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Kinetic-energy density functionals with nonlocal terms with the structure
of the Thomas-Fermi functional
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We study two families of approximate nonlocal kinetic-energy functionals that include a full von Weizsidcker
functional, and that have nonlocal terms with the mathematical structure of the Thomas-Fermi functional. The
functionals recover the exact kinetic energy and the linear response function of a homogeneous electron
system. The first family is a generalization of a successful previous nonlocal functional. The second family is
proposed in the paper, and is designed to obtain functionals suitable for use in both localized and extended
systems. Furthermore, this family has been designed to be evaluated by a single integration in momentum
space when a constant reference density is used. The atomic total kinetic energies are in good agreement with
the exact calculations. The kinetic-energy density corresponding to each functional has been assessed to control
its quality. The results show that, in general, these functionals behave better than both the Thomas-Fermi and
all semilocal generalized gradient approximation functionals when describing the kinetic-energy density of

atoms, providing a better description of the nonlocal effects of the kinetic energy of electron systems.
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I. INTRODUCTION

Density functional theory (DFT) has advantages over
other methods for calculating the electronic structure in both
computational efficiency and the precision of the results
[1-3]. DFT was originally developed by Hohenberg and
Kohn [4] and replaces the principal role of the wave function
with the electron density, proving that the density has all the
information needed to describe the ground state of an elec-
tron system through the functional of the exact total energy
E[n]. When E[n] is minimized, the electron density and the
energy of the ground state can be found. The functional for
the total energy is unknown, and DFT is usually applied
following the Kohn and Sham (KS) [5] method, where the
energy functional is divided into four parts, via the concept
of a noninteracting system of KS orbitals that yields the
same electron density as the interacting one,

E[n]=Tgn]+ VIn]+J[n]+ Exc[n]. (1)

where T[n] is the kinetic-energy density functional (KEDF)
of the KS noninteracting system, V[n] is the interaction en-
ergy of the electron density with the external potential, J[n]
is the classical electrostatic repulsion energy of the charge
distribution (Hartree energy), and finally Exc[n] is the so-
called exchange-correlation (XC) energy. This last functional
includes all the quantum effects not described by the other
three terms, and usually is an order of magnitude smaller
than them. So the KS scheme allows one to exactly calculate
the main pieces of the energy except the XC functional, for
which a number of approximations have been formulated.
Despite the success of the KS formulation of DFT, there
are important reasons to study the functional of the total
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energy. Beyond the obvious theoretical interest, using a den-
sity functional which depends only on the total electron den-
sity and not on the individual KS orbitals—the orbital-free
scheme—gives a three-dimensional functional space instead
of the 3N coordinates of an N-electron system within the KS
scheme. In that case, E[n] can be minimized by using the
Euler equation

SOE[n]/én=0. (2)

Moreover, the orbital-free scheme scales with N, better
than the O(N?) scaling characteristic of the orthogonalization
of the KS orbitals and, for extended systems, the use of the
k-point sampling is not needed.

The Hartree energy J{n] and V[n] in Eq. (1) are explicit
functionals of the electron density. Both energies and T[n]
usually have the same order of magnitude as the total energy.
As the XC energy is usually much smaller, approximations
developed for it within the KS scheme may also be em-
ployed in the orbital-free scheme: the key issue for orbital-
free DFT is then to have a good approximation for T n].
Formulation of approximate KEDFs is much older than the
origin of the modern DFT. The first approximate KEDF was
the Thomas-Fermi (TF) [6,7] functional (atomic units will be
used in this paper),

Treln]= CTFJ n(r)5/3dr, (3)

where Crg is the Thomas-Fermi constant CTF=%(3772)2/3,
constructed to yield the exact kinetic energy of a homoge-
neous system—i.e., the free-electron gas—and corresponds
to the local density approximation. Another old functional is
the von Weizsicker (vW) [8] functional,
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constructed to be exact for one or two electrons in the same
spatial state. The TF functional usually underestimates the
kinetic energy by around 10%, and very large errors are ob-
tained with the von Weizsicker functional in many-electron
systems. The second-order gradient expansion approximation
(GEA2) arises as a combination of the two previous func-
tionals:

dr, (4)

TV ] = Tl + S Tol]

2
= CTFf n(r)>3dr + 7—12f %dn (3)

This gives total errors close to 1% when applied to atoms
and molecules using good densities, i.e., those obtained with
accurate methods like the Hartree-Fock or KS ones.

Functionals within the generalized gradient approxima-
tion (GGA) [9] depend only on the electron density and its
gradients (a summary of those semilocal functionals can be
found in Refs. [10,11]; see also a recent review in [12]). The
GEAZ2 functional, as well as the TF and vW functionals, can
be formulated as particular GGA ones. When using good
densities, those GGA functionals that are similar to the
GEA2 functionals usually yield results for the total kinetic
energy also close to those obtained with the GEA2. The rela-
tive errors of the GGA functionals are too big for chemical
precision but they are the smallest errors found for orbital-
free approximations to the kinetic energy. But when the Eu-
ler equations corresponding to the GGA functionals are
solved variationally, some unphysical results are obtained:
the quantum effects are lost and no shell structure appears in
the minimized density profiles for atoms. Only more sophis-
ticated functionals, the fully nonlocal functionals, can yield
shell structure for atoms and reproduce the quantum effects,
even though their relative errors—among the smallest found
for any orbital-free approximation—are also too big for
chemical precision.

The paper is structured as follows. In Sec. II a generali-
zation of the mathematical form of some nonlocal density
functionals is presented. In Sec. III two families of nonlocal
KEDFs with density-independent kernels are developed.
Section IV presents the construction of more sophisticated
cases, functionals with double-density-dependent kernels,
which are studied in Sec. V (atomic total Kinetic energies)
and in Secs. VI and VII (kinetic-energy densities). Finally,
conclusions are summarized in Sec. VIIL

II. NONLOCAL FUNCTIONALS WITH TWO INTEGRALS

The GGA functionals can be considered as semilocal
functionals because they only use information about the
value of the density and its variation at one point in space
when calculating the contribution to the kinetic energy from
that point. More sophisticated functionals can be developed
by introducing nonlocality in such a way that the whole elec-
tron density is taken into account when this contribution is
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evaluated. We call those functionals that use the density of
the whole system to estimate the kinetic-energy density com-
ing from each point of the space fully nonlocal functionals.
The first fully nonlocal functional was the weighted density
approximation, introduced independently by Alonso and
Girifalco [13,14] and by Gunnarson, Jonson, and Lundqvist
[15], where the contribution of the whole density comes
through the normalization of a parametrized XC hole of the
free-electron gas.

On the other hand, the evaluation of the usual nonlocal
energy density functionals relies on two integrations in real
space, i.e., a six-dimensional integral. We now propose a
generalization of the mathematical expressions on which
those functionals are based. The main point is that we as-
sume that the contributions from every pair of points r and r’
to the nonlocal functional depend only on r and r’ and on the
densities at them, through a first integration over r’ and a
second integration over r. After integrating in r’, we must
obtain a function that depends only on r [and implicitly on
the electron density n(r)]. The general form can then be writ-
ten as

FN“[n]=fdr[ﬁ(ﬂ(f))fn(f dr’fz(n(r),n(r’),r,r’))],
(6)

where f,(n(r)), fi(Jdr'fo(n(r),n(r’),r,xr’')), and fr(n(r),
n(r’),r,r’) are arbitrary functions with the only requirement
that all together must have the correct dimensionality for
FNM[1] to be an energy.

All the nonlocal functionals with two integrations in real
space can be written in the previous form. But, for conve-
nience, we would like to present a simpler one:

FNLZ[n]=fdrf dr'f(n(r),n(r"),r,r'), (7)

where the new function f(n(r),n(r’),r,r’) has the same di-
mensional requirements as before. The main difference now
is that integration over r’ is not included as an argument of
any other function. With this simplified form, and when
Sf(n(r),n(r"),r,r’) is adequately chosen, the functional can
be calculated with a single integration in momentum space
using the concept of the Fourier transform.

In addition to the mathematical form, it is advisable to
enforce some physical limits in order to obtain the final func-
tional. For KEDFs, the kinetic energy of a homogeneous
electron system must first be recovered. For the second con-
dition, a common procedure is to take advantage of the close
relation between the response function of an electron system
and the KEDF [4]: the second functional derivative of T[]
in the homogeneous limit must be equal to the linear re-
sponse function of the free-electron gas. In momentum
space, we have
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where F indicates the Fourier transform. The function
Flina(7), known as the Lindhard function [16], has the ana-
lytical expression
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which depends only on the scaled momentum n=gq/2kp, kr
being the Fermi wave vector of the electron gas with density
ny.

A number of nonlocal functionals were constructed fol-
lowing this procedure. The Chacén-Alvarellos-Tarazona
(CAT) functional [17] was formulated in 1985 with a math-
ematical form used previously in the description of the free
energy of classical fluids [18-20] and the XC energy of an
electron system [15]. This functional has the form expressed
by Eq. (6) and uses an averaged density in its formulation.
Later on, many authors developed similar functionals suit-
able for implementation for extended systems. The most re-
markable are those of Wang and Teter (WT) [21], Perrot (P),
and Smargiassi and Madden (SM) [22], all of which are writ-
ten in the simpler form given by Eq. (7).

The aforementioned nonlocal functionals always have a
TF-like term, i.e., a term with an explicit integration of some
different powers of the electron density. But this term also
has another factor in the integrand—usually called the
kernel—that allows one to reproduce the linear response
function of the free-electron gas. All these functionals have
an intrinsic dependence on the Fermi wave vector through
the argument 7 of the Lindhard function. In position space
this dependency must appear as a scaling factor in the argu-
ment of the kernel. In the CAT functional [17], and also in its
first modification [23], the local Fermi wave vector at the
local position r, kz(r), was chosen as the quantity to be used
in all scaled magnitudes that appear in the formalism. On the
other hand, the WT, P, and SM functionals scale through a
constant Fermi wave vector calculated by means of a refer-
ence uniform density; the generalizations of those function-
als developed by Wang, Govind, and Carter (WGC) [24,25]
follow the same procedure. These functionals with a constant
scaling are labeled density-independent kernel functionals,
unlike the CAT functional, which uses a local Fermi wave
vector kp(r) as the scaling factor and is labeled a density-
dependent kernel.

In order to improve the description of the intrinsic nonlo-
cality of the KEDF, we can go a step further by extending the
scaling factor from the local Fermi wave vector ky(r) at one
point r (i.e., a one-body Fermi wave vector) to a two-point
scaling function that aims to reflect any connection between
the points r and r’ involved in the calculations needed to
evaluate the functional. Putting r and r’ on the same footing,
a simple two-body Fermi wave vector is
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SRR (10)

{(r,r’") =( 5

This scaling factor {(r,r’) can be seen as the mean of a
certain power 7y of the Fermi wave vector at positions r and
r’. The functionals that include the scaling in this way are
said to have a double-density-dependent kernel. This kind of
scaling factor was first introduced in the so-called symme-
trized CAT functional [26], with good results: a shell struc-
ture was obtained when the atoms were variationally mini-
mized [26], Friedel oscillations appeared in minimized
jellium surfaces [27], and quantum oscillations were found in
one-dimensional systems [28]. Thus these double-density-
dependent kernel CAT functionals reproduce quantum effects
for very different physical situations, unlike the semilocal
functionals. On the other hand, other double-density-
dependent kernel functionals developed by WGC for ex-
tended systems have obtained good results in simple metals,
alloys, clusters, and even covalent materials [25,29-32].

III. KINETIC FUNCTIONALS WITH NONLOCAL TERMS
WITH THE STRUCTURE OF THE THOMAS-FERMI
FUNCTIONAL (DENSITY-INDEPENDENT KERNEL)

Following the ideas of WGC [25], first we are going to
present functionals with a density-independent kernel, i.e.,
with a kernel scaled through a constant Fermi wave vector. It
is not the aim of this work to present new density-
independent kernel functionals, but we think they are useful
for understanding the development of nonlocal functionals
with density-dependent kernels.

A. Chacén-Alvarellos-Tarazona family of functionals

By extending the formulation of the CAT functionals, we
can construct an entire family of functionals. The functionals
of that family share a few fundamental properties and re-
quirements that reflect the physical limits we are imposing
on them, their mathematical structure and the form of their
weight function (in this case the kernel can be identified as a
weight function for the definition of the averaged
density)—a key quantity for these functionals as can be seen
below.

We can characterize a functional of this family with these
three requirements:

(i) The functional includes a nonlocal term that has a
mathematical structure similar to that of the TF functional,
where the kinetic energy density per particle is calculated
with the help of an averaged density, defined as the convo-
lution of a weight function (kernel) with a certain power of
the electron density.

(ii) The functional reproduces the linear response function
of the free-electron gas. As a consequence, both TF and vW
contributions appear naturally. Obviously, the functional
must also give the correct kinetic energy for the free-electron
gas.

(iii) The weight function has to be normalized to unity in
the homogeneous limit. To avoid large-range effects in the
weight function, and therefore allow the functional to be ap-
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plicable to localized systems, prefactors in the TF functional
and in the nonlocal term are required, and the weight func-
tion in momentum space reaches a value of 1 when g—0—a
consequence of the normalization—and goes asymptotically
to 0 when g— .

The CAT family of functionals, TSAT[n], with a density-

independent kernel can be defined as [requirement (i)]

T§""[n] = Tywln] - aTreln] + (1 + &) Toxe[n],  (11)

where the nonlocal term T3k [n] has the structure of the TF
functional, but using an averaged density 7ig(r) for the
kinetic-energy density per particle,

Texnln] = Cre J dr n(r)[7g(r) 7. (12)

In general, 7ig(r) is an average of the power B of the
electron density, where the nonlocal effects are supposedly
included through a weight function (,

fig(r) = f dr' nP(x")Qkp,|r—1']). (13)
Note that we are now constructing a density-independent
kernel functional with a constant k in (), instead of the
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scaling factor of the original CAT functional [17], kg(r). Due
to the scaling properties of the Lindhard function, we can
rewrite the weight function in a more convenient way,
Q(kg,|r=1"|)=(2kg) 0(2kgr—r’|), and the average density
is then calculated as

ﬁﬁ(r)=(2kp)3f dr' nP(r")w(2kgr —r'|). (14)

Normalization in the uniform limit that
Jar' Q(kg,|r-r'])=1.

With this formulation we have, in principle, two degrees
of freedom to be fixed in the formulation of the functional:
the parameters « and B. Following requirement (ii), the ker-
nel is obtained by the enforcement of Eq. (8). Since the ker-
nel is not density dependent, we obtain an algebraic equa-

tion,

means

Frna(m) =37 +a
l+a

=120(7) +2(2-3B)[w(n ]+ 6(8-1),

where w(7)=F[Q(|R|)]. Rewriting it as a quadratic equa-
tion, the explicit form of the kernel w(7) in momentum space
becomes

10

(15)

Fiing(m) =37+ a

|
w(”)=(2-3/3)<_3+\/9_5 1 +a

In order to verify requirement (iii), and because Fi;,q(0)=1
and Fy;q(0)==3/53, an explicit relation between the param-
eters « and B appears,

a=38/(8-3p),

and only one parameter is needed to specify these CAT ki-
netic functionals. Since 3 is the power of the electron density
to be averaged in Eq. (14), we can first fix 8 and then get the
corresponding value of a. As kj is related to the electron
density through a power 1/3, we are going to choose values
of [ that yield integer powers of the Fermi wave vector. The
values of 8 chosen and their corresponding values of « are
listed in Table I. Note that for B=1 we get the density-

(16)

TABLE 1. Values of the parameters « and B for CAT and
NLS-TF functionals. For the NLS-TF cases, we have written out
those values of S that yield the same functional (e.g., 8=2/3 or 1
for a=1/3).

CAT a 1/7 1/3 3/5 1
B 1/3 2/3 1 4/3
NLS-TF a 1 1/3 3/5 7/25
B 173, 4/3 2/3,1 5/6=\5/6 5/6

(2-3B)+3(2-3B)(B- 1)).

independent version of the original CAT functional, a func-
tional that includes the terms va[n]—%TTF[n] which come
from the correct expansion of the Lindhard function for large
values of the scaled moment 7. On the other hand, the value
a=1, corresponding to a value of 8=4/3, gives a full nega-
tive Thomas-Fermi contribution. For 8=2/3 we have a spe-
cial case, because in this case the averaged density—and thus
the second integral in Eq. (6)—has the power 1, and we get
a simplified functional that can be written in the form of Eq.

(7).

B. Functionals with nonlocal simplified terms
with Thomas-Fermi structure

While the CAT functional has an adequate mathematical
form to be applied to localized systems in real space, WGC
functionals are constructed with a mathematical structure ac-
cording to Eq. (7) that allows quasilinear scaling of their
computational cost. Unfortunately, the kernels of those func-
tionals make them inapplicable to localized systems. It
would be interesting to generate a KEDF able to keep the
main benefits of both types of functional: the possibility of
linear scaling in momentum space—like the WGC
functionals—and a kernel suitable for working in position
space for localized systems—Iike the CAT ones. To develop
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such functionals, which we will call nonlocal simplified
functionals with Thomas-Fermi structure (NLS-TFs), we are
going to impose the requirements (ii) and (iii) from the CAT
functional. So we write the functional 73> ] in the same
way as in Eq. (11) but we change the first requisite to the
following one.

(i)" The mathematical form of the nonlocal term is based
on an expression similar to the TF functional, written in
terms of a double integration of a product of two different
powers of the density, n°/*~#(r) and n#(r’), evaluated at (r)
and r’, and coupled by the kernel (note that we have as-
sumed the sum of these powers to be 5/3, in order to have the
correct dimensionality and scaling of the TF functional).
Writing

T5= M n) = Towln] - aTrdn] + (1 + )T eln).
(17)
the nonlocal term Tyysqeln] of this functional is then a
double convolution of the densities with a kernel Q(kp,|r

—r’|) that has a constant Fermi wave vector as a scaling
factor,

),
(18)

similar to the WGC one. The functional fits into the general
mathematical form given by Eq. (7) and a linear scaling in
momentum space could be implemented. Moreover, the
functional retains the properties of the CAT functional be-
cause the kernel satisfies requirement (iii). We now have a
new set of parameters « and f3, related through the condi-
tions that the kernel must satisfy. The kernel is also fixed by
the second functional derivative of TIS\ILS’TF [n]; its relation
with the Lindhard function gives again an algebraic equation

TE{S_TF[n] = J er dr’ B P(r)nP(x)Qkp,r — v’

Frnad(m) =37 +a
l+a

=188(5/3 - B)w(n) + 1862 -308+10,  (19)

10

and the explicit expression of the kernel is

1
()= 1ea6 —B)(IO

Fiinad(m) =37 +a
l+a

- 1882 +308- 10). (20)

The mentioned asymptotic condition on the kernel (iii) gives
a relation between « and S,

_[9p15)-3B+8/5]

= 96%5) + 35] 1)

When this value of « is substituted in the expression of the
kernel, Eq. (20), we obtain
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o) =S F ) =371 43, ()

which is the same for all the functionals of the family. This is
an elegant result: to have the required asymptotic behavior,
the kernel is independent of the parameters a and S. Note
that, even though they share the same kernel, each functional
of the family obviously yields different values of the kinetic
energy.

Table I also summarizes the values of the parameters cor-
responding to the NLS-TF functionals. The first two values
of B are chosen to yield integer powers of the Fermi wave
vector. We have also included 8=5/6 due to the symmetry
of the final form of the functional. Choosing a=3/5—in
order to obtain an adequate linear combination of the TF and
vW functionals for large values of 7—f is 5/6% V576 (a
similar result was obtained by WGC for their functional
[25]). We must remark that the NLS-TF functional is highly
symmetric and the choice of a value for 8 gives the same
functional choosing 5/3 -, as reflected in Table 1.

IV. KINETIC FUNCTIONALS WITH NONLOCAL TERMS
WITH THE STRUCTURE OF THE THOMAS-FERMI
FUNCTIONAL (DENSITY-DEPENDENT KERNEL)

A. Chacoén-Alvarellos-Tarazona family of functionals

The CAT family of functionals with density-dependent
kernels is defined with the same expression as their density-
independent kernel counterparts, Eq. (11), but now the aver-
aged density is calculated as

r-r’

ig(e) = f dr' n(e)OLL(r.x),

1. (23)

where the scaling is now introduced through the two-body
wave vector {(r,r’). This is a generalization of the men-
tioned symmetrized CAT functional [26].

We must now remark that the behavior of the weight
function when ¢— 0 and ¢— % does not depend on the de-
rivatives of the kernel. As a consequence, the previous dis-
cussion about the parameters « and 3 is valid, and we can
use the same sets of parameters « and B as in the density-
independent case (i.e., those given in Table I).

On the other hand, the relationship between the kernel and
the Lindhard function, obtained through the second func-
tional derivative of TgAT[n], is now not algebraic but a com-
plicated second-order differential equation. In momentum
space we obtain

Frna(m) =37 +a
1+«

10

— 120(n) +22 3B (] + i3(3 - 3)[60’(77) P

36 B\ B
2
—2<;8— l)w(n)w (mn+6(B-1)
L " 2 %_ 1+')’ w/
+3Bw(77)77 +(_/3 2+ 3B ) (m)7. (24)
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FIG. 1. (Color online) Kernels for the CAT functionals as a
function of the scaled momentum 7.

As the kernel is now double-density-dependent through
the two-body Fermi wave vector, an additional degree of
freedom in the final form of the functional appears—the
power vy for averaging the scaling function in Eq. (10)—and
the differential equation depends also on 7. This differential
equation must be solved numerically; we have chosen a
Runge-Kutta method, starting the integration at infinity to
avoid numerical problems. In Fig. 1 the kernel in momentum
space is represented for both the density-dependent and
density-independent versions of the CAT functional. The
density-dependent kernel has a softer structure than the
density-independent one. The shape of the kernel depends
greatly on the value of 8 but is almost independent of the
value of 7. For that reason, in this paper we have used vy
:% and y:—%, following the discussion of the original for-
mulation of the symmetrized CAT functional [26], and the
values of the parameters given in Table 1.

B. Functionals with nonlocal simplified terms
with Thomas-Fermi structure

This family of functionals is obtained in the same way as
in the density-independent case, Eq. (17), but the nonlocal
term is now calculated with the two-body Fermi wave vector
{(r,r') in the kernel:

1,
(25)

r-r’

TNrsreln] = f dr f dv' i’ F(e)nfe)Q[{(r,r'),

instead of Eq. (18). As commented before, we can have the
same discussion about the choice of the sets of parameters as
in the density-independent functionals.

The final form of the kernel is given by a much simpler
differential equation than for the CAT functionals:
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1.0 n 1 n 1 n 1
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FIG. 2. (Color online) Kernels for the NLS-TF functionals as a
function of the scaled momentum 7.

Finad(m) =37 +a

10
l+a
5 1 1
= 18,3(5—/3)&)(77) + Ew”(n)n2+ ( s —5>w'(77)71
+188%-308+ 10, (26)

where there are no products of the kernel and its derivatives.

This differential equation can be solved numerically in the
same way we did previously. The kernels are represented in
Fig. 2, and similar conclusions about the structure and the
dependence of the kernels on the values of 8 and 7y can be
obtained. We chose the same values for @ and $ as in the
density-independent case (see Table I), and also used y=%
and 7:—%.

V. ACCURATE TOTAL KINETIC ENERGIES
FOR CLOSED-SHELL ATOMS

In order to test the quality of our proposed fully nonlocal
functionals with double-density-dependent kernels, i.e., the
CAT family defined by Egs. (11), (18), and (23) and the
NLS-TF family defined by Egs. (17) and (25), we have per-
formed total energy calculations for some closed-shell atoms,
from He to Xe. The kinetic energy was evaluated using the
output densities obtained by the variational minimization of
the KS scheme through the GAUSSIAN package [33], with a
6-311++G(d,p) basis set for all atoms, except for Sr and
Xe, where the basis 3-21G™" was used instead. The sizes of
these basis sets are big enough to ensure quality electronic
densities and energies after solution of the KS method,
within the local density approximation for the XC.

In Table IT we present the relative errors of the total ki-
netic energies obtained with the CAT functionals, compared
with the KS exact results, with an additional column for the
average of the absolute values of the errors. These results
show that, in general, when we choose a negative value for
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TABLE II. Relative errors in the total kinetic energy for the CAT functionals, when using the KS densities. The average of the relative
errors is made over their absolute values. In the last row the KS values of the total energies are presented.

B y He Be Ne Mg Ar Ca Kr Sr Xe Av.
1/3 172 0.035 0.033 0.006 0.010 0.009 0.008 0.003 0.000 -0.002 0.012
173 -1/2 -0.056 0.031 0.054 0.122 0.089 0.093 0.055 0.049 0.044 0.066

2/3* 172 0.053 0.038 0.014 0.016 0.017 0.016 0.009 0.006 0.004 0.019
273" —-1/2 -0.014  -0.008 -0.003 0.008 0.014 0.014 0.006 0.002 0.001 0.008
3/3 172 0.079 0.065 0.034 0.035 0.033 0.032 0.021 0.018 0.014 0.037
3/3 -1/2 0.014 0.017 0.015 0.022 0.027 0.027 0.017 0.013 0.011 0.018
4/3 172 0.085 0.094 0.083 0.084 0.082 0.080 0.067 0.063 0.056 0.077
4/3 -1/2 0.010 0.065 0.079 0.087 0.089 0.087 0.076 0.072 0.067 0.070
KS total energy
2.761 14.350 128.155 198.885 524.829 675.535 2749.055 3123.615 7174.034

This functional belongs to both the CAT and NLS-TF families.

the parameter y we get lower relative errors—except for the
functional with 8=1/3 and y=1/2, which yields values with
an average error of about 1%. For B=4/3 we get relative
errors greater than 7%, so this parameter appears to be inad-
equate for use in a dependable KEDF. The best relative er-
rors are obtained for 8=2/3 and y=-1/2, with similar val-
ues (average value of 0.8%) to those obtained by usual
semilocal functionals [10-12].

Results for the NLS-TF family of functionals are shown
in Table III, where we have labeled with 5/6+ the rows for
B=5/6+ V576. Large errors are obtained for S=1/3, the best
results being those corresponding to y=—1/2 and a value of
B equal to 5/6 or 2/3 (as remarked in Secs. III and IV, when
B=2/3 this functional coincides with the CAT one). Conse-
quently, we can choose that functional with y=—1/2 and 8
=5/6 as the prototypical NLS-TF one—a symmetric func-
tional, because the densities at different points have the same
exponent in Eq. (25)—that yields the best results for this set
of atoms.

VI. KINETIC-ENERGY DENSITIES

In a previous paper, we presented a comparative study of
the quality of the kinetic-energy density (KED) of semilocal

functionals within the GGA scheme [12], proposing a quality
factor o that measures the local differences between KED
distributions. We showed that all the semilocal functionals
but those with a full vW term give total kinetic energies
within 2% of the exact one (i.e., they greatly improve the TF
results), but they place the additional KED (i.e., the KED not
included in the TF functional) in wrong regions of space. So
semilocal GGA functionals yield total kinetic energies better
than the TF functional by canceling the global errors in the
evaluation, but the local behavior of their KEDs becomes
worse than the TF behavior. Semilocal functionals that in-
clude higher density derivatives (see, e.g., [34-36]) deserve
additional study.

We have just shown in Sec. V that the fully nonlocal
families of functionals CAT and NLS-TF give good results
for the total kinetic energies in atomic systems. But, in order
to assess their quality, we must pay attention not only to the
results for the total kinetic energies but also to the results of
the KED generated by the functionals. For that reason, we
have also calculated the quality factor o for the functionals
we are presenting in this paper. Following Ref. [12], we use
an infinite set of valid KEDs té(r) through (see, e.g., Ref.

[37])

TABLE III. Relative errors in the total kinetic energy for the NLS-TF functionals, when using the KS densities. The average of the
relative errors is made over their absolute values. In the last row the KS values of the total energies are presented.

B 0% He Be Ne Mg Ar Ca Kr Sr Xe Av.
173 172 -0.179  -0.116 —-0.066 —-0.053 -0.039 -0.037 -0.029 —-0.031 -0.027 0.064
173 -1/2  -0404  -0.117 -0.011 0.062 0.044 0.048 0.030 0.026 0.026 0.085

2/3" 12 0.053 0.038 0.014 0.016 0.017 0.016 0.009 0.006 0.004 0.019
2/3" -1/2 -0.014  -0.008 —-0.003 0.008 0.014 0.014 0.006 0.002 0.001 0.008
516 12 0.073 0.053 0.021 0.022 0.021 0.020 0.012 0.009 0.006 0.026
5/6 -1/2 0.016 0.006 0.000 0.008 0.014 0.014 0.006 0.003 0.001 0.007
5/6+ 172 -0.042  -0.029 -0.019 -0.012 —-0.005 —-0.005 —-0.006 —-0.008 —-0.007 0.015
5/6+ -1/2  -0.164  -0.065 -0.010 0.020 0.021 0.022 0.010 0.006 0.006 0.036
KS total energy
2.761 14.350 128.155 198.885  524.829  675.535  2749.055  3123.615  7174.034

*This functional belongs to both the CAT and NLS-TF families.
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TABLE IV. Values of the Slater orbital exponents.

Atom
Orbital He Be N Ne Mg P Ar
Ls 1.6875 3.6848 6.6651 9.6421 11.6089 14.5578 17.5075
2s 0.9560 1.9237 2.8792 3.6960 49125 6.1152
2p 1.9170 2.8792 3.9129 5.4806 7.0041
3s 1.1025 1.8806 2.5856
3p 1.6288 2.2547
[39,40].

N
1
t(r) = EE [V b,(r)|> + aV2n(r), (27)
i=1

té(r) being constructed as an orbital-based KED plus the
Laplacian of the electron density multiplied by a prefactor a
that can have any real value. For each a we have a different
value of the quality factor,

f drlr5(r) - £5(r)|

o= )
Tn]

where £{"™(r) is the approximate KED for the given func-
tional. The value of o can be interpreted as the amount of the
approximated KED that is misplaced when compared to the
distribution of the orbital-based KED. To test every func-
tional in the appropriate conditions for that functional, we
have compared its approximate KED with its closest té(r),
choosing among all possible values of the parameter a, i.e.,
minimizing the value of o when varying the parameter a.
The best fit of the distribution té(r) to the approximated KED
is obtained by a golden search algorithm [38]. After the
minimization process, each functional has a value a,,;, cor-
responding to the lowest value of o; the KED té(r) closest to
£M"°(r) is evaluated by using a,, in Eq. (27).

As commented in Ref [12], in order to get good enough
atomic electron densities and orbital-based KEDs, the use of
properly orthogonalized Slater orbitals is very advisable, be-
cause they approximately describe the KS orbitals without
adding spurious behavior when the Laplacian of the density
is evaluated, and the correct cusp conditions and the density
decay for r— = can be achieved. The values of the Slater
orbital exponents used in this paper are shown in Table IV

(28)

In order to simplify the presentation, in this work we will
only discuss atoms with complete shells and complete half
shells up to Ar, using those functionals that obtained the best
total kinetic energies in Sec. V. As commented previously,
the parameter S=2/3 makes the KEDF belong to both the
CAT and the NLS-TF families, and has been proven to be an
accurate functional for both families. We must remark that
only double-density-dependent functionals have been used in
our calculations.

CAT family of functionals. In Table V we present the per-
cent relative errors for the total kinetic energies as evaluated
with the CAT family with orthogonalized Slater orbitals. As a
general trend, those functionals that gave small errors for the
total kinetic energies (when the KS electron density that
comes from the GAUSSIAN package was used) also yield al-
most the same small errors in this case. For the best func-
tionals, the errors (and their average values) are close to
those obtained with semilocal functionals [12]. Some
functionals—e.g., those with 8=2/3 and y=-1/2—jyield er-
rors smaller than 1%, the same level of accuracy as the best
semilocal functionals.

We present the values for the quality factor o in Table VI,
after fitting tgunc(r) to the KED 75(r) of Eq. (27). The results
clearly show that CAT functionals give in general smaller
values of ¢ than the TF functional. As a consequence, unlike
any semilocal functional studied in Ref. [12], these fully
nonlocal functionals give a better description of the KED
than the TF functional. Again, the parameters S=2/3 and
y=—1/2 correspond to the CAT functional with the best
value of o: on the average this functional misplaces about
13% of the KED.

NLS-TF family of functionals. Table V also includes the
relative errors for the kinetic energies when evaluated with

TABLE V. Relative errors in the total kinetic energy for the fully nonlocal functionals, when using the densities that come from the
orthogonalized Slater orbitals. The average is made over the absolute values of the relative errors.

Functional B y He Be N Ne Mg P Ar Av.
CAT 1/3 172 0.026 0.033 0.000 0.016 0.018 0.014 0.012 0.017
CAT 1 -1/2 0.035 0.023 0.006 0.024 0.028 0.029 0.030 0.025

NLS-TF 5/6 -1/2 0.030 0.010 -0.009 0.012 0.015 0.016 0.017 0.016
CAT/NLS-TF 2/3 -1/2 —-0.001 -0.005 -0.017 0.006 0.014 0.016 0.017 0.011
TF - - —-0.082 —-0.091 -0.102 -0.076 -0.074 -0.072 —-0.069 0.081
GEA2 - - 0.029 0.013 -0.012 0.004 0.001 —-0.003 -0.003 0.009
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TABLE VI. Values of o for the nonlocal functionals with a nonlocal term with TF structure.

Functional B y He Be N Ne Mg p Ar Av.
CAT 1/3 172 0.030 0.110 0.160 0.155 0.163 0.165 0.161 0.135
CAT 1 -1/2 0.069 0.129 0.157 0.179 0.185 0.184 0.182 0.155

NLS-TF 5/6 -1/2 0.042 0.099 0.133 0.157 0.165 0.167 0.166 0.133
CAT/NLS-TF 2/3 -1/2 0.021 0.090 0.138 0.161 0.172 0.175 0.174 0.133
TF - - 0.166 0.168 0.172 0.160 0.155 0.148 0.141 0.158
GEA2 - - 0.187 0.190 0.190 0.186 0.180 0.171 0.163 0.181

the NLS-TF family of functionals. As for the CAT family, we
again find better results for the functionals that gave smaller
errors when the kinetic energy was evaluated with the KS
densities.

The results for the quality factor of the KED, i.e., the
minimized values of o after varying a, are shown in Table
VI. For the parameters we have used—pB=2/3, y=-1/2 and
B=5/6, y=—1/2—about 13% of the KED is misplaced on
the average. As a general trend, we again obtain smaller val-
ues of ¢ than those for the TF functional—the best one
among all semilocal functionals; TF misplaces about 16% of
the KED.

VII. QUALITATIVE VIEW OF THE
KINETIC-ENERGY DENSITY

As commented in Secs. V and VI, we have found two
optimal functionals: for both the CAT and NLS-TF families,
that with 8=2/3 and y=-1/2; and for the NLS-TF family,
the functional with 8=5/6 and y=-1/2.

When CAT and NLS-TF functionals are tested by com-
paring the approximate KED with that orbital-based KED
that is closest to the approximate value (see [12]), and mini-
mizing o among all possible values of a, we found small
values for a. That reminds us of the results obtained for the
vW functional [12], which gives values of a very close to

700 " 1 " 1 " 1

—— t./(r) orbital-based
- - -CATp=14=1/3
—— CAT &nIS-TF

(=23 y=-1/2

600

500

400

300
200

100+

<100

i
200 41— : . : . . .
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FIG. 3. (Color online) Kinetic-energy density of the Ne atom for
some selected functionals.

zero for all atoms. Both the CAT and NLS-TF families are
constructed with a full vW functional, corrected with nonlo-
cal terms that have the mathematical structure of the TF
functional; it seems that the KEDs generated by them are
closer to the first term in Eq. (27), té(r):%EZ,qui(r) 2 di-
rectly related to Ty as written in Eq. (4), and which plays an
important role in the theory of atoms in molecules [41].
Thus, our fully nonlocal functionals give results close to
tg(r), whereas the semilocal functionals have been proved
[12] to yield results much closer to the definition of the
“classical” KED, which has been proposed to be the mean
average of 74(r) and 7} (r)=—3=Y, ¢/ (r)V2¢,(r) [37,42,43].
Further discussion about the nonuniqueness of the orbital-
based definitions of the KED can be seen in Ref. [12].

For the same reason, it can be expected that those func-
tionals with nonlocal simplified terms with TF structure will
better describe the KED in the neighborhood of the atomic
nucleus. In order to compare our results on the same footing,
we are going to compare the KEDs of the Ne atom, because
the value of the minimum o for almost all the functionals is
about 0.16 (for GEA2 we have a value of 0.19 instead). In
Fig. 3 we present the approximate KEDs for the Ne atom,
depicted vs 75(r)=3=Y |V(r)|>. Figure 4, on the other
hand, shows the differences among the approximate KEDs
and 75(r). As expected, it can be clearly seen that the fully

YRR R R S R
- - -CAT B=1y=-1/2
100 + ——CAT & nIS-TFp=2/3 y=-1/2
--—-TF
0 — ==
-100
0.0 05 06 07 08

r(a.u.)

FIG. 4. (Color online) Differences of the kinetic-energy density
of the Ne atom for some selected functionals, when compared with
the orbital-based kinetic-energy density tg
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nonlocal functionals describe more adequately the maximum
that corresponds to the “core” electrons—those in the region
r=0.1—and the pathologies of the TF functional, exhibiting
an excess of KED in the first peak of the density (corre-
sponding to the 1s orbital) as well as a defect of KED near
the nucleus, almost disappear. We must recall that these pa-
thologies are always enlarged in the semilocal functionals
[12].

VIII. CONCLUSIONS

The families of KEDFs with double-density-dependent
kernels given by Chacén, Alvarellos, and Tarazona and
Wang, Govind, and Carter are among the most sophisticated
in the literature.

In this paper, a complete CAT family has been generalized
and studied. These functionals are defined by Eq. (11), with a
nonlocal term (12) calculated with the averaged density (23).
The double-density-dependent kernel is obtained through the
differential equation (24).

We have also proposed an additional family, which we
called nonlocal simplified functionals with Thomas-Fermi
structure, which is able to gather the best properties of the
CAT and WGC functionals: (a) the mathematical structure of
the nonlocal term of the WGC functionals, which allows us
to evaluate them by a single integration on momentum space
(so the computational cost scales linearly with the number of
electrons of the system); (b) the properties of the kernel or
weight function of the CAT functionals, which makes them
applicable to extended and localized systems.

In this case the functionals are constructed using Eq. (17),
with a nonlocal term evaluated as a double convolution (25),
whereas the kernel satisfies Eq. (26).

We have paid attention not only to the total kinetic ener-
gies but also to the local behavior of the energy densities, by

PHYSICAL REVIEW A 76, 052504 (2007)

implementing the method developed in Ref. [12] to test the
KEDFs locally. After checking that, using good densities, the
functionals give accurate total kinetic atomic energies, we
discussed the quantitative measurement of the differences
between the KEDs by means of a quality factor o. Selecting
those functionals that give better results for the previous test,
both the CAT and NLS-TF families of functionals clearly
improve the values of the quality factor o, getting better
KEDs than the TF functional.

The qualitative study of the KED shows that the nonlocal
functionals have improved the description of the KED re-
lated to the core region, when compared with the results
obtained with all the semilocal approximations [12].

Both families ensure a better description of the KED than
any available semilocal functional, even if they do not al-
ways improve the TF results for each particular atom. We
must remark that, in any case, the TF functional has much
larger errors for the total kinetic energy than the semilocal
and fully nonlocal KEDFs. But the relative errors of these
KEDFs, being among the smallest found for any orbital-free
approximation, are still far too big for chemical precision.

So, we can conclude that these fully nonlocal models for
the KEDF get good enough results for both the energies and
the KEDs, showing the positive effects of introducing better
nonlocal characteristics on the construction of approximate
kinetic functionals.
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