AQ simula-
tions, respectively, statistical standard error of mean �SEM�
given as the uncertainty in parentheses. We can note that
within the 2SEM limits the proportion of these energies
0.9982 reproduces that of the Rydberg constants, RH/R�

=0.9995.

D. Spectroscopic constants

Within the BO approximation of diatomic molecules the
corrections to electronic energies due to rovibrational motion
of the nuclei can be evaluated from a Dunham polynomial
�54�
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FIG. 1. �Color online� Hydrogen atom total energies with dif-
ferent Trotter numbers: infinite nuclear mass �triangles� and AQ
�circles�. Extrapolated ground-state energies are −0.4947�1�EH and
−0.4938�3�EH for infinite nuclear mass and AQ simulations,
respectively.
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FIG. 2. �Color online� H2
+ potential curves with different Trotter

numbers M =211 �squares�, M =212 �triangles�, M =213 �circles�, ex-
trapolated values �dots�, and finite-difference calculations with the
pseudopotential �dashed line� and with exact e−-p+ potential �solid
line�.
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EvJ = − De + 	e�v +
1

2
� − 	exe�v +

1

2
�2

+ BeJ�J + 1� − �eJ�J + 1��v +
1

2
� + ¯ , �6�

where v and J are vibrational and rotational quantum num-
bers, respectively, and Be, 	e, 	exe, and �e are the spectro-
scopic constants.

The spectroscopic constants of H2
+ and D2

+ are obtained as
introduced in Ref. �54�. In atomic units,

Be =
1

2I
=

1

2
R2 , �7�

	e = � 1




d2E

dR2�1/2

, �8�

	exe =
1

48


5�d3E/dR3

d2E/dR2�2

− 3
d4E/dR4

d2E/dR2� , �9�

�e = −
6Be

2

	e

R

3

d3E/dR3

d2E/dR2 + 1� . �10�

Instead of determining these constants at the equilibrium
distance only, as in Ref. �54�, we evaluate expectation values
from the distribution of nuclei, e.g., for the rotational
constant

Be =
1

2

� g�R�

1

R2dR , �11�

where the pair correlation function g�R� is normalized to
unity. The other constants, Eqs. �8�–�10�, are evaluated simi-
larly.

E. Centrifugal distortion

The effects caused by the centrifugal distortion, arising
from rotational motion of the nuclei, on the equilibrium dis-
tance can be assessed by inspecting the extremum values of
the energy of the harmonic oscillator in rotational motion:
EJ�r�= 1

2k�r−re�2+J�J+1� /2
r2. We find an approximate
equation

�R =
4Be


	e
2Re

2J�J + 1� , �12�

where Re is the equilibrium distance. Equation �12�, how-
ever, does not include the anharmonic effects shown in Eq.
�6�, which evidently increase the bond length.

At finite temperature the rotational energy states should
be weighted by the Boltzmann factor, which leads to

�R =
4Be


	e
2Re

2

	
J

J�J + 1�exp�− �BeJ�J + 1��

	
J

exp�− �BeJ�J + 1��
, �13�

where J=0,1 ,2 , . . . . Using the spectroscopic constants from
Ref. �54� �see Table I� and temperature of 300 K we obtain

�R=0.0043a0. This approximation will be compared to our
direct evaluation, below.

III. RESULTS

We consider three different cases separately in order to
demonstrate the nonadiabatic effects. First, the electronic
part only is evaluated as a function of internuclear distance
in the spirit of the BO approximation. Second, the adiabatic
nuclear dynamics is evaluated in the BO potential curve.
Finally, H2

+ is treated fully nonadiabatically with the AQ
simulation. These allow us to demonstrate the nonadiabatic
electron-nuclei coupling by a projection of the AQ dynamics
onto the adiabatic approximations. In addition, spectroscopic
constants and isotope effects are looked into.

A. Adiabatic electron dynamics

Though the PP, Eq. �5�, reproduces the hydrogen atom
energy exactly, an error of −0.00342EH from the exact value
−0.10263EH results in the binding of another proton to the
form H2

+. This is demonstrated in Fig. 2, where potential
curves of H2

+ from finite-difference calculations with VPP
from Eq. �5� and exact V�r�=−r−1 are shown.

Our PIMC energies with increasing Trotter number M and
the extrapolation to M =� using Eq. �3� are shown in the
same figure. These indicate clearly that the Trotter number
has to be at least 213 in order to find the minimum of the
potential curve at the nuclear separation R=2.0a0. The ex-
trapolated values are in good agreement with the potential
curve FDPP, and there is almost a perfect match at R=2.0a0,
where the value of the extrapolated dissociation energy is
0.1061�2�EH.

For larger nuclear separations than 3.5a0, however, we are
not able to reproduce the potential curve with these Trotter
numbers: we get a too weakly binding molecule. This is
assumed to be a consequence of the electronic wave function
becoming more delocalized as the internuclear distance in-

TABLE I. Expectation values of spectroscopic constants, Eqs.
�7�–�11�. A Morse potential �55� fitted to the FDPP potential curve is
used in the evaluation of the energy derivatives. Corresponding pair
correlation functions are shown in Fig. 3. The first two columns are
adiabatic nuclear dynamics results, and AQ results are in the last
column.

H2
+

D2
+

�cm−1�
H2

+ �AQ�
�cm−1��hartree� �cm−1�

Be 0.0001366 30.35 15.24 29.26 This work

0.0001344 29.85705 Ref. �54�
	e 0.0104816 2328.96 1668.25 2229.77 This work

0.0104201 2315.3 �2232�a Ref. �54�
	exe 0.0003552 78.92 35.33 90.73 This work

0.0003029 67.3 Ref. �54�
�e 6.445�10−6 1.432 0.45 1.636 This work

7.201�10−6 1.600 Ref. �54�
aMCDFT, nonadiabatic �28�.
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creases, and thus the “polymer ring” representing the elec-
tron is not capable of sufficient sampling of configuration
space. This error should diminish with increasing M.

The electron-nucleus pair correlation function is shown in
Fig. 4 and will be discussed below.

B. Adiabatic nuclear dynamics

For the quantum dynamics of the nuclei only �QN� we
consider both H2

+ and D2
+ to see the isotope effect, too. The

FDPP potential curve in Fig. 2 is used, for which convergence
with respect to Trotter number is found at M 
26 for both
isotopes. The resulting pair correlation functions are shown
in Fig. 3.

An average nuclear separation of 2.019�1�a0 for H2
+ and

2.007�2�a0 for the isotope D2
+ is found with M 
26. The full

widths at half maximum �FWHM� of the pair correlation
functions are 0.539�1�a0 and 0.454�1�a0 for these isotopes,
respectively.

The difference in the bond length of H2
+ between the adia-

batic electron and adiabatic nuclei simulations—i.e., total
distortion—is 0.019a0. The centrifugal contribution to this,
the difference between one- and three-dimensional �1D and
3D� simulations of the nuclei, is 0.009�1�a0, which unexpect-
edly is about twice as much as the value 0.0043a0 evaluated
from the approximate equation �13�. The anharmonic
contribution—i.e., difference between total and centrifugal
distortions—is 0.010�1�a0. In Ref. �56� it was shown that
anharmonic effects in H2 molecules contribute about the
same amount to total distortion as centrifugal force, which
turns out to be the case here, too.

The difference between the total energies of the previous
simulations �3D vs 1D� is 0.0009383�2�EH, which is close to
kBT�0.00095EH as expected due to the presence of the two
rotational degrees of freedom in 3D. The difference between
the dissociation energies of adiabatic electron and nuclear

simulations—i.e., the zero-point vibrational energy—is
0.0064�2�EH.

A Morse potential �55� fitted to the FDPP potential curve is
used in the evaluation of the spectroscopic constants; see
Table I. This is justified because the nuclear simulations and
analytical Morse wave function �57� calculations coincide.
The spectroscopic constants of H2

+ are close to those given in
Ref. �54�, which have been determined at the equilibrium
distance of the nuclei, only. The same procedure is used for
the spectroscopic constants of the other isotope. In Table I
the same constants evaluated using the AQ instead of BO
nuclear pair correlation function are also shown.

C. Nonadiabatic “all-quantum” dynamics

For H2
+ the total energy of the AQ simulation with the

Trotter number M =213 is −0.60159�3�EH. The extrapolation
procedure yields total energy −0.59872�3�EH, which is only
0.0016EH more binding than the value −0.5971EH from
VMC simulations �30�. The zero-point energy obtained from
simulations is De−D0

0=0.0074EH; see Table II. It should be
pointed out that the error due to the pseudopotential in the
AQ total energy is only about half of that found for the BO
total energies.

The difference in dissociation energies of AQ and the 3D
QN H2

+ simulations is 0.00097EH, which is about kBT, re-
vealing additional electronic energy degrees of freedom in
the first. AQ simulation for H2

+ gives for the average nuclear
separation R=2.075�2�a0, which is 0.056a0 larger than that
in the QN simulation. The AQ FWHM of the nuclear pair
correlation function is 0.5785�2�a0, which shows a spreading
of 0.040a0 compared to the QN results; see Fig. 3. With the
Trotter number M =213 we find the AQ nuclear pair correla-
tion function sufficiently converged.

In Fig. 4, BO and AQ electron-nucleus pair correlation
functions are compared. AQ projection onto the BO bond
length, R=2.0a0, and BO results coincide, which indicates
that the adiabatic BO approach for the electron dynamics is
sufficient. Thus, it seems that the electron-nuclei coupling

TABLE II. H2
+ energetics �atomic units�. The first three rows are

BO and the next three are nonadiabatic values. For high-accuracy
energetics see, for example, Ref. �14�.

Method Etot De D0
0 R

HFa −0.6026 0.1026 2.000

VMCb −0.6026 0.1026 2.000

PIMCe −0.6061�2� 0.1061�2� 0.0997�1� 2.0

VMCc −0.5971 0.0971 2.064

MCDFTd −0.581 0.081 2.08

PIMCe −0.59872�3� 0.09872�3� 2.075�2�
aHartree-Fock �58�.
bVMC, Born-Oppenheimer �54�.
cVMC, nonadiabatic �30�.
dMCDFT, nonadiabatic �SAO� �28�.
eThis work.
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FIG. 3. �Color online� Nuclear pair correlation functions: H2
+

AQ �solid line�, H2
+ QN �dashed line�, and D2

+ QN �dash-dotted
line�. The difference in the average nuclear separation between QN
and AQ H2

+ is 0.056�3�a0.
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effects are more clearly seen in the dynamics of the nuclei;
see Fig. 3. As one might expect, there is a noticeable differ-
ence between the AQ and BO electron-nucleus pair correla-
tion functions due to varying bond length; see Fig. 4.

The AQ average nuclear separation is close to the value
2.064a0 obtained by a nonadiabatic VMC simulation �30�.
The AQ pair correlation function of the nuclei �see Fig. 3�
coincides with the scaled atomic orbital �SAO� one in Ref.
�28� computed within the multicomponent density functional
theory �MCDFT� scheme, not shown here.

All the spectroscopic constants in Table I are defined us-
ing the derivatives from a fitted Morse potential—i.e., BO
potential energy surface. Thus, the “AQ spectroscopic con-
stants” should be interpreted mainly as the direction of
change in the values, except for Be. The expectation values
of the spectroscopic constants are obtained by weighting the
equations by the nuclear pair correlation function from the
corresponding simulation.

A projection of the AQ simulation to a potential curve of
the nuclei is constructed with the help of the known solutions
to the Morse potential. The distribution from the Morse wave
function is fitted to the pair correlation function of the AQ
simulation. The three-body system is then presented by an
effective two-body potential. The projected potential curve
shows clear differences in the dynamics of the nuclei be-
tween BO and AQ simulations; see Fig. 5. The minima of the
potentials are set to zero: the difference in the dissociation
energies between BO approach and AQ projection is about
0.036EH and the shift in the equilibrium distance is 0.036a0.
The spectroscopic constants with the projected potential
curve are Be=29.26 cm−1, 	e=2047.94 cm−1, 	exe
=78.12 cm−1, and �e=2.110 cm−1. All this indicates that an
effective Morse potential is not capable of describing nona-
diabatic effects correctly.

Finally, it may be of interest to see a visualization of the
“polymer rings” representing the quantum particles in the
PIMC simulation. So Fig. 6 presents the xy-plane
�z-projection� snapshot from AQ simulation with Trotter
number 213 for all three particles. The “polymer ring” de-
scribing the electron is in the background and those of the
nuclei are placed on top.

IV. CONCLUSIONS

The three-body quantum system, the hydrogen molecule
ion �H2

+�, is reexamined, once again. The path-integral Monte
Carlo method is used for evaluation of the stationary-state
quantum dynamics. The PIMC method offers a finite-
temperature approach together with a transparent tool to de-
scribe the correlations between the particles involved. We
aim at tracing the electron-nuclei coupling effects in the
three-body all-quantum—i.e., nonadiabatic—molecule. This
is carried out by comparing the differences in adiabatic
Born-Oppenheimer and AQ simulations and inspecting the
projections from the AQ simulation onto the BO description
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FIG. 4. �Color online� H2
+ electron-nucleus pair correlation func-

tions: AQ �solid line, second lowest curve�, AQ projection to R
�2.0a0 �solid line�, and BO at R=2.0a0 �dashed line�. The latter
two almost coincide. The dashed vertical line indicates the size of
the pseudopotential core, r=0.6a0. For comparison corresponding
pair correlation functions for the hydrogen atom �dotted solid line�
and H2

+ �dotted line� obtained by using the analytical ground-state
wave function of the hydrogen atom are also shown.
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FIG. 5. �Color online� H2
+ potential curves: Morse potential fit-

ted to FDPP �dashed line� and the effective Morse potential obtained
from the projection of the AQ simulation �solid line�; see the text
for details. Corresponding nuclear pair correlation functions are
shown in Fig. 3. The shift in the bond length is 0.036a0.
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FIG. 6. �Color online� xy-plane �z-projection� snapshot from AQ
simulation with Trotter number 213 for all particles. The “polymer
ring” describing the electron is in the background and those of the
nuclei are placed on top.
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of the electron-only and nuclear-only subsystems.
The approach turns out to be computationally demanding,

but with the chosen pseudopotential for the attractive Cou-
lomb potential and extrapolation to infinite Trotter number
the task becomes feasible. By choosing low enough tempera-
ture, 300 K, we are able to compare our data to those from
zero-kelvin quantum methods available in literature. Among
others we have evaluated spectroscopic constants and mo-
lecular deformation, also considering the isotope effects.

With our fully basis set free, trial wave function free, and
model free approach we are not able to compete in accuracy
with the zero-kelvin benchmark values. However, due to the
mixed-state density matrix formalism of the PIMC method,
we are able to present the most transparent description of the
particle-particle correlations.

Total energies from our simulations are more binding in
nature compared to the benchmark values; see Table II. This
is an expected effect of the pseudopotential in use; see Fig. 2
and FDPP therein. The quantum dynamics of the system is
well described, and distinct features of the coupling are ob-

served for the nuclei: a shift of 0.056a0 in the equilibrium
bond length, increase of 0.040a0 in the width of the pair
correlation function of the nuclei, and nonadiabatic correc-
tion of about 0.00097EH to the dissociation energy. The elec-
tronic distribution is less influenced by the coupling than the
nuclear one upon the inclusion of nonadiabatic effects; see
Figs. 3 and 4.

The projection of the nonadiabatic three-body system
with the help of Morse wave functions onto the two-body
nuclei-only subsystem indicates that the Morse potential is
not capable of describing nonadiabatic effects correctly; see
Fig. 5.
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