Lowest vibrational states of ⁴He³He⁺: Non-Born-Oppenheimer calculations

Monika Stanke, ^{1,*} Dariusz Kędziera, ² Sergiy Bubin, ¹ Marcin Molski, ³ and Ludwik Adamowicz ^{1,4}
¹Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
²Department of Chemistry, Nicholaus Copernicus University, ul. Gagarina 7, PL 87-100 Toruń, Poland

²Department of Chemistry, Nicholaus Copernicus University, ul. Gagarina 7, PL 87-100 Toruń, Poland ³Department of Theoretical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, ul. Grunwaldzka 6, Poznań, PL 60-780, Poland

⁴Department of Physics, University of Arizona, Tucson, Arizona 85721, USA (Received 13 September 2007; published 14 November 2007)

Very accurate quantum mechanical calculations of the first five vibrational states of the ${}^4\text{He}^3\text{He}^+$ molecular ion are reported. The calculations have been performed explicitly including the coupling of the electronic and nuclear motions [i.e., without assuming the Born-Oppenheimer (BO) approximation]. The nonrelativistic non-BO wave functions were used to calculate the α^2 relativistic mass velocity, Darwin, and spin-spin interaction corrections. For the lowest vibrational transition, whose experimental energy is established with high precision, the calculated and the experimental results differ by only 0.16 cm⁻¹.

DOI: 10.1103/PhysRevA.76.052506 PACS number(s): 31.15.Pf, 31.25.Nj, 31.30.Jv

I. INTRODUCTION

The one-electron (e.g., H_2^+) and two-electron (e.g., H_2) molecular systems have been used for the last four decades as models for comparing high accuracy quantum mechanical calculations with the most precise high-resolution spectroscopy experiments involving gas-phase measurements of such molecular quantities as rovibrational and electronic excitation energies, electron affinities, ionization potentials, bond dissociation, and atomization energies. These kinds of experiments have nowadays achieved the precision exceeding tenths or even hundredths of a wave number. In parallel to the advancements in the experimental techniques, the accuracy of theoretical quantum-mechanical calculations on molecular systems has also significantly increased. This not only applies to systems consisting of several atoms, but also to small diatomic two-electron systems. For those smaller systems, large scale calculations have led to improvements in the nonrelativistic energies and to the determination of relativistic and quantum-electrodynamic (QED) corrections [1–4]. Moreover, even for atomic and molecular systems with three and more electrons the calculated quantities have started to match very precisely the experimental measurements [5-10].

The recent works of our laboratory in the area of very accurate molecular calculations [2–4,11–18] have contributed to expanding the applicability of those calculations to atomic and molecular systems with more than two electrons and two nuclei. The approach we have used departs from the Born-Oppenheimer (BO) approximation and treats the nuclei and electrons on equal footing. The main part of the development has been the use of correlated Gaussian functions that depend explicitly on the distances between the particles (nuclei and electrons) forming the molecule in expanding the wave function. In the most recent works [2–4,9,10,18–20] we have also used the non-BO wave functions to determine

relativistic corrections of the order of α^2 , where $\alpha = e^2/(\hbar c)$ is the fine structure constant. In this work we describe the application of our non-BO relativistic approach to the ⁴He³He⁺ molecular ion. There are several reasons for undertaking very precise calculations on this system. First, due to some slight charge asymmetry caused by a nonadiabatic interaction between the electrons and the two nuclei with different masses, this system is more likely to be observed in a spectroscopy experiment than its homonuclear counterpart ⁴He⁴He⁺. Second, this system is one of the three-electron molecular models where the agreement between the theoretical calculations and very precise spectroscopic data can be tested. Third, the issue of the isotopically induced charge asymmetry is an interesting problem whose quantitative description can be obtained from calculations that are not based on the Born-Oppenheimer approximation as the ones performed in this work are.

The three-electron ⁴He³He⁺ ion is similar to the twoelectron ⁴He¹He⁺ ion, which we studied before with the non-BO approach before [2,4]. In both systems a neutral helium atom interacts with a positive ion. However, while in HeH⁺ the electrons are strongly localized around the helium nucleus, in the ⁴He⁴He⁺ ion they are almost evenly distributed among both nuclei. For the HeH⁺ system, an excellent agreement with the experimental lowest vibrational transition energies required the inclusion of the mass-velocity and Darwin relativistic corrections to the non-BO energy [2]. We also calculate here these corrections for the lowest vibrational transitions of the ⁴He³He⁺ ion.

The calculations presented in this work concern the five lowest bound states of the ${}^{4}\text{He}^{3}\text{He}^{+}$ ion with zero total angular momentum. Such states are usually called "vibrational states" although, if the Born-Oppenheimer approximation is not invoked, the vibrational motion of the nuclei is coupled with the electronic motion and, strictly speaking, the vibrational quantum number, v, is not a good quantum number.

Some highly precise measurements of the vibrationrotational and pure rotational gas phase spectral lines of ⁴He³He⁺ have been performed [21–23]. In this work we use those measurements to estimate the ground-state pure vibra-

^{*}Permanent address: Department of Physics, Nicholaus Copernicus University, ul. Grudziądzka 5, PL 87-100, Toruń, Poland.

tional transition. This is the only transition that can be determined with a satisfactory accuracy based on the available experimental data. The experimental ground-state transition is compared with the result of the calculations.

As mentioned, the isotopic asymmetry of the ⁴He³He⁺ ion makes this system an interesting case for a non-BO calculation. Unlike ⁴He³He⁺, its homonuclear counterpart ⁴He⁴He⁺ contains an additional permutational symmetry that the wave function for each state has to possess. Since in ⁴He⁴He⁺ both nuclei are bosons, the total wave function has to be symmetric with respect to interchanging them. Thus, in a non-BO calculation of ⁴He⁴He⁺ the total non-BO wave function has to be fully symmetrized with respect to the nuclei permutation. The total non-BO wave function explicitly and simultaneously depends on the coordinates of both the electrons and the nuclei. For ${}^{4}\text{He}^{4}\text{He}^{+}$ in the ${}^{2}\Sigma_{u}$ ground electronic state, the electronic part of the wave function is antisymmetric with respect to the nuclei permutation. Therefore, in order to make the whole wave function fully symmetric with respect to that permutation, the nuclear part has to be antisymmetric. Only then does the superposition of the antisymmetric electronic component and the antisymmetric nuclear component give the fully symmetric total wave function. This means that in the ground electronic state ⁴He⁴He⁺ can only exist in rotational states corresponding to odd rotational quantum numbers (those states have antisymmetric nuclear wave functions). For the mixed nuclei system, ⁴He³He⁺, rotational states with both odd and even rotational quantum numbers should exist. In this case, no nuclear symmetry needs to be implemented in the wave function in a non-BO calculation. This is how the present calculations have been performed. However, since we have only used basis functions that are fully symmetric with respect to rotations of the internal coordinate system in the calculations, the states we described correspond to the ground rotational state.

For several decades the most frequently used two-electron model system for testing the accuracy of high level quantum mechanical molecular calculations has been the hydrogen molecule. For a three electron system, the helium dimer cation can become such a model. Our present non-BO calculations concern only the first five lowest pure vibrational excitations of this system. Even for these few excitations the calculations have taken almost a year to complete and the results are not as well converged as those obtained before for the hydrogen molecule or for the HeH+ ion [2]. This is because with one extra electron $^4\text{He}^3\text{He}^+$ is a much more complicated problem than H_2 .

We should add that ⁴He³He⁺ is also a "work in progress" on the experimental site. Only a limited number of rovibrational transitions have been assigned, and no pure vibrational transitions have been measured. In this work we show how well the experimental and theoretical investigations are converging in determining the transition energies between the rotationless vibrational levels.

II. METHOD USED IN THE CALCULATIONS

The total nonrelativistic Hamiltonian for ⁴He³He⁺ in the laboratory Cartesian coordinate system has the following form:

$$\hat{H}_{\text{tot}} = -\sum_{i=1}^{5} \frac{1}{2M_i} \nabla_{\mathbf{R}_i}^2 + \sum_{i=1}^{4} \sum_{j>i}^{5} \frac{Q_i Q_j}{R_{ij}}, \tag{1}$$

where the masses, charges, and positions of the five particles forming ${}^{4}\text{He}^{3}\text{He}^{+}$ are denoted as M_{i} , Q_{i} , and \mathbf{R}_{i} , respectively. The first two particles are the ${}^{4}\text{He}$ and ${}^{3}\text{He}$ nuclei, and the last three are the electrons. The masses of the nuclei, according to Ref. [24], are $M_{^{4}\text{He}} = 7294.2995363 M_{e}$ and $M_{^{3}\text{He}} = 5495.885269 M_{e}$ (M_{e} is the electron mass).

At the first stage we transform the Hamiltonian (1) by separating the center-of-mass motion. In this transformation it is convenient to change the laboratory coordinate system to a system whose first three coordinates are the laboratory coordinates of the center of mass \mathbf{r}_0 and the remaining coordinates are Cartesian coordinates \mathbf{r}_i ($\mathbf{r}_i = \mathbf{R}_{i+1} - \mathbf{R}_1$), that described the positions of particles 2 to 5 with respect to particle 1, which is called the reference particle. In the calculations on ${}^4\mathrm{He}{}^3\mathrm{He}{}^+$ the reference particle was the ${}^4\mathrm{He}$ nucleus. After the coordinate transformation the internal Hamiltonian \hat{H} is

$$\hat{H} = -\frac{1}{2} \left(\sum_{i}^{4} \frac{1}{m_{i}} \nabla_{\mathbf{r}_{i}}^{2} + \sum_{i \neq j}^{4} \frac{1}{M_{1}} \nabla_{\mathbf{r}_{i}}^{\prime} \nabla_{\mathbf{r}_{j}} \right) + \sum_{i=1}^{4} \frac{q_{0} q_{i}}{r_{i}} + \sum_{i < j}^{4} \frac{q_{i} q_{j}}{r_{ij}},$$
(2)

where $r_i = |\mathbf{r}_i|$, $r_{ij} = |\mathbf{R}_{j+1} - \mathbf{R}_{i+1}| = |\mathbf{r}_j - \mathbf{r}_i|$, and where a prime denotes vector transposition. The separation of the internal Hamiltonian and the Hamiltonian of the motion of the center of mass is exact. The internal Hamiltonian (2) describes four pseudoparticles with charges $q_i = Q_{i+1}$ and reduced masses $m_i = M_1 M_{i+1} / (M_1 + M_{i+1})$ moving in the central potential of the charge of the reference particle.

Due to a strong coupling of the motions of the pseudoparticles through the two-particle mass polarization term $\sum_{i\neq j}^4 \frac{1}{M_1} \nabla_{\mathbf{r}_i}' \nabla_{\mathbf{r}_j}$ and through the Coulombic interactions, the correlation effects can be expected to be significant. This reflects on the choice of the basis functions for the calculations.

In order to compare the results obtained in calculations with highly accurate spectrocsopic data it is not sufficient to only compute the eigenvalues of the nonrelativistic Hamiltonian. Accounting for relativistic corrections is often desirable or even necessary. In this work, in addition to accurate evaluation of nonrelativistic energies, we also compute massvelocity (MV), Darwin (D), and spin-spin (SS) interaction corrections using Breit-Pauli formalism.

After the transformation to the internal coordinate system the operators representing the MV, D, and SS interaction in the Breit-Pauli equation (in the relativistic limit we do not neglect the contributions from the anomalous magnetic moments of the particles [25]) have the following form [26]:

$$\hat{H}_{D} = -\alpha^{2} \frac{\pi}{2} \sum_{i=1}^{4} \left[\frac{q_{0}q_{i}(1+2\kappa_{i})}{M_{i+1}^{2}} \delta^{3}(r_{i}) + \sum_{j\neq i}^{4} \frac{q_{i}q_{j}(1+2\kappa_{i})}{M_{i+1}^{2}} \delta^{3}(r_{ij}) \right],$$
(3)

$$\hat{H}_{\text{MV}} = -\alpha^2 \frac{1}{8} \left[\frac{1}{M_1^3} \left(\sum_{i=1}^4 \nabla_{\mathbf{r}_i} \right)^4 + \sum_{i=1}^4 \frac{1}{M_{i+1}^3} \nabla_{\mathbf{r}_i}^4 \right], \tag{4}$$

$$\hat{H}_{SS} = -\alpha^2 \frac{8}{3} \pi \sum_{j=1}^4 \sum_{i>j}^4 \frac{q_i q_j (1 + \kappa_i) (1 + \kappa_j)}{M_{i+1} M_{j+1}} \delta^3(r_{ij}) (\mathbf{S}_i \cdot \mathbf{S}_j),$$
(5)

where $\mathbf{r} = \{\mathbf{r}_1', \mathbf{r}_2', \mathbf{r}_3'\}'$ and $\kappa_1 = 1.12749772$ is the anomalous magnetic moment of the ³He nucleus [27] and $\kappa_2 = \kappa_3 = \kappa_4 = 0.0011596521811$ are the anomalous magnetic moments of the electrons [24]. In general, the relation of the anomalous magnetic moment of the nucleus with the charge Ze and mass M to its magnetic moment μ is $\mu = (1 + \kappa)ZeS/M$, where $S = \sigma/2$ is the spin operator.

It should be noted that only fermions contribute (in the order of α^2) to the D correction and the ⁴He nucleus (zero spin) should be excluded from the sums in Eq. (3). Also, the ⁴He nucleus does not contribute to the spin-spin interaction (5) because of its zero spin.

The calculation of the relativistic correction for the system was done separately for each state as the expectation value of the Hamiltonian representing the mass-velocity,

TABLE I. Dunham's spectral parameters (in cm⁻¹) fitted to the ${}^{4}\text{He}^{3}\text{He}^{+}$ vibration-rotational spectrum for $v=0 \rightarrow 1$ and J=1-12.

$\overline{Y_{ij}}$	Fit 1	Fit 2	Fit 3	
Y_{10}	1750.5574(37)	1750.55538(88)	1750.55687(98)	
Y_{11}	-0.2832(13)	-0.28391(15)	-0.28337(20)	
Y_{01}	8.3927(32)	8.39446(47)	8.39314(59)	
$Y_{02} \times 10^{-4}$	-7.43(69)	-7.033(28)	-7.322(58)	
$Y_{03} \times 10^{-8}$	-1.2(7.4)	3.07(36)		
$Y_{12} \times 10^{-6}$	0.9(1.6)		6.61(73)	
$\hat{\sigma}$	0.2564	0.2340	0.2230	
σ	0.00015	0.00014	0.00013	
$\nu_{0 \rightarrow 1}$	1750.5574(37)	1750.55538(88)	1750.55687(98)	

Darwin, and the spin-spin interaction contributions

$$\hat{H}' = \hat{H}_{MV} + \hat{H}_{D} + \hat{H}_{SS}, \tag{6}$$

with the non-BO wave function.

In our previous works involving non-BO calculations on small diatomic molecular systems [11–14,18] we have

TABLE II. Nonrelativistic non-BO energies $(E_{\rm nonrel})$, relativistic corrections $(\alpha^2 E_{\rm MV}, \, \alpha^2 E_{\rm D}, \, \alpha^2 E_{\rm SS})$ and their sum $(\alpha^2 E_{\rm rel})$, and the total energies $(E_{\rm nonrel} + \alpha^2 E_{\rm rel})$ for lowest vibrational states of $^4{\rm He}^3{\rm He}^4$ with zero angular momentum computed with different number of basis functions. All values are in a.u.

υ	basis size	$E_{\rm nonrel}$	$\alpha^2 E_{ m MV}$	$\alpha^2 E_{ m D}$	$\alpha^2 E_{\rm SS}$	$\alpha^2 E_{\rm rel}$	$E_{\text{nonrel}} + \alpha^2 E_{\text{rel}}$
0	4500	-4.98971892	-1.26532×10^{-3}	1.02646×10^{-3}	3.859×10^{-5}	-2.0026×10^{-4}	-4.98991918
	5000	-4.98971910	-1.26540×10^{-3}	1.02655×10^{-3}	3.858×10^{-5}	-2.0027×10^{-4}	-4.98991936
	5500	-4.98971924	-1.26569×10^{-3}	1.02684×10^{-3}	3.858×10^{-5}	-2.0028×10^{-4}	-4.98991952
	6000	-4.98971935	-1.26585×10^{-3}	1.02699×10^{-3}	3.857×10^{-5}	-2.0029×10^{-4}	-4.98991963
	6500	-4.98971943	-1.26598×10^{-3}	1.02712×10^{-3}	3.857×10^{-5}	-2.0029×10^{-4}	-4.98991972
1	4500	-4.98174074	-1.26145×10^{-3}	1.02298×10^{-3}	3.829×10^{-5}	-2.0018×10^{-4}	-4.98194092
	5000	-4.98174140	-1.26169×10^{-3}	1.02321×10^{-3}	3.828×10^{-5}	-2.0019×10^{-4}	-4.98194159
	5500	-4.98174195	-1.26212×10^{-3}	1.02364×10^{-3}	3.827×10^{-5}	-2.0022×10^{-4}	-4.98194216
	6000	-4.98174235	-1.26266×10^{-3}	1.02415×10^{-3}	3.826×10^{-5}	-2.0024×10^{-4}	-4.98194259
	6500	-4.98174262	-1.26324×10^{-3}	1.02474×10^{-3}	3.824×10^{-5}	-2.0025×10^{-4}	-4.98194287
2	4500		-1.25908×10^{-3}				
	5000	-4.97413545	-1.25946×10^{-3}	1.02133×10^{-3}	3.800×10^{-5}	-2.0012×10^{-4}	-4.97433557
	5500	-4.97413649	-1.25977×10^{-3}	1.02165×10^{-3}	3.799×10^{-5}	-2.0013×10^{-4}	-4.97433661
	6000		-1.26011×10^{-3}				
	6500		-1.26037×10^{-3}				
3	4500		-1.25616×10^{-3}				
	5000		-1.25683×10^{-3}				
	5500		-1.25801×10^{-3}				
	6000		-1.25828×10^{-3}				
	6500		-1.25861×10^{-3}				
4	4500		-1.25200×10^{-3}				
	5000	-4.96003768	-1.25341×10^{-3}	1.01584×10^{-3}	3.753×10^{-5}	-2.0004×10^{-4}	-4.96023772
	5500		-1.25414×10^{-3}				
	6000		-1.25495×10^{-3}				
	6500	-4.96004526	-1.25517×10^{-3}	1.01757×10^{-3}	3.748×10^{-5}	-2.0011×10^{-4}	-4.96024537

shown that the explicitly correlated Gaussians (ECGs) involving functions with preexponential multipliers consisting of the internuclear distance \mathbf{r}_1 raised to a nonnegative even power p_k :

$$\phi_k = r_1^{p_k} \exp\left[-\mathbf{r}'(A_k \otimes I_3)\mathbf{r}\right],\tag{7}$$

where $\mathbf{r} = \{\mathbf{r}_1', \mathbf{r}_2', \mathbf{r}_3'\}'$, are very effective in describing nonadiabatic, zero angular momentum states of diatomic systems with σ electrons. These are the functions used in the present calculations. The reader can obtain more information on the Hamiltonian transformation and the selection of the basis functions for diatomic calculations from our recent reviews [16,17]. The details of the evaluation of matrix elements with the D, MV, and SS operators can be found in Ref. [18].

As in our previous works, also here the wave function for each state of ⁴He³He⁺ has been obtained by minimizing the total non-BO energy of the system with respect to the expansion coefficients in terms of the basis functions, c_k , the basisfunction exponential parameters $\{A_k\}$ and the preexponential powers $\{p_k\}$. The optimization was done separately for each state and using an algorithm based on analytical derivatives of the energy with respect to $\{A_k\}$. To achieve high accuracy we used 6500 basis functions for each state. We believe that with this many functions in the basis the nonrelativistic energies were converged to the sixth or seventh decimal figure, depending on the state (the accuracy decreases with the excitation level, as the corresponding wave functions have progressively more complicated structure). The range of the preexponential powers, $\{p_k\}$, used was from 0 to 250, and all the powers were partially optimized for each state.

After the wave functions for the lowest five vibrational states were generated, we calculated the expectation values of the relativistic Hamiltonian (6) for each state and added them to the variational energies of the corresponding states. Those values were used to calculate the transition energies.

III. ESTIMATION OF THE PURE VIBRATIONAL TRANSITION $0 \rightarrow 1$ OF ${}^4\text{He}^3\text{He}^+$ FROM IR SPECTRA

The frequency of the pure vibrational transition $J=0 \rightarrow 1$ of ${}^{4}\text{He}^{3}\text{He}^{+}$ has been estimated by fitting the line positions of the rotation-vibrational transitions obtained by Yu and Wing [21] to the Dunham's energy formula [22]

$$E_{vJ} = \sum_{i,j} Y_{ij} \left(v + \frac{1}{2} \right)^{i} \left[J(J+1) \right]^{j}, \tag{8}$$

where v=0,1,2,... and J=0,1,2,... denote the vibrational and rotational quantum numbers, respectively. In this approach the frequency of the $0\rightarrow 1$ vibrational transition is directly obtained from the relationship

$$\nu_{0 \to 1} = Y_{10} \text{ cm}^{-1}.$$
 (9)

We assume that the higher order vibrational parameters, Y_{20} , Y_{30} , etc., can be neglected.

In the work of Yu and Wing [21], the Dunham's parameters Y_{12} , Y_{02} , and Y_{03} evaluated from the IR spectra of ⁴He³He⁺ had large standard errors. The authors also used the constrained parameter $Y_{20} = -41.1 \text{ cm}^{-1}$ taken from Ref. [23] in the fit. We decided to revise the results of Yu's and Wing's calculations to get a more accurate value of the $\nu_{0\rightarrow 1}$ transition frequency. By making some preliminary fits, we discovered that the presence of the constrained parameter Y_{20} in the fit influences very little the accuracy of the spectral reproduction. Hence, we removed it from the set of the fitted parameters. Additionally, removing the parameters Y_{12} or Y_{03} improves the statistical criteria associated with the quality of the fit. A detailed analysis of the results presented in Table I reveals that the most reliable parameters Y_{ij} are obtained from Fit 3. Hence, the most precise value of the $0 \rightarrow 1$ transition frequency is $\nu_{0\rightarrow 1}=1750.55687(98)$ cm⁻¹. The uncertainty values shown in the parenthesis in Table I are estimated standard deviations in units of the last quoted digit of the values of the fitted Dunham's constants.

The calculations have been performed by making use of a weighted nonlinear least-square routine with weights taken as the inverse squares of the uncertainty u_i =0.0006 cm⁻¹ of the experimental data [21]. To obtain the best set of Dunham's constants Y_{ij} from fitting the spectra, we used the following criteria: the minimum number of the fitted parameters consistent with a minimum values of the normalized standard deviation $\hat{\sigma}$ and of the standard deviation σ , an optimal value of the estimated standard error σ_i of each fitted parameter i and of the correlation coefficient CC(i,j) corresponding to the parameters i and j.

TABLE III. Nonrelativistic and relativistic transition energies for lowest vibrational states of ${}^{4}\text{He}^{3}\text{He}^{+}$. All values are in cm $^{-1}$.

$v \rightarrow v'$	Basis size	$\Delta E_{ m nonrel}$	$\Delta E_{ m rel}$
$0 \rightarrow 1$	4500	1751.01	1751.03
	5000	1750.90	1750.92
	5500	1750.81	1750.83
	6000	1750.75	1750.76
	6500	1750.71	1750.71
$1 \rightarrow 2$	4500	1669.53	1669.55
	5000	1669.31	1669.33
	5500	1669.21	1669.23
	6000	1669.13	1669.15
	6500	1669.08	1669.10
$2 \rightarrow 3$	4500	1588.16	1588.14
	5000	1587.70	1587.71
	5500	1587.48	1587.46
	6000	1587.36	1587.34
	6500	1587.28	1587.26
$3 \rightarrow 4$	4500	1506.80	1506.86
	5000	1506.40	1506.42
	5500	1506.09	1506.12
	6000	1505.84	1505.87
	6500	1505.66	1505.69

TABLE IV. Expectation values of ${}^4\text{He}^3\text{He}^+$ computed with different basis sets. All quantities in a.u.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				•						
\$5000	v	Basis size	$\langle r_{^{4}\mathrm{He}^{-3}\mathrm{He}}^{-1} \rangle$	$\langle r_{^{4}\mathrm{He}\text{-}e}^{-1} \rangle$	$\langle r_{^{3}\mathrm{He}\text{-}e}^{-1} \rangle$	$\langle r_{e-e}^{-1} \rangle$	$\langle r_{^4{ m He}-^3{ m He}} angle$	$\langle r_{^4{ m He-}e} angle$	$\langle r_{^{3}\text{He-}e} \rangle$	$\langle r_{e-e} \rangle$
5500	0		0.484420	1.155592	1.155498		2.073844			1.994552
6000		5000	0.484420	1.155592	1.155498	0.649807	2.073844		1.511559	1.994552
6500		5500	0.484420	1.155592	1.155498	0.649807	2.073844		1.511559	1.994552
1 4500		6000	0.484420	1.155592	1.155498	0.649807	2.073844	1.511471	1.511560	1.994553
5000		6500	0.484420	1.155592	1.155498	0.649807	2.073845	1.511471	1.511560	1.994553
5500	1	4500	0.473813	1.148678	1.148577	0.641600	2.139436	1.543778	1.543879	2.035189
6000		5000	0.473814	1.148678	1.148578	0.641600	2.139432	1.543776	1.543877	2.035188
6500		5500	0.473814	1.148678	1.148578	0.641600	2.139433	1.543777	1.543878	2.035188
$\begin{array}{c} 2 \\ +500 \\ 5000 \\ 0.463006 \\ 0.141737 \\ 0.141737 \\ 0.141629 \\ 0.633297 \\ 0.633297 \\ 0.633297 \\ 0.208783 \\ 0.53207 \\ 0.208783 \\ 0.57949 \\ 0.57949 \\ 0.578066 \\ 0.20833 \\ 0.57949 \\ 0.63010 \\ 0.141737 \\ 0.141631 \\ 0.633297 \\ 0.208782 \\ 0.208782 \\ 0.208782 \\ 0.208782 \\ 0.208782 \\ 0.208782 \\ 0.208782 \\ 0.208782 \\ 0.1577948 \\ 0.157908 \\ 0.154217 \\ 0.157908 \\ 0.157909 \\ 0.1575909 \\ 0.158000 \\ 0.157909 \\ 0.157909 \\ 0.157909 \\ 0.158000 \\ 0.157909 \\ 0.157909 \\ 0.158000 \\ 0.157909 \\ 0.158000 \\ 0.157909 \\ 0$		6000	0.473814	1.148678	1.148579	0.641600	2.139432	1.543777	1.543877	2.035188
5000		6500	0.473814	1.148678	1.148579	0.641600	2.139433	1.543778	1.543878	2.035189
5500	2	4500	0.463006	1.141735	1.141626	0.633294	2.208802	1.577957	1.578075	2.078340
6000		5000	0.463009	1.141737	1.141629	0.633297	2.208783	1.577949	1.578066	2.078330
$\begin{array}{c} 6500 \\ 3 \\ 3 \\ 4500 \\ 0.463010 \\ 0.141737 \\ 1.134756 \\ 1.134756 \\ 1.134635 \\ 0.624885 \\ 0.624885 \\ 2.282358 \\ 1.614217 \\ 1.614353 \\ 1.2124294 \\ 0.600 \\ 0.451982 \\ 0.451982 \\ 1.134757 \\ 1.134641 \\ 0.624884 \\ 0.624885 \\ 2.282358 \\ 1.614217 \\ 1.614353 \\ 1.2124281 \\ 0.600 \\ 0.451982 \\ 1.134757 \\ 1.134641 \\ 0.624885 \\ 2.282358 \\ 1.614219 \\ 1.614253 \\ 1.614210 \\ 1.614353 \\ 1.124281 \\ 0.600 \\ 0.451985 \\ 1.134757 \\ 1.134641 \\ 0.624886 \\ 0.282345 \\ 1.614218 \\ 1.614214 \\ 1.614351 \\ 1.614351 \\ 2.124281 \\ 0.6000 \\ 0.440707 \\ 1.127729 \\ 1.127799 \\ 1.127592 \\ 0.616351 \\ 0.616358 \\ 2.360620 \\ 0.460722 \\ 1.652857 \\ 0.616351 \\ 2.360620 \\ 1.652867 \\ 1.652867 \\ 1.652867 \\ 1.652877 \\ 1.653027 \\ 2.173355 \\ 0.6000 \\ 0.440725 \\ 1.127737 \\ 1.127608 \\ 0.616350 \\ 0.616350 \\ 2.360620 \\ 1.652813 \\ 1.652974 \\ 2.173355 \\ 0.6500 \\ 0.440722 \\ 1.127734 \\ 1.127608 \\ 0.616350 \\ 0.616350 \\ 2.360625 \\ 1.652817 \\ 1.652817 \\ 1.652876 \\ 1.652876 \\ 2.173355 \\ 0.5000 \\ 0.440722 \\ 1.127734 \\ 1.127608 \\ 0.616350 \\ 0.616350 \\ 2.360627 \\ 1.652810 \\ 1.652817 \\ 1.652876 \\ 2.173355 \\ 0.5000 \\ 0.430288 \\ 3.012967 \\ 3.013250 \\ 4.666800 \\ 3.013250 \\ 4.666800 \\ 3.41840 \\ 0.17840 \\ 0.$		5500	0.463010	1.141737	1.141630	0.633297	2.208782	1.577949	1.578065	2.078330
$\begin{array}{c} 6500 \\ 3 \\ 3 \\ 4500 \\ 0.463010 \\ 0.141737 \\ 1.134756 \\ 1.134756 \\ 1.134635 \\ 0.624885 \\ 0.624885 \\ 2.282358 \\ 1.614217 \\ 1.614353 \\ 1.2124294 \\ 0.600 \\ 0.451982 \\ 0.451982 \\ 1.134757 \\ 1.134641 \\ 0.624884 \\ 0.624885 \\ 2.282358 \\ 1.614217 \\ 1.614353 \\ 1.2124281 \\ 0.600 \\ 0.451982 \\ 1.134757 \\ 1.134641 \\ 0.624885 \\ 2.282358 \\ 1.614219 \\ 1.614253 \\ 1.614210 \\ 1.614353 \\ 1.124281 \\ 0.600 \\ 0.451985 \\ 1.134757 \\ 1.134641 \\ 0.624886 \\ 0.282345 \\ 1.614218 \\ 1.614214 \\ 1.614351 \\ 1.614351 \\ 2.124281 \\ 0.6000 \\ 0.440707 \\ 1.127729 \\ 1.127799 \\ 1.127592 \\ 0.616351 \\ 0.616358 \\ 2.360620 \\ 0.460722 \\ 1.652857 \\ 0.616351 \\ 2.360620 \\ 1.652867 \\ 1.652867 \\ 1.652867 \\ 1.652877 \\ 1.653027 \\ 2.173355 \\ 0.6000 \\ 0.440725 \\ 1.127737 \\ 1.127608 \\ 0.616350 \\ 0.616350 \\ 2.360620 \\ 1.652813 \\ 1.652974 \\ 2.173355 \\ 0.6500 \\ 0.440722 \\ 1.127734 \\ 1.127608 \\ 0.616350 \\ 0.616350 \\ 2.360625 \\ 1.652817 \\ 1.652817 \\ 1.652876 \\ 1.652876 \\ 2.173355 \\ 0.5000 \\ 0.440722 \\ 1.127734 \\ 1.127608 \\ 0.616350 \\ 0.616350 \\ 2.360627 \\ 1.652810 \\ 1.652817 \\ 1.652876 \\ 2.173355 \\ 0.5000 \\ 0.430288 \\ 3.012967 \\ 3.013250 \\ 4.666800 \\ 3.013250 \\ 4.666800 \\ 3.41840 \\ 0.17840 \\ 0.$		6000	0.463010	1.141737	1.141631	0.633297	2.208779	1.577948	1.578063	2.078328
5000		6500	0.463010	1.141737	1.141631	0.633297	2.208780	1.577949		2.078329
5500	3	4500	0.451979	1.134756	1.134635	0.624883	2.282381	1.614226	1.614366	2.124294
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5000	0.451983	1.134758	1.134640	0.624885	2.282358	1.614217	1.614353	2.124281
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5500	0.451982	1.134757	1.134641	0.624884	2.282359	1.614219	1.614353	2.124283
$ \begin{array}{c} 4 & 6500 & 0.451985 & 1.134758 & 1.134643 & 0.624886 & 2.282345 & 1.614214 & 1.614346 & 2.124276 \\ 4 & 4500 & 0.440707 & 1.127729 & 1.127692 & 0.616351 & 2.360722 & 1.652825 & 1.653027 & 2.173371 \\ 5500 & 0.440725 & 1.127737 & 1.127608 & 0.616362 & 2.360650 & 1.652825 & 1.652974 & 2.173357 \\ 6500 & 0.440725 & 1.127737 & 1.127608 & 0.616362 & 2.360620 & 1.652813 & 1.652974 & 2.173357 \\ 6500 & 0.440722 & 1.127736 & 1.127608 & 0.616360 & 2.360625 & 1.652817 & 1.652976 & 2.173355 \\ 6500 & 0.440722 & 1.127734 & 1.127608 & 0.616369 & 2.360627 & 1.652820 & 1.652976 & 2.173355 \\ \hline v & Basis size & \langle r^2_{He-^3He^2} \rangle & \langle r^2_{He-e^2} \rangle & \langle r^2_{He-e^2} \rangle & \langle r^2_{e-e^2} \rangle & \langle \delta(\mathbf{r^4}_{He^3He^3}) \rangle & \langle \delta(\mathbf{r^4}_{He-e^4}) \rangle & \langle \delta^2(\mathbf{r^3}_{He-e^4}) \rangle & \langle \delta^2(\mathbf{r^4}_{He^3}) \rangle \\ \hline 0 & 4500 & 4.320588 & 3.012967 & 3.013250 & 4.666898 & 3.41 \times 10^{-11} & 1.042650 & 1.036998 & 0.039161 \\ \hline 5500 & 4.320589 & 3.012969 & 3.013251 & 4.666900 & 2.17 \times 10^{-11} & 1.042650 & 1.037040 & 0.039145 \\ \hline 6500 & 4.320590 & 3.012969 & 3.013252 & 4.666901 & 1.50 \times 10^{-11} & 1.042651 & 1.037704 & 0.039145 \\ \hline 6500 & 4.320593 & 3.012971 & 3.013253 & 4.666903 & 1.29 \times 10^{-11} & 1.042651 & 1.037704 & 0.039145 \\ \hline 6500 & 4.637400 & 3.172355 & 3.172685 & 4.878093 & 3.10 \times 10^{-12} & 1.042631 & 1.031950 & 0.038864 \\ \hline 5500 & 4.637400 & 3.172355 & 3.172685 & 4.878090 & 1.72 \times 10^{-10} & 1.040661 & 1.033058 & 0.038824 \\ \hline 6500 & 4.637403 & 3.172355 & 3.172686 & 4.878090 & 1.72 \times 10^{-10} & 1.040661 & 1.033058 & 0.038824 \\ \hline 5500 & 4.637403 & 3.172355 & 3.172686 & 4.878090 & 1.72 \times 10^{-10} & 1.040661 & 1.033058 & 0.038824 \\ \hline 5500 & 4.981851 & 3.345640 & 3.346032 & 5.107920 & 3.63 \times 10^{-10} & 1.03810 & 1.030028 & 0.038824 \\ \hline 5500 & 4.981851 & 3.345640 & 3.346032 & 5.107920 & 1.64 \times 10^{-10} & 1.03869 & 1.031484 & 0.038567 \\ \hline 5500 & 5.357878 & 3.534824 & 3.535300 & 5.359087 & 9.79 \times 10^{-11} & 1.035621 & 1.029499 & 0.038266 \\ \hline 6000 & 5.357881 & 3.534819 & 3.535301 & 5.359087 & 9.79 \times 10^{-11} & 1.036621 & 1.029499 & 0.038266 \\ \hline 5500 & $		6000	0.451983	1.134757	1.134642	0.624885	2.282355	1.614218	1.614351	2.124281
$ \begin{array}{c} 4 \\ + 500 \\ - 5000 \\ - 0.440720 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127735 \\ - 0.127736 \\ - 0.127737 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127737 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127737 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127736 \\ - 0.127737 \\ - 0.127736 \\ - 0.127737 \\ - 0.127736 \\ - 0.127737 \\ - 0.127736 \\ - 0.127737 \\ - 0.127737 \\ - 0.127736 \\ - 0.127737 \\ - 0.127736 \\ - 0.127737 \\ - $			0.451985	1.134758	1.134643	0.624886				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	4500	0.440707	1.127729		0.616351				2.173411
$\begin{array}{c} 5500 & 0.440725 & 1.127737 & 1.127608 & 0.616362 & 2.360620 & 1.652813 & 1.652974 & 2.173353 \\ 6000 & 0.440723 & 1.127736 & 1.127608 & 0.616360 & 2.360625 & 1.652817 & 1.652976 & 2.173355 \\ 6500 & 0.440722 & 1.127734 & 1.127608 & 0.616359 & 2.360627 & 1.652820 & 1.652976 & 2.173355 \\ \hline v & Basis size & \langle r_{\rm He^3 He}^2 \rangle & \langle r_{\rm ee}^2 \rangle & \langle r_{\rm she^2}^2 \rangle & \langle r_{\rm ee}^2 \rangle & \langle \delta({\bf r}_{\rm 4He^3 He}) \rangle & \langle \delta({\bf r}_{\rm 4He^2}) \rangle & \langle \delta({\bf r}_{\rm 3He^2}) \rangle & \langle \delta({\bf$										
$\begin{array}{c} 6000 & 0.440723 & 1.127736 & 1.127608 & 0.616360 & 2.360625 & 1.652817 & 1.652976 & 2.173357 \\ 6500 & 0.440722 & 1.127734 & 1.127608 & 0.616359 & 2.360627 & 1.652820 & 1.652876 & 2.173359 \\ \hline v & Basis size & \langle r_{^3_{\text{He-}}}^2 \rangle & \langle r_{^2_{\text{He-}}}^2 \rangle & \langle r_{^2_{\text{He-}}}^2 \rangle & \langle r_{^2_{\text{e-}}}^2 \rangle & \langle \delta (\mathbf{r}^4_{\text{He}}, \mathbf{r}^3_{\text{He}}) \rangle & \langle \delta (\mathbf{r}^4_{\text{He-}}) \rangle & \langle \delta $							2.360620			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.440723							
0 4500 4.320588 3.012967 3.013250 4.666898 3.41 × 10 ⁻¹¹ 1.042650 1.036998 0.039161 5000 4.320589 3.012969 3.013251 4.666900 2.17 × 10 ⁻¹¹ 1.042656 1.037164 0.039152 5500 4.320590 3.012969 3.013253 4.666901 1.50 × 10 ⁻¹¹ 1.042681 1.037704 0.039145 6000 4.320592 3.012971 3.013253 4.666903 1.23 × 10 ⁻¹¹ 1.042793 1.037888 0.039141 6500 4.637416 3.172358 3.172691 4.878093 3.10 × 10 ⁻¹² 1.040481 1.031950 0.038860 5000 4.637400 3.172352 3.172685 4.878093 3.10 × 10 ⁻¹² 1.040481 1.031950 0.038864 5500 4.637403 3.172355 3.172687 4.878090 1.72 × 10 ⁻¹⁰ 1.040661 1.033058 0.038882 6500 4.637407 3.172359 3.172689 4.878094 5.13 × 10 ⁻¹¹ 1.040709 1.034018 0.038857<					1.127608		2.360627			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	υ	Basis size	$\langle r_{^4\mathrm{He}\text{-}^3\mathrm{He}}^2 \rangle$	$\langle r_{^4{ m He}\text{-}e}^2 angle$	$\langle r_{^3{ m He}\text{-}e}^2 \rangle$	$\langle r_{e-e}^2 \rangle$	$\langle \delta\!({\bf r}_{^4{\rm He}\text{-}^3{\rm He}}) \rangle$	$\langle \delta\!({f r}^{_4}{}_{{ m He}\text{-}e}) angle$	$\langle \delta\!({f r}_{^3{ m He-}e}) angle$	$\langle \delta\!(\mathbf{r}_{e\text{-}e}) angle$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	4500		3 012967		4 666898	3.41×10^{-11}	1 042650	1 036998	0.039161
5500 4.320590 3.012969 3.013252 4.666901 1.50×10 ⁻¹¹ 1.042681 1.037704 0.039145 6000 4.320592 3.012971 3.013253 4.666903 1.39×10 ⁻¹¹ 1.042793 1.037888 0.039141 6500 4.320593 3.012972 3.013253 4.666903 1.22×10 ⁻¹¹ 1.042803 1.038131 0.039139 1 4500 4.637416 3.172358 3.172691 4.878093 3.10×10 ⁻¹² 1.040481 1.031950 0.038860 5000 4.637400 3.172355 3.172687 4.878099 1.72×10 ⁻¹⁰ 1.040599 1.03285 0.038860 6000 4.637403 3.172355 3.172686 4.878099 1.72×10 ⁻¹⁰ 1.040709 1.034018 0.038862 6500 4.637407 3.172687 4.878094 5.13×10 ⁻¹¹ 1.040709 1.034018 0.038862 2 4500 4.981841 3.345640 3.346082 5.107980 3.28×10 ⁻¹⁰ 1.038110 1.030028 0.038562	0									
$ \begin{array}{c} 6000 \\ 6500 \\ 6500 \\ 4.320592 \\ 3.012971 \\ 3.013253 \\ 3.012972 \\ 3.013253 \\ 3.013253 \\ 4.666903 \\ 1.22 \times 10^{-11} \\ 1.042803 \\ 1.034813 \\ 1.0348131 \\ 0.039139 \\ 3.012813 \\ 0.039139 \\ 3.10 \times 10^{-12} \\ 1.040481 \\ 1.031950 \\ 0.038860 \\ 3.01285 \\ 0.038860 \\ 3.01285 \\ 3.172352 \\ 3.172685 \\ 4.878086 \\ 3.99 \times 10^{-11} \\ 1.040599 \\ 1.040661 \\ 1.033058 \\ 0.038834 \\ 6000 \\ 4.637403 \\ 3.172355 \\ 3.172555 \\ 3.172686 \\ 4.878089 \\ 2.32 \times 10^{-10} \\ 1.040661 \\ 1.040599 \\ 1.032285 \\ 0.038834 \\ 6000 \\ 4.637403 \\ 3.172355 \\ 3.172686 \\ 4.878089 \\ 2.32 \times 10^{-10} \\ 1.040709 \\ 1.040661 \\ 1.033058 \\ 0.038829 \\ 0.038834 \\ 0.000 \\ 4.637407 \\ 3.172359 \\ 3.172689 \\ 4.878094 \\ 4.878094 \\ 5.13 \times 10^{-11} \\ 1.040709 \\ 1.040661 \\ 1.033058 \\ 0.038829 \\ 0.0388829 \\ 0.038812 \\ 2.4500 \\ 4.981941 \\ 3.345678 \\ 3.346640 \\ 3.346042 \\ 5.107920 \\ 3.346041 \\ 5.107929 \\ 3.63 \times 10^{-10} \\ 1.038110 \\ 1.038217 \\ 1.031270 \\ 0.038562 \\ 0.000 \\ 4.981851 \\ 3.345640 \\ 3.346032 \\ 5.107922 \\ 1.64 \times 10^{-10} \\ 1.038217 \\ 1.031270 \\ 0.038564 \\ 0.038571 \\ 0.038540 \\ 0.038574 \\ 0.038540 \\ 0.038574 \\ 0.038540 \\ 0.038574 \\ 0.038540 \\ 0.038574 \\ 0.038574 \\ 0.038540 \\ 0.038574 \\ 0.038562 \\ 0.0385788 \\ 3.534819 \\ 3.535301 \\ 5.359087 \\ 9.79 \times 10^{-11} \\ 1.035609 \\ 1.034621 \\ 1.029409 \\ 0.038296 \\ 0.038376 \\ 0.038296 \\ 0.000 \\ 5.357878 \\ 3.534819 \\ 3.535295 \\ 5.359086 \\ 4.84 \times 10^{-10} \\ 1.036671 \\ 1.036671 \\ 1.029787 \\ 0.038296 \\ 0.038376 \\ 0.038296 \\ 0.000 \\ 5.357881 \\ 3.534799 \\ 3.535273 \\ 5.359086 \\ 4.84 \times 10^{-10} \\ 1.036672 \\ 1.036672 \\ 1.032978 \\ 0.038296 \\ 0.038091 \\ 0.038296 \\ 0.038091 \\ 0.038296 \\ 0.038091 \\ 0.038296 \\ 0.038063 \\ 0.0$										
6500 4.320593 3.012972 3.013253 4.666903 1.22×10 ⁻¹¹ 1.042803 1.038131 0.039139 1 4500 4.637416 3.172358 3.172691 4.878093 3.10×10 ⁻¹² 1.040481 1.031950 0.038860 5000 4.637400 3.172352 3.172685 4.878086 3.99×10 ⁻¹¹ 1.040599 1.032285 0.038848 5500 4.637403 3.172355 3.172687 4.878090 1.72×10 ⁻¹⁰ 1.040661 1.033058 0.038883 6500 4.637407 3.172359 3.172689 4.878094 5.13×10 ⁻¹¹ 1.040709 1.034018 0.038829 6500 4.637407 3.172589 3.172689 4.878094 5.13×10 ⁻¹¹ 1.040709 1.034018 0.038829 2 4500 4.981941 3.345678 3.346082 5.107980 3.28×10 ⁻¹⁰ 1.038110 1.030028 0.038571 5500 4.981851 3.345640 3.346039 5.10792 1.64×10 ⁻¹⁰ 1.038217 1.031270 0.03857										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
5000 4.637400 3.172352 3.172685 4.878086 3.99 × 10 ⁻¹¹ 1.040599 1.032285 0.038848 5500 4.637403 3.172355 3.172687 4.878090 1.72 × 10 ⁻¹⁰ 1.040661 1.033058 0.038834 6000 4.637400 3.172355 3.172686 4.878089 2.32 × 10 ⁻¹¹ 1.040709 1.034018 0.038829 6500 4.637407 3.172359 3.172689 4.878094 5.13 × 10 ⁻¹¹ 1.040802 1.035077 0.038812 2 4500 4.981941 3.345678 3.346082 5.107980 3.28 × 10 ⁻¹⁰ 1.038110 1.030028 0.038587 5000 4.981855 3.345640 3.346043 5.107929 3.63 × 10 ⁻¹⁰ 1.038184 1.030684 0.038571 5500 4.981836 3.345636 3.346032 5.107927 1.64 × 10 ⁻¹⁰ 1.038609 1.031484 0.038540 6500 4.981841 3.345640 3.346035 5.107927 1.71 × 10 ⁻¹⁰ 1.038826 1.031772 0.038547<	1									
5500 4.637403 3.172355 3.172687 4.878090 1.72×10 ⁻¹⁰ 1.040661 1.033058 0.038834 6000 4.637400 3.172355 3.172686 4.878089 2.32×10 ⁻¹¹ 1.040709 1.034018 0.038829 6500 4.637407 3.172359 3.172689 4.878094 5.13×10 ⁻¹¹ 1.040709 1.035077 0.038812 2 4500 4.981941 3.345678 3.346082 5.107980 3.28×10 ⁻¹⁰ 1.038110 1.030028 0.038587 5000 4.981855 3.345640 3.346039 5.107929 3.63×10 ⁻¹⁰ 1.038184 1.030684 0.038571 5500 4.981836 3.345636 3.346032 5.107922 1.64×10 ⁻¹⁰ 1.038609 1.031484 0.038547 6500 4.981841 3.345640 3.346035 5.107927 1.71×10 ⁻¹⁰ 1.038609 1.031484 0.038547 3 4500 5.357991 3.534864 3.535360 5.359155 8.01×10 ⁻¹¹ 1.035460 1.026959 0.0383	1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
6500 4.637407 3.172359 3.172689 4.878094 5.13×10 ⁻¹¹ 1.040802 1.035077 0.038812 2 4500 4.981941 3.345678 3.346082 5.107980 3.28×10 ⁻¹⁰ 1.038110 1.030028 0.038587 5000 4.981855 3.345640 3.346031 5.107929 3.63×10 ⁻¹⁰ 1.038184 1.030684 0.038571 5500 4.981851 3.345641 3.346039 5.107920 1.64×10 ⁻¹⁰ 1.038217 1.031270 0.038562 6000 4.981836 3.345636 3.346032 5.107922 1.64×10 ⁻¹⁰ 1.038609 1.031484 0.038547 6500 4.981841 3.345640 3.346035 5.107927 1.71×10 ⁻¹⁰ 1.038826 1.031772 0.038540 3 4500 5.357991 3.534864 3.535360 5.359155 8.01×10 ⁻¹¹ 1.035460 1.026959 0.038376 5000 5.357875 3.534819 3.535302 5.359087 9.79×10 ⁻¹¹ 1.036621 1.029409 0.038296 6000 5.357858 3.534819 3.535295 5.359086<										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4									
$ 6000 \qquad 5.769828 \qquad 3.742105 \qquad 3.742691 \qquad 5.634546 \qquad 9.78 \times 10^{-11} \qquad 1.034639 \qquad 1.025799 \qquad 0.0380569 $										
0300 5.709830 5.742113 5.742693 5.654554 6.52×10 ⁻¹¹ 1.034710 1.026161 0.038047										
		6500	5./69830	3./42113	3.742693	5.634554	6.32 × 10 ⁻¹¹	1.034/10	1.026161	0.038047

IV. RESULTS AND DISCUSSION

The total energies for the five lowest vibrational states of ⁴He³He⁺ with zero total angular momentum obtained in the calculations are presented in Table II. Both nonrelativistic results and results including the relativistic corrections are shown. As one can notice the energy convergence for the lowest state is noticeably faster than for the fifth state. While the total energy with the relativistic corrections for the v=0state in going from 6000 to 6500 basis functions changes by only -0.00000008 a.u., the change is -0.00000171 a.u. for the fifth state. The increasingly less accurate energy results with the increasing vibrational quantum number affect the transition energies calculated as the difference of the energies of the consecutive states. The energy for the upper state being less tightly converged than the energy of the lower states will result in systematic overestimation of the transition energies. This point will be discussed next.

The transition energies calculated as the differences of the total energies of the consecutive states are shown in Table III. All transition energies corrected for the relativistic effects are marginally higher than their uncorrected counterparts. The largest shift is only 0.03 cm⁻¹ (for the fifth state). Thus, one can conclude that the relativistic corrections are somewhat less important in this case than in the HeH⁺ ion [2]. The comparison of the calculated transition frequency for the lowest transition where the experimental value is established with a very high precision (see the previous section) shows that this transition is not converged in the present calculation to the precision achieved by the experiment. Even though the transition frequency obtained with 6500 basis functions of 1750.71 cm⁻¹ is only about 0.15 cm⁻¹ off from the experimental frequency, this is, by far, more than the estimate experimental uncertainty of about 0.001 cm⁻¹. By analyzing the convergence pattern of the $0 \rightarrow 1$ frequency one can notice that with increasing the basis set size the frequency decreases. The increase of the basis size from 6000 functions to 6500 functions still produced a decrease of the transition energy by 0.05 cm⁻¹. Thus, a further increase of the number of functions is likely to bring the calculated result much closer to the experiment. However, it may require significantly more basis functions than was used in our calculations to approach the experimental accuracy. While such number of basis functions was not possible at present with our computational resources, it is certainly attainable in principle with the present-day computers.

As one can see from the results shown in Table III, the $1\rightarrow 2$, $2\rightarrow 3$, $3\rightarrow 4$ transition frequencies are progressively less tightly converged with 6500 basis functions than the $0\rightarrow 1$ transition. While the $0\rightarrow 1$ frequency changes by only $0.05~\rm cm^{-1}$ when the basis set is increased from 6000 to 6500, the change for the $3\rightarrow 4$ frequency is $0.18~\rm cm^{-1}$. This is related to more complicated node structures of the higher excited states, whose description requires more functions in the basis set.

Lastly, the non-BO wave functions for the first vibrational states of ${}^{4}\text{He}^{3}\text{He}^{+}$ calculated in this work have allowed us to calculate some expectation values. They are presented in Table IV. The convergence pattern here is similar to what it was for the total energies of the states. The expectation val-

ues are much better converged for the ground vibrational state than for the excited states. In calculating the expectation values we have been particularly interested in quantities showing the asymmetry of the electron charge distribution caused by the different masses of the two helium nuclei. One such quantity is the average electron-nucleus distance and, as expected, it is slightly shorter for the ⁴He nucleus than for the ³He nucleus. The electrons approach the heavier nucleus closer than the lighter one because the reduced ⁴He-electron mass is larger than the reduced mass for the ³He-electron pair. This results in the ⁴He-electron energy levels being lower than the ³He-electron levels and the average ⁴He-electron radius being shorter. The difference between the average ⁴He-electron and ³He-electron distances increases with the excitation levels. For the ground state this difference is only 0.000089 a.u., but for the fifth state it is nearly two times larger and equal to 0.000156 a.u. The asymmetry of the electron charge distribution is also showing in the electron density at the nuclei [the $\langle \delta(\mathbf{r}_{^4\text{He}} - e) \rangle$ and $\langle \delta(\mathbf{r}_{^3\text{He}-e}) \rangle$ expectation values]. Here again, as expected, the electron density is slightly higher at ⁴He than at ³He, and the difference also increases with the electron excitation.

V. SUMMARY

In conclusion, it is clear from the results presented here that theoretical calculations performed on a three-electron diatomic system with an approach that does not assume the BO approximation and includes relativistic effects are capable of generating results whose accuracy can very closely approach the accuracy of the experimental measurements. However, as we showed, the basis set consisting of 6500 explicitly correlated Gaussian functions, while providing the $0 \rightarrow 1$ vibrational transition within $0.2~{\rm cm}^{-1}$ to the experimental result, is still not large enough to bring the calculated results to accuracy comparable to the uncertainty range of the experiment.

In this work the vibrational transition energies have been calculated including some relativistic corrections of the order of α^2 . The numerical results show that those corrections only marginally affect the transition energies in $^4\text{He}^3\text{He}^+$. In continuing the work on the $^4\text{He}^3\text{He}^+$ ion, we will make further improvements in the efficiency of our computer code for the optimization of the basis functions. These, and an access to a more powerful parallel computer system, will likely allow us to extend the basis set beyond 10 000 functions. We will also implement the algorithm to calculate orbit-orbit energy correction, which is the only remaining α^2 effect not included in the present calculations. We believe that with those improvements we will be able to further reduce the discrepancy between the experiment and the theory for the lowest transition energy.

ACKNOWLEDGMENTS

This work has been supported by the National Science Foundation. We are grateful to the University of Arizona Center of Computing and Information Technology for using their supercomputer resources.

- [1] L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993).
- [2] M. Stanke, D. Kędziera, M. Molski, S. Bubin, M. Barysz, and L. Adamowicz, Phys. Rev. Lett. 96, 233002 (2006).
- [3] D. Kędziera, M. Stanke, S. Bubin, M. Barysz, and L. Adamowicz, J. Chem. Phys. 125, 014318 (2006).
- [4] S. Bubin, M. Stanke, D. Kędziera, and L. Adamowicz, Phys. Rev. A 76, 022512 (2007).
- [5] K. Pachucki and J. Komasa, Phys. Rev. Lett. 92, 213001 (2004).
- [6] W. Cencek, J. Komasa, K. Pachucki, and K. Szalewicz, Phys. Rev. Lett. 95, 233004 (2005).
- [7] K. Pachucki and J. Komasa, Phys. Rev. A 73, 052502 (2006).
- [8] K. Pachucki and J. Komasa, J. Chem. Phys. **125**, 204304 (2006).
- [9] M. Stanke, D. Kędziera, S. Bubin, and L. Adamowicz, Phys. Rev. Lett. 99, 043001 (2007).
- [10] M. Stanke, D. Kędziera, S. Bubin, and L. Adamowicz, Phys. Rev. A 75, 052510 (2007).
- [11] D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 110, 7166 (1999).
- [12] D. B. Kinghorn and L. Adamowicz, Phys. Rev. Lett. 83, 2541 (1999).
- [13] S. Bubin and L. Adamowicz, J. Chem. Phys. **118**, 3079 (2003)
- [14] S. Bubin and L. Adamowicz, J. Chem. Phys. 121, 6249 (2004).

- [15] S. Bubin and L. Adamowicz, J. Chem. Phys. 126, 214305 (2007).
- [16] M. Cafiero, S. Bubin, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491 (2003).
- [17] S. Bubin, M. Cafiero, and L. Adamowicz, Adv. Chem. Phys. 131, 377 (2005).
- [18] D. Kedziera, M. Stanke, S. Bubin, M. Barysz, and L. Adamowicz, J. Chem. Phys. 125, 084303 (2006).
- [19] M. Stanke, D. Kędziera, S. Bubin, and L. Adamowicz, J. Chem. Phys. 126, 194312 (2007).
- [20] S. Bubin, M. Stanke, D. Kędziera, and L. Adamowicz, Phys. Rev. A 75, 062504 (2007).
- [21] N. Yu and W. H. Wing, Phys. Rev. Lett. **59**, 2055 (1987); **60**, 2445(E) (1988).
- [22] J. L. Dunham, Phys. Rev. 41, 713 (1932); 41, 721 (1932).
- [23] M. L. Ginter and D. S. Ginter, J. Chem. Phys. 48, 2284 (1967).
- [24] See CODATA 2002 recommended values and NIST Physical Reference Data at http://physics.nist.gov/
- [25] H. M. Pilkuhn, Relativistic Particle Physics (Springer Verlag, New York, 1979).
- [26] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Oneand Two-Electron Atoms (Plenum, New York, 1977).
- [27] N. J. Stone, *Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments* (Oxford University Press, Oxford, 2001).