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The spectral function of the closed-shell neon atom is computed by expanding the electron self-energy
through a set of Faddeev equations. This method describes the coupling of single-particle degrees of freedom
with correlated two-electron, two-hole, and electron-hole pairs. The excitation spectra are obtained using the
random-phase approximation �RPA�, rather than the Tamm-Dancoff framework employed in the third-order
algebraic diagrammatic construction method. The difference between these two approaches is studied, as well
as the interplay between ladder and ring diagrams in the self-energy. Satisfactory results are obtained for the
ionization energies as well as the energy of the ground state with the Faddeev RPA scheme, which is also
appropriate for the high-density electron gas.
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I. INTRODUCTION

Ab initio treatments of electronic systems become un-
workable for sufficiently complex systems. On the other
hand, the Kohn-Sham formulation �1� of density functional
theory �DFT� �2� incorporates many-body correlations �be-
yond Hartree-Fock�, while only single-particle �SP� equa-
tions must be solved. Due to this simplicity DFT is the only
feasible approach in some modern applications of electronic
structure theory. There is therefore a continuing interest both
in developing new and more accurate functionals and in
studying conceptual improvements and extensions to the
DFT framework. In particular, it is found that DFT can
handle short-range interelectronic correlations quite well,
while there is room for improvements in the description of
long-range �van der Waals� forces and dissociation pro-
cesses.

Microscopic theories offer some guidance in the develop-
ment of extensions to the DFT. Orbital-dependent functionals
can be constructed using many-body perturbation theory
�MBPT� �3,4�. More recently, the development of general ab
initio DFT �5,6� addressed the lack of a systematic improve-
ment in DFT methods. In this approach, one considers an
expansion of the exact ground-state wave function �e.g.,
MBPT or coupled cluster� from a chosen reference determi-
nant. Requiring that the correction to the density vanishes at
a certain level of perturbation theory allows one to construct
the corresponding approximation to the Kohn-Sham poten-
tial.

A different route has been proposed in Ref. �7�, by devel-
oping a quasiparticle �QP� DFT formalism. In the QPDFT
approach the full spectral function is decomposed into the
contribution of the QP excitations, and a remainder or back-
ground part. The latter part is complicated, but does not need
to be known accurately: it is sufficient to have a functional
model for the energy-averaged background part to set up a
single-electron self-consistency problem that generates the

QP excitations. Such an approach is appealing since it con-
tains the well-developed standard Kohn-Sham formulation of
DFT as a special case, while at the same time emphasis is put
on the correct description of QPs, in the Landau-Migdal
sense �8�. Hence, it can provide an improved description of
the dynamics at the Fermi surface. Given the close relation
between QPDFT and the Green’s function �GF� formulation
of many-body theory �9,10�, it is natural to employ ab initio
calculations in the latter formalism to investigate the struc-
ture of possible QPDFT functionals. In this respect it is im-
perative to identify which classes of diagrams are responsible
for the correct description of the QP physics.

Some previous calculations, based on GF theory, have
focused on a self-consistent treatment of the self-energy at
the second order �11–13� for simple atoms and molecules.
For the atomic binding energies it was found that the bulk of
correlations, beyond Hartree-Fock, are accounted for, while
significant disagreement with experiment persists for QP
properties like ionization energies and electron affinities. The
formalism beyond the second-order approximation was taken
up in Refs. �14–18� by employing a self-energy of the GW
type �19�. In this approach, the random-phase approximation
�RPA� in the particle-hole �ph� channel is adopted to allow
for possible collective effects on the atomic excited states.
The latter are coupled to the SP states by means of diagrams
like the last two in Fig. 1�c�. Two variants of the G0W0
formalism were employed in Ref. �14� �where the subscript
“0” indicates that nondressed propagators are used�. In the
first, only the direct terms of the interelectron Coulomb po-
tential are taken into account. In the second version, the ex-
change terms are also included when diagonalizing the ph
space �generalized RPA �GRPA�� and in constructing the
self-energy �generalized GW �GGW��. Although the ex-
change terms are known to be crucial in order to reproduce
the experimentally observed Rydberg sequence in the excita-
tion spectrum of neutral atoms, they were found to worsen

PHYSICAL REVIEW A 76, 052503 �2007�

1050-2947/2007/76�5�/052503�12� ©2007 The American Physical Society052503-1

http://dx.doi.org/10.1103/PhysRevA.76.052503


the agreement between the theoretical and experimental ion-
ization energies �14�.

In the GW approach the SP states are directly coupled
with the two-particle–one-hole �2p1h� and the two-hole–
one-particle �2h1p� spaces. However, only partial diagonal-
izations �namely, in the ph subspaces� are performed. This
procedure unavoidably neglects Pauli correlations with the
third particle �or hole� outside the subspace. In the case of
the GGW approach, this leads to a double counting of the
second-order self-energy which must be corrected for explic-
itly �20,21�. We note that simply subtracting the doubly
counted diagram is not completely satisfactory here, since it
introduces poles with negative residues in the self-energy.
More important, the interactions between electrons in the
two-particle �pp� and two-hole �hh� subspaces are neglected
altogether in �G�GW. Clearly, it is necessary to identify
which contributions, beyond GGW, are needed to correctly
reproduce the QP spectrum.

In this respect, it is known that highly accurate descrip-
tions of the QP properties in finite systems can be obtained
with the algebraic diagrammatic construction �ADC� method
of Schirmer and co-workers �22�. The most widely used
third-order version �ADC�3�� is equivalent to the so-called
extended 2p1h Tamm-Dancoff �TDA� method �23� and al-
lows one to predict ionization energies with an accuracy of
10–20 mhartrees in atoms and small molecules. Upon in-
spection of its diagrammatic content, the ADC�3� self-energy
is seen to contain all diagrams where TDA excitations are
exchanged between the three propagator lines of the interme-
diate 2p1h or 2h1p propagation. The TDA excitations are
constructed through a diagonalization in either 2p1h or 2h1p
space, and neglect ground-state correlations. However, it is
clear that use of TDA leads to difficulties for extended sys-
tems. In the high-density electron gas, for example, the cor-
rect plasmon spectrum requires the RPA in the ph channel,
rather than the TDA.

In order to bridge the gap between the QP description in
finite and extended systems, it seems therefore necessary to

develop a formalism where the intermediate excitations in
the 2p1h or 2h1p propagator are described at the RPA
level. This can be achieved by a formalism based on employ-
ing a set of Faddeev equations, as proposed in Ref. �24� and
subsequently applied to nuclear structure problems �25–27�.
In this approach, the GRPA equations are solved separately
in the ph and pp -hh subspaces. The resulting polarization
and two-particle propagators are then coupled through an
all-order summation that accounts completely for Pauli ex-
changes in the 2p1h and 2h1p spaces. This Faddeev RPA
�FRPA� formalism is required if one wants to couple propa-
gators at the RPA level or beyond. Apart from correctly in-
corporating Pauli exchange, the FRPA takes the explicit in-
clusion of ground-state correlations into account, and can
therefore be expected to apply to both finite and extended
systems. The ADC�3� formalism is recovered as an approxi-
mation by neglecting ground-state correlations in the inter-
mediate excitations �i.e., replacing RPA with TDA phonons�.

In this work, we consider the neon atom and apply the
FRPA method to a nonrelativistic electronic problem. The
relevant features of the FRPA formalism �also extensively
treated in Ref. �24��, are introduced in Sec. II. The applica-
tion to the neon atom is discussed in Sec. III, where we also
investigate the separate effects of the ladder and ring series
on the self-energy, as well as the differences between includ-
ing TDA and RPA phonons. Our findings are summarized in
Sec. IV. Some more technical aspects are relegated to the
Appendix, where the interested reader can find the derivation
of the Faddeev expansion for the 2p1h-2h1p propagator,
adapted from Ref. �24�. In particular, the approach used to
avoid the multiple-frequency dependence of the Green’s
functions is discussed in the Appendix, Sec. 1 along with its
basic assumptions. The explicit expressions of the Faddeev
kernels are given in the Appendix, Sec. 3. Together with Ref.
�24�, the Appendix provides sufficient information for an in-
terested reader to apply the formalism.

II. FORMALISM

The theoretical framework of the present study is that of
propagator theory, where the object of interest is the SP
propagator, instead of the many-body wave function. In this
paper we will employ the convention of summing over re-
peated indices, unless specified otherwise. Given a complete
orthonormal basis set of SP states, labeled by � ,� , . . ., the SP
propagator can be written in its Lehmann representation as
�9,10�

g����� = �
n

�X�
n��X�

n

� − �n
+ + i�

+ �
k
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k �Y�
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− − i�
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N−1 the eigenenergies of the �N±1�-electron
system. Therefore, the poles of the propagator reflect the
electron affinities and ionization energies.

The SP propagator solves the Dyson equation
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FIG. 1. �Color online� �a� Diagrammatic expansion of R��� in
terms of the �antisymmetrized� Coulomb interaction and undressed
propagators. �b� R��� is related to the self-energy according to Eq.
�3�. �c� By substituting the diagrams �a� in the latter equation, one
finds the perturbative expansion of the self-energy.
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g����� = g��
0 ��� + g�	

0 ���
	�
� ���g����� , �2�

which depends on the irreducible self-energy 
����. The lat-
ter can be written as the sum of two terms,


��
� ��� = 
��

HF +
1

4
V��,
�R
��,	�����V	�,��, �3�

where 
HF represents the Hartree-Fock diagram for the self-
energy. In Eqs. �2� and �3�, g0��� is the SP propagator for the
system of noninteracting electrons, whose Hamiltonian con-
tains only the kinetic energy and the electron-nucleus attrac-
tion. V��,	� represent the antisymmetrized matrix elements of
the interelectron �Coulomb� repulsion. Note that in this work
we consider only antisymmetrized elements of the interac-
tion; hence our results for the ring summation always com-
pare to the generalized GW approach. Equation �3� intro-
duces the �2p1h-2h1p�-irreducible propagator R���, which
carries the information concerning the coupling of SP states
to more complex configurations. Both 
���� and R��� have
a perturbative expansion as a power series in the interelec-

tron interaction V̂. Some of the diagrams appearing in the
expansion of R��� are depicted in Fig. 1, together with the
corresponding contributions to the self-energy. Note that al-
ready at zero order in R��� �three free lines with no mutual
interaction� the second-order self-energy is generated.

Different approximations to the self-energy can be con-
structed by summing particular classes of diagrams. In this
work we are interested in the summation of rings and lad-
ders, through the �G�RPA equations. In order to include such
effects in R���, we first consider the polarization propagator
describing excited states in the N-electron system:

���,	���� = �
n�0

��0
N�c�

†c���n
N���n

N�c	
†c���0
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, �4�

and the two-particle propagator, which describes the addition
or removal of two electrons:

g��,	�
II ��� = �

n

��0
N�c�c���n

N+2���n
N+2�c	

†c�
†��0
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We note that the expansion of R��� arises from applying
the equations of motion to the SP propagator �1�, which is
associated with the ground state ��0

N�. Hence, all the Green’s
functions appearing in this expansion will also be ground-
state based, including Eqs. �4� and �5�. However the latter
contain, in their Lehmann representations, all the relevant
information regarding the excitation of ph, pp and hh col-
lective modes. The approach of Ref. �24� consists in comput-
ing these quantities by solving the ring GRPA and the ladder
RPA equations �10�, which are depicted for propagators in
Fig. 2. In the more general case of a self-consistent calcula-
tion, a fragmented input propagator can be used and the cor-

responding dressed �G�RPA �D�G�RPA� equations �10,28�
are solved �see Eqs. �A2a� and �A2b��. Since the propagators
�4� and �5� reflect two-body correlations, they still have to be
coupled to an additional SP propagator in order to obtain the
corresponding approximation for the 2p1h and 2h1p compo-
nents of R���. This is achieved by solving two separate sets
of Faddeev equations.

Taking the 2p1h case as an example, one can split

R�2p1h���� into three different components R̄�i���� �i
=1,2 ,3� which differ from each other by the last pair of lines
that interact in their diagrammatic expansion,

R̄��	,
��
�2p1h� ��� = �G��	,
��

0�
��� − G��	,
��

0�
����

+ �
i=1,2,3

R̄��	,
��
�i� ��� , �6�

where G0�
��� is the 2p1h propagator for three freely propa-

gating lines. These components are solutions of the follow-
ing set of Faddeev equations �29�:

R̄��	,
��
�i� ��� = G��	,
�����

0�

����
�����,
�����
�i� ����R̄
�����,
��

�j� ���

+ R̄
�����,
��
�k� ��� + G
�����,
��

0�

���

− G��
���,
��
0�

����, i = 1,2,3, �7�

where �i , j ,k� are cyclic permutations of �1,2,3�. The interac-
tion vertices ��i���� contain the couplings of a ph, pp or hh
collective excitation and a freely propagating line. These are
given in the Appendix in terms of the polarization �4� and
two-particle �5� propagators. Equations �7� include RPA-like
phonons and fully describe the resulting energy dependence
of R���. However, they still neglect energy-independent
contributions—even at low order in the interaction—that
also correspond to relevant ground-state correlations. The
latter can be systematically inserted according to

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 2. �Color online� Diagrammatic equations for the polariza-
tion �above� and the two-particle �below� propagators in the GRPA
approach. Dashed lines are always antisymmetrized Coulomb ma-
trix elements and the full lines represent free �undressed�
propagators.
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R��	,
��
�2p1h� ��� = U��	,
�����R̄
�����,
�����

�2p1h� ���U
�����,
��
† ,

�8�

where R��� is the propagator we employ in Eq. �3�, R̄��� is
the one obtained by solving Eqs. �7�, U	I+�U, and I is the
identity matrix. Following the algebraic diagrammatic con-
struction method �22,23�, the energy-independent term �U
was determined by expanding Eq. �8� in terms of the inter-
action and requiring that it satisfies perturbation theory up to
first order �corresponding to third order in the self-energy�.
The resulting �U, employed in this work, is the same as in
Ref. �23� and is reported in the Appendix, Sec. 3 for com-
pleteness. It has been shown that the additional diagrams
introduced by this correction are required to obtain accurate
QP properties. Equations �7� and �8� are valid only in the
case in which a mean-field propagator is used to expand
R���. This is the case of the present work, which employs
Hartree-Fock SP propagators as input. The derivation of
these equations for the general case of a fragmented propa-
gator is given in the Appendix. More details about the actual
implementation of the Faddeev formalism for 2p1h and
2h1p propagation have been presented in Ref. �24�. The cal-
culation of the 2h1p component of R��� follows completely
analogous steps.

In summary, the present formalism includes the effects of
ph and pp-hh motion to be included simultaneously, while
allowing interferences between these modes. These excita-
tions are evaluated here at the RPA level and are then
coupled to each other by solving Eqs. �7�. This generates
diagrams like the one displayed in Fig. 3, with the caveat that
two phonons are not allowed to propagate at the same time.
Equations �7� also assure that Pauli correlations are properly
taken into account at the 2p1h or 2h1p level. In addition,
one can in principle employ dressed SP propagators in these
equations to generate a self-consistent solution. If we neglect
the ladder propagator gII��� �5� in this expansion, we are left
with the ring series alone and the analogous physics ingredi-
ents as for the generalized GW approach. However, this dif-
fers from GGW due to the fact that no double counting of the
second-order self-energy occurs, since the Pauli exchanges
between the polarization propagator and the third line are
properly accounted for �see Fig. 3�. Alternatively, one can

suppress the polarization propagator to investigate the effects
of pp and hh ladders alone.

It is instructive to replace all RPA phonons in the above
equations with TDA ones; this amounts to allowing only
forward-propagating diagrams in Fig. 2, and is equivalent to
separate diagonalizations in the spaces of ph, pp, and hh
configurations, relative to the HF ground state. It can be
shown that using these TDA phonons to sum all diagrams of
the type in Fig. 3 reduces to one single diagonalization in the
2p1h or 2h1p space. Therefore, Eqs. �7� and �8� with TDA
phonons lead directly to the “extended” 2p1h TDA of Ref.
�23�, which was later shown to be equivalent to ADC�3� in
the general ADC framework �22�. The Faddeev expansion
formalism of Ref. �24� creates the possibility of going be-
yond the ADC�3� by including RPA phonons. This is more
satisfactory in the limit of large systems. At the same time,
the computational cost remains modest since only diagonal-
izations in the 2p1h and 2h1p spaces are required.

Note that complete self-consistency requires the use of
fragmented �or dressed� propagators in the evaluation of all
ingredients leading to the self-energy. This is outside the
scope of the present paper, but we included partial self-
consistency by taking into account the modifications to the
HF diagram obtained by employing the correlated one-body
density matrix and iterating to convergence. This is relatively
simple to achieve, since the 2p1h or 2h1p propagator is
only evaluated once with the input HF propagators. Below,
we will give results with and without this partial self-
consistency at the HF level.

III. RESULTS

Calculations have been performed using two different
model spaces: �1� a standard quantum-chemical Gaussian ba-
sis set, the augmented correlation-consistent polarization va-
lence triple-zeta �aug-cc-pVTZ� set for neon �30�, with Car-
tesian representation of the d and f functions; �2� a numerical
basis set based on HF and subsequent discretization of the
continuum, to be detailed below. The aug-cc-pVTZ basis set
was used primarily to check our formalism with the ADC�3�
result in the literature �i.e., �31�, where this basis was em-
ployed�. The HF+continuum basis allows us to approach, at
least for the ionization energies, the results for the full SP
space �basis set limit�.

The HF+continuum is the same discrete model space em-
ployed previously in Refs. �11,14�. It consists of the follow-
ing steps. �1� We solve on a radial grid the HF problem for
the neutral atom. �2� We then add to this fixed nonlocal HF
potential a parabolic potential wall of the type U�r�=��r

TABLE I. Parameters that define the SP basis: radius of the
confining wall rw �in atomic units� and number of orbits no used for
different partial waves l. The value of cw is always set to 5 a.u.

l 0 1 2 3 4 5 6

rw 2.0 4.0 0.0 0.0 0.0 0.0 0.0

no 12 21 10 10 5 5 5

(ph)

(pp/hh)

ΠΠ
II

Π(ph)

gII (pp/hh)

(ph)

Π(ph)

g

FIG. 3. �Color online� Example of one of the diagrams that are
summed to all orders by means of the Faddeev equations �7� �left�.
The corresponding contribution to the self-energy, obtained upon
insertion into Eq. �3�, is also shown �right�.
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−rw�cw�r−rw�2, placed at a distance rw from the nucleus. The
latter eigenvalue problem has a basis of discrete eigenstates.
This basis is truncated by specifying some largest angular
momentum lmax and the number of virtual states for each
value of l� lmax. �3� We solve the HF problem again, without
the potential wall, in this truncated discrete space. The result-
ing basis set is used for the subsequent Green’s function
calculations.

When a sufficiently large number of states is retained after
truncation, the final results should approach the basis set
limit. In particular, the results should not depend on the
choice of the auxiliary confining potential. This was verified
in Ref. �11� for the second order, and in Ref. �14� for the
G0W0 self-energy; in these cases the self-energy is suffi-
ciently simple that extensive convergence checks can be
made for various choices of the auxiliary potential. The pa-
rameters of the confining wall and the number of SP states
kept in the basis set were optimized in Ref. �11�, by requiring
that the ionization energy is converged to about 1 mhartree
for the second-order self-energy. In Ref. �14� the same choice
of basis set was also seen to bring the ionization energy for
the G0W0 self-energy near convergence. For completeness,
the details of this basis are reported in Table I. While the
self-energy in the present paper is too complicated to allow
similar convergence checks, it seems safe to assume that
basis set effects will affect the calculated ionization energies
by at most 5 mhartrees.

In Table II we compare, for the aug-cc-pVTZ basis, the
ionization energies of the main single-hole configurations
when TDA or RPA phonons are employed in the Faddeev
construction �labeled FTDA and FRPA, respectively, in the
table�. Note that use of TDA phonons corresponds to the
usual ADC�3� self-energy. We find that the replacement of
TDA with RPA phonons provides more screening, leading to
slightly fewer bound poles, which are shifted toward the ex-
perimental values. This shift increases with binding energy.
As discussed at the end of Sec. I, one can include consis-
tency of the static part of the self-energy. About eight itera-
tions are needed for convergence. This is a non-negligible
correction, providing about 5 mhartrees more binding �i.e.,
larger ionization energies� for the valence and subvalence 2p
and 2s, 15 mhartrees for the deeply bound 1s, and 60 mhar-
trees to the total binding energy. Our converged result for the
Faddeev TDA self-energy �labeled FTDAC in Table II� is in

good agreement with the ADC�3� value for the 2p ionization
energy �−0.804 hartrees� quoted in �31�, as it should be.

The analogous results obtained with the larger HF
+continuum basis are given in Table III, which allows us to
assess overall stability and basis set effects. We find exactly
the same trends as for aug-cc-pVTZ. In particular, the reduc-
tion of ionization energies from the replacement of TDA with
RPA phonons is almost independent of the basis set used,
while the effect of including partial consistency is roughly
halved. Overall, the ionization states are always more bound
with the larger basis set; while the basis set limit could be
still more bound than the present results with the HF
+continuum basis set, it is likely �based on the G0W0 ex-
trapolation in Ref. �14�� that the difference does not exceed 5
mhartrees.

As discussed in Sec. I, the FRPA self-energy contains
RPA excitations of both ph type �ring diagrams� and pp-hh
type �ladder diagrams�. It is instructive to analyze their sepa-
rate contributions to the final ionization energies, in order to
understand how the FRPA self-energy is related to the stan-
dard �G�GW self-energy. Table IV compares the results for
the ionization energies, obtained with the second-order self-
energy, to different approximations for including the ring
summations. As one can see, the second-order self-energy
generates an l=1 SP energy of −0.747 mhartrees, which is
46 mhartrees above the empirical 2p ionization energy. The
G0W0 self-energy, which includes the ring summation with
only direct Coulomb matrix elements, improves this result
and brings it close to experiment. The 2s behaves in a similar
way. Unfortunately, including the exchange terms of the in-
terelectron repulsion in the GG0W0 method turns out to have
the opposite effect �the 2p ionization energy becomes
−0.712 hartrees �14��,1 and the agreement with experiment
is lost. Obviously, GG0W0 is too simplistic to account for
exchange in the ph channel.

With the FRPA �ring� self-energy one can go one step
further and employ the Faddeev expansion to also force

1Note that the G0W0 and GG0W0 results of Ref. �14� were ob-
tained by retaining only the diagonal part of the electron self-
energy, 
��

� ��� in the HF+continuum basis. This approximation
was not made in the present work. The error in the ionization ener-
gies incurred by retaining the diagonal approximation is quite small
�about 
2 mhartrees �14� for the Ne atom�, but larger effects are
possible for the total binding energy.

TABLE II. Results with the aug-cc-pVTZ basis. The first three rows list the energies of the main SP
fragments below the Fermi level, as predicted by different self-energies. FTDA �FRPA� refers to the Faddeev
summation with TDA �RPA� phonons, respectively. In all cases the self-energy was corrected at third order
through Eq. �8�. The added “C” refers to partial self-consistency, when the static �HF-type� self-energy is
consistent with the correlated density matrix. Without C, the pure HF self-energy was taken. In the FRPAC
column the strength of the fragment is indicated in parentheses. The last row is the total electronic binding
energy. The experimental values are taken from Refs. �32,33�. All energies are in atomic units.

FTDA FRPA FTDAC FRPAC Expt.

2p −0.799 −0.791 −0.803 −0.797 �0.94� −0.793 �0.92�
2s −1.796 −1.787 −1.802 −1.793 �0.90� −1.782 �0.85�
1s −32.126 −32.087 −32.140 −32.102 �0.86� −31.70

Etot −128.778 −128.772 −128.836 −128.840 −128.928
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proper Pauli exchange correlations in the 2p1h and 2h1p
spaces. As shown in Table IV, this enhances the screening
due to the exchange interaction terms, leading to even less
binding for the 2s and 2p electrons. The corrections relative
to the second-order self-energy can be large �100 mhartrees
for the 2s state� and in the direction away from the experi-
mental value. We also note that the larger shift, in the 2s
orbit, is accompanied by an increase of the fragmentation
�see Fig. 4 and Table IV�. Similar observations were also
made in Ref. �14� for other atoms. In general, ring summa-
tions in the direct channel alone bring the quasihole peaks
close to the experiment. This agreement is then spoiled as
soon as one includes proper exchange terms in the self-
energy. On the other hand, exchange in the ph channel is
required to reproduce the correct Rydberg sequence in the
excitation spectrum of neutral atoms. So further corrections
must arise from other diagrams, and obviously the summa-
tion of ladder diagrams can play a relevant role, since these
contribute to the expansion of the self-energy at the same
level as that of the ring diagrams.

The result when including only ladder-type RPA phonons
in the FRPA self-energy is also shown in Table IV. One can
see that pp and hh ladders do actually work in the opposite
way to the ph channel ring diagrams, and have the same
order of magnitude with, e.g., a shift of 66 mhartrees for the
2s state relative to the second-order result. When combined
with the ring diagrams in the full FRPA self-energy, the
agreement with experiment is restored again. Note that the
final result cannot be obtained by adding the contributions of
rings and ladders, but depends nontrivially on the interplay
between these classes of diagrams, thereby pointing to sig-
nificant interference effects.

With the FRPA �ring� self-energy, where only the contri-
butions of the ph channel are included, the main peaks listed
in Table IV are not only considerably shifted but also
strongly depleted, e.g., a strength of only 0.56 for the main
2s peak. The complete spectral function for the l=0 strength
in Fig. 4 shows that the depletion of the main fragment is
accompanied by strong fragmentation over several states.
While correlation effects are overestimated in FRPA �ring�,
they are suppressed in FRPA �ladder�, where only the
pp and hh ladders are included in the self-energy. In this
case one finds a spectral distribution closer to the HF one,
with a main 2s fragment of strength 0.95 and less fragmen-
tation than the second-order self-energy. The spectral distri-
bution generated by the complete FRPA self-energy is again
a combination of the above effects. The strength of the
deeply bound 1s orbital behaves in an analogous way. The
strength of the main peak is reduced but several satellite
levels appear due to the mixing with 2h1p configurations. In

all the calculations reported in Fig. 4 we found a summed
l=0 strength exceeding 0.98 in the interval �−40 hartrees,
−30 hartrees� which can be associated with the 1s orbital,
and this remains true even in the presence of strong correla-
tions using the FRPA �ring� self-energy. Of course, the mix-
ing with 3h2p configurations, not included in this work, may
further contribute to the fragmentation pattern in this energy
region.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, the electronic self-energy for the Ne atom
was computed by the FRPA method, which includes—
simultaneously—the effects of both ring and ladder dia-
grams. This was accomplished by employing an expansion
of the self-energy based on a set of Faddeev equations. This
technique was originally proposed for nuclear structure ap-
plications �24� and is described in the Appendix. At the level
of the self-energy one sums all diagrams where the three
propagator lines of the intermediate 2p1h or 2h1p propaga-
tion are connected by repeated exchange of RPA excitations
in both the ph, pp and hh channels. This differs from the
ADC�3� formalism in the fact that the exchanged excitations
are of the RPA type, rather than the TDA type, and therefore
take ground-state correlations effects into account. The cou-
pling to the external points of the self-energy uses the same
modified vertex as in ADC�3�, which must be introduced to

TABLE III. Results with the HF+continuum basis set from Table I. See also the caption of Table II.

FTDA FRPA FTDAC FRPAC Expt.

2p −0.807 −0.799 −0.808 −0.801 �0.94� −0.793 �0.92�
2s −1.802 −1.792 −1.804 −1.795 �0.91� −1.782 �0.85�
1s −32.136 −32.097 −32.142 −32.104 �0.81� −31.70

Etot −128.863 −128.857 −128.883 −128.888 −128.928

TABLE IV. Energy �in a.u.� and strength �numbers in parenthe-
ses� of the main fragments in the spectral function of neon, gener-
ated by different self-energies. Results for the HF+continuum basis.
Consecutive rows refer to �1� HF; �2� second-order self-energy; �3�
G0W0 results from Ref. �14�; �4� FRPA self-energy with only ph
rings retained; �5� FRPA self-energy with only pp-hh ladders re-
tained; �6� complete FRPA self-energy. In all FRPA results the self-
energy was corrected at third order through Eq. �8�. The static self-
energy was pure HF �no partial self-consistency�. The experimental
values are taken from Refs. �32,33�.

1s 2s 2p

HF −32.77 �1.00� −1.931 �1.00� −0.850 �1.00�

�2� −31.84 �0.74� −1.736 �0.88� −0.747 �0.91�

G0W0 −31.14 �0.85� −1.774 �0.91� −0.801 �0.94�
FRPA �ring� −31.82 �0.73� −1.636 �0.56� −0.730 �0.80�

FRPA �ladder� −32.04 �0.87� −1.802 �0.95� −0.781 �0.96�
FRPA −32.10 �0.81� −1.792 �0.91� −0.799 �0.94�
Expt. −31.70 −1.782 �0.85� −0.793 �0.92�
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include consistently all third-order perturbative contribu-
tions.

The resulting main ionization energies in the neon atom
are at least of the same quality, and even somewhat im-
proved, compared to the ADC�3� result. Note that, numeri-
cally, the FRPA can be implemented as a diagonalization in
2p1h-2h1p space, implying about the same cost as an
ADC�3� calculation. The present study also shows that in
localized electronic systems subtle cancellations occur be-
tween the ring and ladder series. In particular, only a combi-
nation of the ring and ladder series leads to sensible results,
as the separate ring series tends to correct the second-order
result in the wrong direction.

Since the limit to extended systems requires a RPA treat-
ment of excitations, the FRPA method holds promise of
bridging the gap between accurate descriptions of quasipar-
ticles in both finite and extended systems. In particular, the
GW treatment of the electron gas has been shown to yield
excellent binding energies, but poor quasiparticle properties
�34,35�. Further progress beyond GW theory requires a con-
sistent incorporation of exchange in the ph channel. The
FRPA technique may be highly relevant in this respect. A
common framework for calculating accurate QP properties in
both finite and extended systems is also important for con-
straining functionals in quasiparticle density functional
theory �7�.

Finally, complete self-consistency requires sizable com-
putational efforts for bases as large as the HF+continuum

basis used here. It would nevertheless represent an important
extension of the present work, since it is related to the satis-
faction of conservation laws �36,37�. These issues will be
addressed in future work.
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APPENDIX: FADDEEV EXPANSION
OF THE 2p1h-2h1p PROPAGATOR

Although only the one-energy �or two-time� part of the
2p1h-2h1p propagator enters the definition of the self-
energy, Eq. �3�, a full resummation of all its diagrammatic
contributions would require explicit treatment of the depen-
dence on three separate frequencies, corresponding to the
three final lines in the expansion of R���. For example, in-
serting the RPA ring �ladder� series in R��� implies the
propagation of a ph �pp-hh� pair of lines both forward and
backward in time, while the third line remains unaffected. A
way out of this situation is to solve the Bethe-Salpeter-like
equations for the polarization and ladder propagators sepa-
rately and then to couple them to the additional line. If it is
assumed that different phonons do not overlap in time, the
three lines in between phonon structures will propagate only
in one time direction �see Figs. 3 and 5�. In this situation, the
integration over several frequencies can be circumvented by
following the prescription detailed in the next section. This
approach will be discussed in the following for the general
case of a fully fragmented propagator, in order to derive a set
of Faddeev equations capable of dressing the SP propagator
self-consistently. Since the forward �2p1h� and the backward
�2h1p� parts of R��� decouple into two analogous sets of
equations, it is sufficient to focus on the first case alone.
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FIG. 4. �Color online� Spectral function for the s states in Ne
obtained with various self-energy approximations. From the top
down: the second-order �
�2��, the FRPA �ring�, the FRPA �ladder�,
and the full FRPA self-energies. The strength is given relative to the
Hartree-Fock occupation of each shell. Only fragments with
strength larger than Z�0.005 are shown.

Γ(π)
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FIG. 5. �Color online� Diagrammatic representation of Eq. �A3�.
Double lines represent fully dressed SP Green’s functions, which,
however, are restricted to propagate only in one time direction �i.e.,
only one of the two terms on the right-hand side of Eq. �1� is
retained�. The Faddeev equations �A9� and �7� allow for both for-
ward and backward propagation of the phonons ������� and
��II���� as long as these do not overlap in time. For the propagators,
time ordering is assumed with forward propagation in the upward
direction.
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1. Multiple-frequency integrals

We start by considering the effective interactions in the ph
and pp-hh channels that correspond to Eqs. �4� and �5�
stripped of the external legs. In the present work, these are
the following two-time objects:

���,	�
��� ��� = V��,�	 + V��,�
�
�,��

II ���V��,�	

= V��,�	 + �
n

����
n ���	�

n

� − �n
� + i�

− �
n�

���
n� ���	

n���

� + �n�
� − i�

,

�A1a�

���,	�
�II� ��� = V��,	� + V��,
�g
�,��

II ���V��,	�

= V��,	� + �
n

����
+,n���	�

+,n

� − �n
�+ + i�

− �
k

���
−,k��	�

−,k��

� − �k
�− − i�

,

�A1b�

where the residues and poles for the ring series are
���

n = ��n
N�c


† c���0
N�V
�,�� and �n

�=En
N−E0

N. For the

ladders, ���
+,n= ��n

N+2�c

† c�

†��0
N�V
�,�� and ���

−,k

=V��,
���k
N−2�c
c���0

N�, with poles �n
�+=En

N+2−E0
N and �k

�−

=E0
N−Ek

N−2. Equations �A1� solve the ring and ladder RPA
equations, respectively,

���,	�
��� ��� = V��,�	 + ���,
�

��� ���� d�1

2�i
g
��� + �1�

�g����1�V��,�	, �A2a�

���,	�
�II� ��� = V��,	� + ���,
�

�II� ���
1

2
� d�1

− 2�i
g
��� − �1�

�g����1�V��,	�. �A2b�

To display how the phonons �A1a� and �A1b� enter the ex-
pansion of R���, we perform explicitly the frequency inte-
grals for the diagram of Fig. 5. Since it is assumed that the
separate propagator lines evolve only in one time direction,
only the forward-going �g����� or the backward-going
�g����� part of Eq. �1� must be included for particles and
holes, respectively. After some algebra, one obtains

�R��	,
����� = � d�1

2�i

d�2

2�i

ds
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The last term in this expression contains an energy denomi-
nator that involves the simultaneous propagation of two
phonons. Thus, it will be discarded in accordance with our

assumptions. It must be stressed that similar terms, with
overlapping phonons, imply the explicit contribution of at
least 3p2h or 3h2p. A proper treatment of these would re-
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quire a nontrivial extension of the present formalism, which
is beyond the scope of this paper.

The remaining part in Eq. �A3� is the relevant contribu-
tion for our purposes. This has the correct energy depen-
dence of a product of denominators that correspond to the
intermediate steps of propagation. All of these involve con-
figurations that have at most 2p1h character although

ground-state correlations are implicitly included by resum-
ming the RPA series. Still, this term does not factorize into a
product of separate Green’s functions due to the summations
over the fragmentation indices ni and ki �labeling the eigen-
states of the �N±1�-electron systems�. This is overcome if
one defines the matrices G0����, ��1,2����, and ��3����, with
elements �no implicit summation is used�
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n
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In these definitions, the row and column indices are ordered to represent at first two quasiparticle lines and then a quasihole.
The index i in ��i�� refers to the line that propagates independently along with the phonon. Using Eqs. �A4�, the first term on
the right-hand side of Eq. �A3� can be written as

�R��	,
��
�2p1h� ��� = �

n�n�k	

n
n�k�

�G0������1�����G0������3�����G0������n��n�	k	;
n
�n��k�
. �A5�

Equation �A5� generalizes to diagrams involving any number of phonon insertions, as long as the terms involving two or
more simultaneous phonons are dropped. Based on this relation, we use the following prescription to avoid performing
integrals over frequencies. One extends all the Green’s functions to objects depending not only on the SP basis indices �� ,� ,	�
but also on the indices labeling quasiparticles and holes �ni and ki�. Whether a given argument represents a particle or a hole
depends on the type of line being propagated. At this point, one can perform calculations working with only two-time
quantities. The standard propagator is recovered at the end by summing the “extended” one over the quasiparticle or quasihole
indices.

2. Faddeev expansion

The 2p1h-2h1p propagator that includes the full resummation of both the ladder and ring diagrams at the �G�RPA level is
the solution of the following Bethe-Salpeter-like equation:

R��	,
����1,�2,�3� = �g�
��1�g����2� − g�
��2�g����1��g�	�− �3�

+ �g��1
��2�g	1	�− �3�V�1�,	1�� ds

2�i
R���,
����1,s,�2 + �3 − s�

+ g��1
��1�g	1	�− �3�V�1�,	1�� ds

2�i
R���,
���s,�2,�1 + �3 − s�

+
1

2
g��1

��1�g��1
��2�V�1�1,��� ds

− 2�i
R��	,
���s,�1 + �2 − s,�3�� . �A6�

If this equation is solved, a double integration of R��1 ,�2 ,�3� will yield the two-time propagator R��� contributing to Eq. �3�.
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However, the numerical solution of Eq. �A6� appears beyond reach of the present day computers and one needs to avoid
dealing directly with multiple-frequency integrals. The strategy used is to first solve the RPA Eqs. �A2a� and �A2b� separately.
Once this is done it is necessary to rearrange the series �A6� in such a way that only the resummed phonons appear. Following
the formalism introduced by Faddeev �29,38�, we identify the components R�i���� with the three terms between round brackets
in Eq. �A6�. By employing Eqs. �A2a� and �A2b� one is led to the following set of equations:2

R��	,
��
�i� ��1,�2,�3� = g��1

��1�g��1
��2�g	1	�− �3�� ds1ds2ds3
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+ R
1�1�1,
��
�j� �s1,s2,s3� + R
1�1�1,
��

�k� �s1,s2,s3��, i = 1,2,3, �A7�

where �i , j ,k� are cyclic permutations of �1,2,3� and the interaction vertices ��i���1 ,�2 ,�3� are given by

���	,
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Finally, we apply the prescription of the Appendix, Sec. 1 and substitute for R��1 ,�2 ,�3� its extended but two-time version
R���. This leads to the following set of Faddeev equations which propagate 2p1h forward in time:
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Since the full energy dependence is retained in Eq. �A7�, the self-energy corresponding to its solution, R��1 ,�2 ,�3�, is
complete up to third order �see Eq. �3��. This is no longer the case after the reduction to a two-time propagator. In particular,
the approximation that only forward 2p1h propagation is allowed between different phonons implies that all diagrams with
different time propagation of their external lines are neglected in Eqs. �A9�. However, these terms are not energy dependent
and can be reinserted in a systematic way a posteriori as in Eq. �8�. In the general case,

R��	,
����� = U��	;��n
����n

��	�k
��

�2p1h� R̄��n
����n

��	�k
��;
�n


���nv���k
��

�2p1h� ���U
�n

���n

����k
��;
��

�2p1h�† �A10�

and

U��	;
n
�n��k�

�2p1h� = ��
����	� + �U��	;
n
�n��k�

�2p1h� , �A11�

where the correction �U can be determined by comparison with perturbation theory.
The vertices �A4� that appear in Eqs. �A9� and U�2p1h� are expressed in terms of the fully fragmented propagator. Therefore,

this approach allows one to obtain self-consistent solutions of the SP Green’s function �25�. Whenever, as in this work, only
a mean-field propagator is employed as input, there exists a one-to-one correspondence between the fragmentation indices and
the SP basis. This is expressed by the relations X�

n =�n,��1−���F� and Y�
k =�k,����F, where F represents the set of occupied

orbits. In this case, it is possible to drop one set of indices so that Eqs. �A9� and �A10� simplify into the form �7� and �8�.

3. Faddeev vertices

In practical applications, it is worth noting that the poles of the free propagator G0���, Eq. �A4a�, do not contribute to the
kernel of Eqs. �A9�. This can be proven by employing the closure relations for the RPA problem, in the form obtained by
extracting the free poles in Eqs. �A2�. As an example, for the forward poles of the ladder propagator these are

2Note that the present definitions of the R�i� differ from the ones of Ref. �24�, which contain the additional term �G0−G0,ex� /2. The two
different forms of the Faddeev equations that result can be easily related to each other and are completely equivalent. The definition used
here agrees with the standard literature on the subject �29,38�.
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+ � = 0, ∀ n1,n2, �A12�

and similarly for other cases. Making use of these relations, one can derive the following working expression of the kernels for
the 2p1h Faddeev equations �no implicit summations are used�:
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�A13a�
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�A13b�

After substituting Eq. �A10� into �3�, one needs the working expression for the matrix product VU�2p1h� �where V is the
interelectron interaction�. The minimum correction that guarantees to reproduce all third-order self-energy diagrams is

�VU�2p1h���;
n
�n��k�
= V��,
� +
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. �A14�

The case of 2h1p is handled in a completely analogous way following the steps of the Appendix, Secs. 1 and 2. After
extending R��1 ,�2 ,�3� to depend on the fragmentation indices �k1 ,k2 ,n�, the 2h1p equivalent of Eq. �A9� is obtained with the
following definitions of the kernels:
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�A15a�
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�A15b�

and the correction to the external legs,

QUASIPARTICLES IN NEON USING THE FADDEEV … PHYSICAL REVIEW A 76, 052503 �2007�

052503-11



�VU�2h1p���;
k
�k��n�
= V��,
� +

V��,	1�1
X	1

n	X�1

n��X	2

n	X�2

n���V	2�2,
�

2��k


− + �k�

− − �n	

+ − �n�

+ �

+
V��1,
	1

X	1

n	Y�1

k��X	2

n	Y�2

k���V	2�,�2�

��k�

− + �k�

− − �n	

+ − �n�

+ �
−

V��1,�	1
X	1

n	Y�1

k��X	2

n	Y�2

k���V	2�,�2


��k�

− + �k


− − �n	

+ − �n�

+ �
. �A16�

It should be pointed out that, while the prescription of the Appendix, Sec. 1 allows SP lines to propagate only in one time
direction, it allows for backward propagation of the phonons. These contributions translate directly into the energy-
independent terms of Eqs. �A13� and �A15� and are a direct consequence of the inversion pattern typical of RPA theory. These
terms have normally a weaker impact than the direct ones on the solutions of Eqs. �A9�. However, it is shown in Ref. �24� that
they are crucial to guarantee the exact separation of the spurious solutions—always introduced by the Faddeev formalism
�39,40�—if RPA phonons are used. For the same reasons, the last terms in large parentheses of Eqs. �A13� and �A15� should
be dropped whenever Tamm-Dancoff phonons are propagated.

The approach followed in this work for solving Eqs. �A9� is to transform them into a matrix representation �24�. Once this
is done, one is left with an eigenvalue problem that depends only on the 2p1h �2h1p� configurations �n ,n� ,k� ��k ,k� ,n��. The
spurious states are known exactly �24� and can be projected out analytically to reduce the computational load. In any case, they
would give vanishing contributions to Eq. �3�.
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