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Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal
structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity
quantum teleportation. We introduce two types of models: �i� open, dimerized XX chains, and �ii� open XX
chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations
and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and
show that model �i� supports true long-distance entanglement at zero temperature, while model �ii� supports
“quasi-long-distance” entanglement that slowly falls off with the size of the chain. Due to the different scalings
of the gaps, respectively exponential for model �i� and algebraic in model �ii�, we demonstrate that the latter
allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low
temperatures.
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I. INTRODUCTION

The crucial role of entanglement as a fundamental re-
source for quantum information tasks that transgress the
classical limits is particularly evident and has been experi-
mentally verified in such protocols as teleportation �1,2�,
cryptography and secure key distribution �3�, and quantum
communication �4�. Typically, the “most natural way” to cre-
ate entanglement between parties is by means of direct inter-
actions. Since, intuitively, large amounts of entanglement
should be associated to the presence of strong correlations,
low-dimensional systems, as, for instance, spin chains, offer
a natural source of entanglement. However, in most systems
with short-range interactions, the entanglement between a
pair of particles decays rapidly with the distance. For in-
stance, in the Ising model with transverse field �5� the two-
spin concurrence vanishes for distances larger than two
neighboring sites, while in the Heisenberg model �6�, it is
restricted only to single nearest neighbors. A first exception
to this behavior was found by Amico et al. �7�, who estab-
lished that close to factorization points, the range of en-
tanglement grows indefinitely. However, in this case, the en-
tanglement strength between two spins rapidly vanishes as
the range increases. In fact, this behavior appears to be natu-
ral, recalling that monogamy of entanglement �8� implies
that if entanglement is enhanced between two given sub-
systems, then the entanglement between any of the two sub-
systems and a third one must necessarily be suppressed.

From a general quantum informatics perspective, a much
desired goal would be the ability to create a large amount of
entanglement between distant subsystems, simultaneously
avoiding direct interactions between them and single-
subsystem addressing. Along this line of thought, the first
requirement can be satisfied by introducing the concept of
localizable entanglement, with the aim of exploiting spin
chains as quantum channels �9�. The localizable entangle-

ment measures the average entanglement that can be concen-
trated on a pair of distant subsystems by performing optimal
local measurements onto the rest of the system. More re-
cently, it was shown that the ground state of some spin mod-
els with finite correlation length defined on one-dimensional
chains with open ends can support large values of long-
distance entanglement between the end points of the chain
�10�. This approach, i.e., to look for systems whose ground
state can support long-distance entanglement prima facie,
without the need of performing operations and measure-
ments, is clearly very appealing. However, it appears that
models which exhibit true long-distance entanglement are
characterized by energy gaps above the ground state that
vanish exponentially as the length of the chain is increased
�10�. Hence this interesting phenomenon seems doomed to
survive only in the physically unattainable situation of zero
temperature. In the effort to overcome this problem, it was
shown that a kind of long-distance entanglement, very
slowly decreasing with the length of the chain, can be sup-
ported by the ground state of spin models with infinite cor-
relation length defined on one-dimensional open chains with
small end bond interactions, and that these systems allow for
robust finite-temperature teleportation across finite distances
�11�. This quasi-long-distance entanglement between the end
points of the chain is associated to an energy gap that van-
ishes algebraically with the size of the system. As a conse-
quence, it is more resilient to thermal excitations, and can be
used to engineer realistic protocols of qubit teleportation,
as has been explicitly demonstrated, by numerical density
matrix renormalization group �DMRG� simulations, in the
case of the Heisenberg �XXX� chain with small end interac-
tions �11�.

In the present paper we will show that both true long-
distance and quasi-long-distance entanglement can be sup-
ported by very simple isotropic XX models of open spin
chains. These models present some interesting advantages

PHYSICAL REVIEW A 76, 052328 �2007�

1050-2947/2007/76�5�/052328�9� ©2007 The American Physical Society052328-1

http://dx.doi.org/10.1103/PhysRevA.76.052328


over the ones that have been previously studied. At variance
with the Heisenberg case, they are amenable to exact analyti-
cal treatment both in the case of alternating couplings, cor-
responding to dimerization of the ground state and true long-
distance entanglement, and in the case of small end bonds,
corresponding to a ground state that supports quasi-long-
distance entanglement. In this way, one achieves a full grasp
of the physical mechanism responsible for long- and quasi-
long-distance entanglement, and the possibility to identify
unambiguously the optimal range of parameters for telepor-
tation with maximal fidelity. Moreover, having in mind pos-
sible experimental realizations, for instance in suitably engi-
neered optical lattices �12�, XX chains are in principle more
easily realizable or simulatable than Heisenberg interactions.
The exact solvability of the open-end XX chains is possible
thanks to the methods introduced by Lieb and co-workers
�13�. We will first study the fully dimerized XX open spin
chain with alternating couplings, discuss the exact behavior
of the end-to-end concurrence in the ground state at zero
temperature, and show analytically that for this kind of
model the energy gap between the ground and the lowest
excited state falls off exponentially with the size of the sys-
tem. Therefore this system cannot be exploited for quantum
teleportation in realistic situations at finite temperature. We
then study the XX open spin chain with small end bonds and
determine analytically the exact expression for the zero tem-
perature end-to-end concurrence in some physically relevant
limits. We determine the exact scaling of the energy gap with
the length of the chain and show that it dies off algebraically
with the size of the system. Finally, we determine the behav-
ior of the teleportation fidelity as a function of the tempera-
ture for different strengths of the small end bonds, and show
that qubit teleportation with fidelities well above the classical
threshold, and in some cases close to unity, is supported even
at moderately low temperatures.

The paper is organized as follows: In Sec. II we introduce
the general XX spin chain Hamiltonian with arbitrary site-
dependent couplings, and solve it analytically for the end-to-
end two-point reduced density matrix, correlation, and con-
currence �entanglement of formation�. We calculate the fully
entangled fraction and establish the analytical expression for
the fidelity of teleportation of an unknown qubit state be-
tween the two end points of the chain. In Sec. III we special-
ize the model to the case of perfectly alternating couplings
and fully dimerized ground state. We determine the single
particle dispersion law, establish the exponential scaling be-
havior of the energy gap, and determine the analytical ex-
pressions for the ground state end-to-end concurrence and
fidelity. We show that, depending on the values of the cou-
pling strength, high or even maximal entanglement and fidel-
ity can be achieved for chains of arbitrary length. In Sec. IV
we turn to the case of open XX chains with small end bonds,
establishing the single particle dispersion law, the algebraic
scaling of the energy gap, and the analytic expressions for
the concurrence and the fidelity. We then investigate the be-
havior of the end-to-end teleportation fidelity as a function of
the temperature for different values of the small end bonds,
and conclude that teleportation with unit fidelity at very low
temperature and with high fidelity above the classical thresh-
old at moderately low temperature are both supported by the

XX channel with small end bonds. Finally, in the Conclu-
sions we summarize our findings and discuss some outlooks
on possible future developments along this line of research.

II. THE GENERAL MODEL

As already anticipated in the Introduction, we will focus
our analysis on one-dimensional lattices with open ends, de-
scribed by XX models with different types of nearest neigh-
bor interactions. Such models are all special instances of the
general XX Hamiltonian

H = �
i=1

L−1

Ji�Si
xSi+1

x + Si
ySi+1

y � , �1�

where Ji is the interaction strength between nearest neighbor-
ing sites i and i+1, Si

� are the spin operators defined at site i,
and L is the total number of sites �spins� or the length of the
chain. The spectrum of this Hamiltonian can be determined
exactly by a straightforward application of the standard
methods introduced in Ref. �13�. The first step in the proce-
dure is to perform a Jordan-Wigner transformation �14�,

Si
+ = ci

†ei��j=1
i−1 cj

†cj, Si
− = e−i��j=1

i−1cj
†cjci,

Si
z = ci

†ci −
1

2
, �2�

where Sj
±=Sj

x± iSj
y. As a result, the Hamiltonian �1� is mapped

in the free fermion Hamiltonian

H =
1

2 �
i=1

L−1

Ji�ci
†ci+1 + ci+1

† ci� = c†Mc , �3�

where c†= �c1
† , . . . ,cL

†� �c� is the vector of the L creation �an-
nihilation� operators, one for each site of the lattice, and the
adjacency matrix M reads

M =
1

2�
0 J1 0 ¯ 0

J1 0 J2

0 J2 0 ]

] � JL−2 0

JL−2 0 JL−1

0 ¯ 0 JL−1 0

� . �4�

We will investigate two particular realizations of Hamil-
tonian �1� that, as we will show, in the ground state allow for
high or even maximal entanglement between the end spins of
the chain, and thus naturally provide a channel with high or
even unit fidelity for qubit teleportation. To evaluate the tele-
portation fidelity, one needs to determine the spin-spin con-
currence �entanglement of formation� between the end points
of the chain. This quantity can be computed exactly for any
two-qubit state �pure or mixed�, thanks to the celebrated for-
mula of Wootters �15�, and the task is left to obtain its ex-
plicit expression in the reduced state of the two end-point
spins. To this purpose, we need to calculate explicitly all the
possible forms of two-point correlations in the ground state.
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The Hamiltonian �1� is symmetric under rotations of the
spins around the z axis, so that the only nonvanishing corre-
lations are �Si

xSj
x�= �Si

ySj
y�, �Si

zSj
z�, and �Si

z�. In the absence of
external magnetic fields, � rotations around the x and y axes
are symmetries of the model, which additionally implies
�Si

z�=0 at every site. Thanks to the aforementioned symme-
tries, the two-point reduced density matrix �i,j, obtained by
tracing the full density matrix of the system over all sites
except the pair 	i , j
, has the form

�i,j =
1

4
+ �Si

xSj
x���x

� �x + �y
� �y� + �Si

zSj
z��z

� �z, �5�

where �x,y,z are the Pauli matrices and �·� is the ground state
average at temperature T=0, or the thermal one at finite tem-
perature �= �kBT�−1 with respect to the Gibbs state �
=e−�HZ−1. We are interested in the case in which i and j are
the two end points of the chain. In this instance, we have

S1
+SL

− + S1
−SL

+ = − ei�N�c1
†cL + cL

†c1� ,

S1
zSL

z = �c1
†c1 −

1

2
��cL

†cL −
1

2
� , �6�

where N=�i=1
L ci

†ci is the total number operator. Using
Wick’s theorem and taking into account that �ci

†ci�=1 /2, we
obtain

�S1
+SL

− + S1
−SL

+� = − ei�L/2��c1
†cL� + �cL

†c1�� ,

�S1
zSL

z � = − �c1
†cL��cL

†c1� . �7�

Setting x�c1
†cL� we see that the end-to-end reduced density

matrix depends uniquely on this parameter.
All the physical information about model �3� can now be

obtained by diagonalizing the one-body matrix M. Let �k be
the eigenvector with eigenvalue �k, where k is a quasimo-
mentum label. Then, passing to new fermionic operators via
the transformation ci=�k�k

�i�ck, the Hamiltonian takes the
form

H = �
k

�kck
†ck. �8�

The evaluation of the two-point correlation x is then straight-
forward, and one obtains

x = �
k,q

�k
�1��q

�L��ck
†cq� = ���k�0

�k
�1��k

�L� for T = 0

�k
�k

�1��k
�L� 1

1 + e��k
for T 	 0,�

�9�

where x depends on the coupling ratios Ji /J1 as well as on
the temperature, in case the latter is also taken into account.
For reduced states of the form �5�, the end-to-end concur-
rence is easily computed, and we have �16�

C1,L = 2 max�0, x2 + �x� −
1

4
� . �10�

The above expression of the concurrence is nonvanishing for
�x�	 ��2−1� /2�0.207, and it reaches the maximum value
C1,L=1 for �x�→1 /2.

It is natural to expect that the existence of a strong quan-
tum correlation between the two end spins of the chain can
be conveniently exploited for performing tasks in quantum
information, in particular considering teleportation schemes.
In the standard quantum teleportation protocol, two parties A
and B share a maximally entangled state �Bell state�. Party A
holds also a third qubit, whose unknown state is to be tele-
ported. If the two end points of our XX chain share a highly
entangled state, that in some limit may even be asymptoti-
cally close to a Bell state, they can be identified as the two
parties, sender and receiver, for a long-distance, high-fidelity
teleportation protocol. The efficiency of a quantum channel
in teleporting an unknown state is quantified by the fidelity f
between the output and the input states, averaged over all
input realizations. The fidelity depends on the actual proper-
ties of the entangled resource �1,L �cf. Eq. �5�� shared by the
end spins of the chain. In fact, it has been demonstrated that
the optimal fidelity depends only on the “fully entangled
fraction” Ffull, according to the formula f = �2Ffull+1� /3
�17�. The fully entangled fraction is defined as the fidelity
between the resource �1,L and a maximally entangled state,
maximized over all possible maximally entangled states. For
states of the form Eq. �5� it can be easily computed, and
reads Ffull=

1
4 + �x�+x2 �18�. The associated teleportation fi-

delity is thus

f =
2��1/4� + �x� + x2� + 1

3
. �11�

This expression highlights the crucial interplay between en-
tanglement and efficiency in quantum information protocols.
In fact, due to the high symmetry of states of the form Eq.
�5�, a nonvanishing entanglement implies a nonclassical tele-
portation fidelity exceeding the classical threshold 2/3, and
vice versa. In the limit �x�→1 /2 of maximally entangled
resources, the maximum teleportation fidelity reaches unity.

III. LONG-DISTANCE ENTANGLEMENT

In analogy with previous work on the dimerized Heisen-
berg model �10�, we consider first the open end XX chain
with bonds of alternating strengths �1−
� �weak bond�, and
�1+
� �strong bond�, with 0�
�1,

H = J�
i=1

L−1

�1 + �− 1�i
��Si
xSi+1

x + Si
ySi+1

y � . �12�

Choosing L even and 0�
�1 assures that the spins at
the end of the chain interact with a weak bond of strength
�1−
� with their respective neighbors.

Let us first comment on the general features of the model
�12� in the thermodynamic limit. For 
=0 the model in the
fermionic picture reduces to a simple tight binding with dis-
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persion �k=J cos�k�. The ground state is given by a half
filled band and vanishingly small excitations are present near
the Fermi points. Upon the introduction of a nonvanishing 

translational invariance by one site is broken, the Brillouin
zone is correspondingly halved, and a gap of width 
 opens
up in the single particle spectrum. Two bands develop with
dispersion

�k,± = ± J�cos2�k� + 4
2 sin2�k� . �13�

Upon increasing the value of 
, the growing difference
between the alternating coupling constants allows the cre-
ation of dimers between pairs of strongly interacting spins.
The dimers, in turn, are very weakly interacting with each
other. Hence because the two end spins of the chain interact
very weakly with their nearest neighbors, dimerization and
monogamy of entanglement force the creation of a strong
quantum correlation between the end points, in analogy with
what happens in the Heisenberg case �10�.

The above qualitative picture can be supplemented by a
detailed quantitative analysis both in the thermodynamic
limit and at finite length L. The eigenvectors of the adjacency
matrix M are given by �19�

�k,�k

�j� = �Ak sin�kj� j even,

�kAk sin�k�L − j + 1�� j odd,
� �14�

where �k= ±1 is the parity �left-right symmetry� of the
eigenstate �k, and Ak is a normalization constant that reads

Ak = 2�2�L + 1 −
sin 2k�L + 1�

sin�2k� ��−1/2

. �15�

The quasimomenta are given by the solution of the following
equation:

sin k�L + 2�
sin�kL�

= −
1 + 


1 − 

 −

1

a
. �16�

For each quasimomentum we have two eigenvectors corre-
sponding to opposite parity. Hence we seek for L /2 solutions
of Eq. �16�. When a�L / �L+2� �roughly 
	0, when L is
large� we have L /2−1 real solutions for which the energy
dispersion has the form �13�. The missing solution is com-
plex �and plays a very important role� and has the form k0
=� /2+ ip. For this mode the equation reads

cosh�2p� + coth�Lp�sinh�2p� =
1

a
. �17�

At leading order the solution is given by

e2p =
1

a
− �1 − a2�aL−1. �18�

The appearance of a complex quasimomentum is crucial for
the existence of long-distance entanglement �LDE� in the
ground state and can be understood as follows. The eigen-
vectors �k0,± are localized at the boundaries of the chain. For
instance, for site j close to the left border of the chain �j
�1�, one has ��k0,±

�j� ��e�L−j+1�/, with a localization length 

that, for an asymptotically large chain, reads

 = 2/ln��1 + 
�/�1 − 
�� . �19�

The energy of this mode, for both values of the parity, is
exponentially small:

�k0,± � ± 2�1 − a�e−L/, �20�

and we thus see that the onset of LDE in the dimerized
ground state of the XX chain with open ends is strictly linked
to the existence of an energy gap above the ground state that
vanishes exponentially fast with the length of the chain.

At zero temperature and zero external field, all negative
energy modes are filled, up to �k0,−. The mode k0 is respon-
sible for the appearance of a state localized at the end of the
chain in the many-body ground state. This means that the
ground state resembles ���1,L � �rest. As we have dimer
order at sites 1 and L, we expect �1,L to be highly entangled.
Because factorization will not be exact, �1,L will not be ex-
actly a pure state but rather a weakly mixed reduction �1,L
that becomes maximally entangled only in the asymptotic
regime of perfect dimerization. In fact, knowing the eigen-
vectors of the adjacency matrix, we can evaluate exactly the
end-to-end LDE between the borders of the chain. Using Eq.
�14�, the fermionic correlation function x reads

x = �c1
†cL� = �

k,�k�0
�kAk

2�sin�Lk��2. �21�

To evaluate this sum we first isolate the contribution coming
from the complex momentum. The remaining set of terms
defines a sum with alternating signs of a periodic function
analytic on the real axis. The rate of convergence to its
asymptotic vanishing value is dictated by the width of the
largest strip, around the imaginary axis, where the function is
analytic. The inverse of this width is precisely given by the
localization length Eq. �19�. Such a contribution is exponen-
tially suppressed, and the final result is

x = �− 1�L/21

2
�1 − a2� + O�e−L/� = �− 1�L/2 2


�1 + 
�2 + O�e−L/� .

�22�

We have checked this approximation against exact numerical
data and the results are plotted in Fig. 1. It turns out that the
remainder has the form �−1�L/2A0L2 exp�−L /�+ ¯ , where
A0 is a positive constant. This implies that, in modulus, the
asymptotic value of the end-to-end correlation is in fact ap-
proached from below: In this type of system, correlations
increase as the length L of the chain is increased.

We see that, for any nonvanishing value of the dimeriza-
tion, the ground state of the system develops a constant,
nonzero correlation between the end points of arbitrarily
large chains, a phenomenon known as surface order. Using
Eq. �10�, we deduce that this surface order, present whenever

	0 �and 
�1�, allows for LDE between the end spins as
soon as 
	
0= �1−�2−�2� / �1+�2−�2�=0.132, i.e., for
moderately low values of the dimerization. The correspond-
ing threshold localization length is 0=7.479. The localiza-
tion length  rapidly decreases from the threshold value 0
with increasing 
	
0. As a consequence, the asymptotic re-
gime for the corresponding end-to-end concurrence �LDE� is
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reached already for chains with a size of few tens of sites.
Finally, by substituting in Eq. �10� and in Eq. �11� the

expression of x, Eq. �22�, we obtain the analytic expressions
of the LDE �end-to-end concurrence� and of the teleportation
fidelity as functions of the dimerization ratio a= �1−
� /
�1+
� in the asymptotic regime of chains of large size
L�0. One has

C1,L = 2 max�0,
1

2
− a2 +

a4

4
� , �23�

f =
2

3
�1 + �1

2
− a2 +

a4

4
�� . �24�

In Fig. 2 we report the behavior of the LDE between the
end points of the chain as a function of the dimerization
parameter 
 for large chains. We see that as soon as the
dimerization is above the threshold value 
0, the LDE grows
very rapidly with 
, reaching saturation in the limiting situ-
ation 
→1.

Before ending this section we should remark that, al-
though extremely interesting, the true LDE picture, derived
at zero temperature, does not survive, even qualitatively, at
finite temperature. We have seen that the presence of LDE in
the dimerized XX is connected to the presence of an eigen-
state of the adjacency matrix with complex quasimomentum.
From Eq. �20� it follows that the energy gap between the
ground state and the lowest excited state vanishes exponen-
tially as the size of the chain increases. Hence, even for small
chains and very low temperatures, the first excited levels get
significantly populated, contributing to the correlation x with
values of opposite sign with respect to that of the ground
state. The total effect is to lower x down to zero even at very
low temperatures. In conclusion, we have determined that
LDE can be supported at zero temperature by relatively
simple, dimerized XX chains with open ends. However, in

close analogy with more complex systems analyzed previ-
ously �10�, the zero temperature LDE does not survive as
soon as the temperature is switched on.

IV. QUASI-LONG-DISTANCE ENTANGLEMENT

In this section we discuss a second type of model that can
support highly entangled reduced states at the end points of a
spin chain. In all generality, spin models that can allow for
strong end-to-end correlations are characterized by interac-
tions between the end points and their nearest neighbors that
are smaller compared to the interactions in the bulk of the
chain. Otherwise, if the system does not meet this criterion,
the end points would become strongly entangled with their
neighbors, excluding, due to monogamy constraints �8�, the
possibility of LDE. We then consider a model of open XX
spin chain formed by L−2 spins with uniform coupling
strengths, plus two weakly interacting probes placed at the
two end points. Such a models is described by the following
Hamiltonian:

H = J�
i=2

L−2

�Si
xSi+1

x + Si
ySi+1

y � + ��S1
xS2

x + S1
yS2

y + SL−1
x SL

x + SL−1
y SL

y� ,

�25�

where 0���1. The presence of the � term in Eq. �25� can
be understood as a kind of generalized boundary condition,
reducing to the standard XX model with uniform couplings
and open ends for �=0,1. It is then not surprising that the
eigenvalues of the corresponding adjacency matrix M have
the form �k=J cos�k�. The eigenvalue equation determining
the quasimomenta for a generic � reads �20�

�k cot�k��cot�L − 1

2
k���k

=
�2

2 − �2 , �26�

where �k= ±1 is again the parity of the corresponding eigen-
state. The eigenstate �k associated to the quasimomentum k
has the following components:

0 0.2 0.4 0.6 0.8 1
δ

0

0.2

0.4

0.6

0.8

1

C
1,

L

FIG. 2. End-to-end concurrence C1,L, for long chains of length
L�0 in the dimer model �12�, as a function of the dimerization
parameter 
. Nonvanishing LDE is achieved and is rapidly growing
as soon as 
	
0=0.132.

200 300 400 500 600
L

-40

-35

-30

-25

-20

-15

ln
[(

x ∞
-

x L
)

/L
2 ]

δ = 0.01
δ = 0.02
δ = 0.03
δ = 0.04

FIG. 1. �Color online� Absolute value of the zero-temperature
correlation xL= ��c1

†cL�� as a function of the size L of the chain
according to the scaling xL=x�−A0L2 exp�−L /�. The different
curves reproduce ln��x�−xL� /L2� as a function of L for different
values of the dimerization parameter 
. Symbols denote the exact
numerical values. The values of  are obtained from Eq. �19�.
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�k
�1� =

�

Ak
sin�k� ,

�k
�i� =

1

Ak
	sin��i + 1�k� + �1 − �2�sin��i − 1�k�
, 1 � i � L ,

�k
�L� = �

�

Ak
sin�k� , �27�

where the normalization Ak reads

Ak
2 = �L − 1��2�1 − �2�cos2�k� +

�4

2
� + 2�2 − �4. �28�

Equation �26� admits L distinct real solutions in the inter-
val �0,�� for ��0. Using Eq. �27� the zero temperature
end-to-end correlation x reads

x = �
�/2�k��

�k
�2

Ak
2sin2 k . �29�

The sum is limited to the L /2 quasimomenta that lie in the
interval � /2�k��. This condition takes into account the
fact that, at exactly zero temperature, all levels below the
Fermi energy are occupied, while all the others are empty.
The value of the end-to-end concurrence C1,L is readily ob-
tained by inserting expression �29� for the end-to-end corre-
lation x in Eq. �10�. In Fig. 3 we show the behavior of the
end-to-end entanglement as a function of �, for different
lengths of the chain. At fixed length L of the chain, C1,L
→1 as �→0. At a fixed value of �, the end-to-end concur-
rence slowly dies off as L→�. The XX spin chain with small
end bonds is thus characterized by what we may name
“quasi-long-distance entanglement �QLDE� because, at vari-
ance with the dimerized case considered in the previous sec-
tion, the end-to-end entanglement, although able to reach
asymptotically maximal values in the limit of vanishing end
couplings, slowly decreases as the size of the chain is in-
creased. These considerations can be made quantitative by
investigating in detail the exact expressions for x that are
obtained from Eq. �29� in the two limiting cases �→0,1.

In the limit of vanishing small end bonds ��→0�, the
quasimomenta assume the expressions

kn �
n�

L − 1
− �2 tan�n�/�L − 1��

L − 1
, n = 1,2, . . . ,L − 2,

k± �
�

2
±

�2

2
. �30�

Isolating the dominating contributions in the sum �29�, and
keeping terms up to second order in �, in the limiting case
�→0, one obtains

x�→0 = �− 1�L/2�1

2
− �2L�1

4
+

2C
�2�

c

+ O��4�� , �31�

where C is Catalan’s constant C=0.915, and the constant in
brackets is c=0.435. The above result provides the quantita-
tive content of the qualitative picture sketched above: At
fixed size L of the chain, one can always choose � small
enough so that �x�→1 /2 and the end-to-end concurrence ap-
proaches unity. Depending on the length of the chain, the
condition to be satisfied to achieve large values of the end-
to-end concurrence is ��1 /�L.

For completeness, let us now consider the opposite situa-
tion of strong end bonds �→1. In this case, all the L quasi-
momenta can be approximated by kn��n / �L+1� with n
=1, . . . ,L. Exploiting the fact that, at leading order, the alter-
nating Riemann sum of a function is equal to �one-half of�
the value of the function at the extrema, we obtain

x�→1 � �− 1�L/2 1

�2�L − 3� + 4
. �32�

In Fig. 4 we compare the exact expression of x as a func-
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FIG. 3. �Color online� End-to-end concurrence C1,L at zero tem-
perature as a function of � for different lengths L of the chain.
Curves from right to left are, respectively, for L=26, L=50, L
=100, L=200, and L=400.
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FIG. 4. Comparison between the exact numerical evaluation and
the analytic approximations for the end-to-end correlation function
x= �c1

+cL� for a chain of L=100 sites. The interpolating curve is
given by xint= �−1�L/2 / �2+4cL�2�. It is exact up to O��2� when �
→0, but retains its validity also for higher values of the coupling.
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tion of �, obtained by direct numerical diagonalization, with
the two analytic limiting expressions and an interpolating
ansatz for a chain of L=100 sites. We will now show that the
phenomenon of QLDE is intimately related to an algebraic
scaling behavior of the energy gap that is radically different
from the one, exponentially decreasing with the size of the
chain, exhibited by the fully dimerized XX chain. This fea-
ture turns out to play a crucial role at finite temperature,
allowing QLDE to be more resilient to thermal fluctuations
not only at very low but even at moderately low tempera-
tures. As already pointed out, the single-particle dispersion
law has the form �k=J cos k. The lowest gap is then given
by J cos�k�� where k� is the solution of Eq. �26� closest to
� /2 with k��� /2. For sufficiently large values of L, the
left-hand side of Eq. �26� has a vertical asymptote arbitrarily
close to � /2. Expanding the function around this point we
obtain for the desired solution

k� �
�

2
−

�

2�L − 1�
+

�

�L − 1�2�2�2 − �2�−1 + 2�L − 1�
.

Then, at leading order in inverse powers of the length of the
chain L, the lowest energy gap reads

�L

J
�

�

2�L − 1�
−

�

�L − 1�2��2/�2 − �2�� + 2�L − 1�

=
�

2
L−1 − ��

2
−

��2 − �2�
�2 �L−2 + O�L−3� . �33�

We have compared the asymptotic analytic behaviors for dif-
ferent � and chains of length up to L=1000 sites with the
exact numerical solutions. The results of this comparison are
plotted in Fig. 5, showing excellent agreement of the exact
data with the algebraic scaling �33�.

The existence of a lowest energy gap slowly falling off
algebraically with the size of the system is to be compared
with the exponentially fast vanishing of the same quantity in
the case of the dimerized XX chain. Looking at the structure
of the quasimomenta in the two cases, we immediately real-
ize that the reason for this very different behavior lies in the

absence of complex quasimomenta in the spectrum of the XX
model with small end bonds. On the one hand, this is an
undesired feature, because it is exactly the presence of a
complex quasimomentum that allows for true LDE in the
dimerized XX model. On the other hand, this very same fea-
ture allows for true LDE and at the same time is responsible
for the exponentially fast vanishing of the energy gap.

Moving to finite temperature, the exact numerical evalu-
ation of the fermionic end-to-end correlation function x is
obtained using Eq. �9�. After having determined the value of
x, we can again use Eqs. �10� and �11� to evaluate both the
end-to-end concurrence and the teleportation fidelity. In Fig.
6 we report the behavior of the teleportation fidelity f for
different values of � as a function of the normalized tem-
perature T /J for a chain of L=50 spins. We see that the
higher the limiting value of the fidelity at vanishing tempera-
ture, the faster f falls off below the classical threshold f
=2 /3. This behavior is obviously due to the fact that a larger
zero-temperature f corresponds to a smaller energy gap, and
hence the system is more sensitive to the disruptive effect of
thermal fluctuations.

We can compare the results reported in Fig. 6 for an XX
chain with small end bonds with the ones obtained for a
Heisenberg antiferromagnetic chain with two weakly inter-
acting end probes �11�. The teleportation efficiency at finite
temperature for both models has been investigated at the
same fixed length of the chain L=50. From this comparison,
one sees that the behavior of the teleportation fidelity as a
function of the temperature in the two models is qualitatively
similar. This fact is of relevance, because it shows that the
QLDE due to the presence of weakly interacting probes at
the end of a uniformly interacting chain is an effect not re-
stricted to a particular Hamiltonian model, but can be sup-
ported by systems endowed with different bulk interactions
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FIG. 5. �Color online� Behavior of the energy gap �L as a func-
tion of the length L of the chain for different values of �. Diamonds
denote the exact numerical data. Continuous curves display the ap-
proximate expression for the gap �Eq. �33� in the text�.
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FIG. 6. �Color online� Teleportation fidelity for different values
of � as a function of the rescaled temperature T /J for an XX chain
with small end bonds, supporting QLDE. The six different curves
refer to increasing values of � from 0.02 to 0.22 in steps of 0.04.
From top to bottom, left to right: solid line ��=0.02�; dotted line
��=0.06�; dashed line ��=0.1�; dot-dashed line ��=0.14�; double-
dot-dashed line ��=0.18�; double-dash-dotted line ��=0.22�. The
length of the chain is fixed at L=50 sites. The horizontal dashed line
f =2 /3 is the maximum attainable fidelity using a classical telepor-
tation channel �classical threshold�.
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and different symmetries. The only important ingredient for
the realization of a QLDE and a teleportation channel that
are robust against thermal fluctuations is the availability of
efficient control on the interactions at the end points of the
channel. Similar conclusions can be drawn about LDE: In
this work we have demonstrated that existence of true LDE
at zero temperature is a phenomenon not restricted to a par-
ticular model and, in fact, does not crucially depend on the
mechanism of dimerization. Preliminary studies indicate that
gapped, anisotropic models in noncritical regimes can sus-
tain LDE even in the absence of a clear pattern of dimeriza-
tion.

Finally, it is worth noticing that even if the Heisenberg
model with small end bonds analyzed in Ref. �11� sustains a
teleportation fidelity that remains above the classical thresh-
old for larger values of the end coupling parameter �, the XX
channel with small end bonds assures teleportation with non-
classical fidelities for larger values of the temperature. De-
pending on the realistic experimental settings, if the tempera-
ture can be controlled down to sufficiently low values, it is
more convenient to engineer a channel based on the
Heisenberg-like Hamiltonian proposed in Ref. �11�. Other-
wise, if control on the external temperature cannot be imple-
mented with high precision down to sufficiently low tem-
peratures, it may then turn out more convenient to engineer
XX chains of the type discussed in the present paper.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied models of open quantum
spin chains endowed with XX-like Hamiltonians with nearest
neighbor interactions. We have discussed two types of mod-
els, according to different engineerings of the spin-spin cou-
plings. In the first case considered, a chain with bonds of
alternating strengths, we have shown how the exact solution
for the ground state implies the existence of long-distance
entanglement between the end spins of the chain, indepen-
dent of the size of the system and asymptotically close to
unity �maximal entanglement� in the limit of exact dimeriza-
tion. This system is therefore perfectly suited for bona fide
long-distance quantum teleportation with ideal fidelity at
zero temperature. However, the limiting maximal values of
the fidelity are obtained at the cost of an exponentially small
energy gap above the ground state. Therefore this system is
de facto useless for efficient quantum teleportation at finite
temperature. We have then moved on to discuss another class
of XX open spin chains with uniform bulk interactions and
small end bonds. In this case, we have shown that for suffi-
ciently small values of the end couplings, the ground state of

the system supports a quasi-long-distance entanglement be-
tween the end spins of the chain, asymptotically close to
unity �maximal entanglement� in the limit of vanishing cou-
pling, but slowly decreasing as the length of the chain is
increased. An interesting feature of this model is that the
lowest energy gap above the ground state vanishes only al-
gebraically, as the first power of the inverse of the size of the
system. Therefore in principle, it can be exploited as a quan-
tum channel for teleportation with nonclassical fidelity at
finite temperature, both very low and moderately low.

A further comment is in order concerning the behavior of
these systems in the presence of disorder. This issue is im-
portant especially in view of possible experimental imple-
mentations in which the strength of the couplings can be
engineered only within a certain accuracy. Since naturally
the effect of disorder is that of localizing eigenstates, we
expect LDE to be more robust than QLDE against disorder.
In fact, in the LDE scenario the state responsible for the
end-to-end entanglement is already localized at the borders
whereas localization is only approximate in the QLDE case.
Therefore in some instances, static imperfections may even
increase the amount of LDE present in the system. On aver-
age, one expects that the presence of disorder does not
greatly modify the general picture, both in the LDE and in
the QLDE cases, at least as long as one deals with disorder
of weak or medium strength. This conjecture is confirmed by
preliminary numerical simulations. It is less obvious how the
general scenario changes at finite temperature, in the pres-
ence of disorder. This problem deserves on its own a careful
and detailed study that goes much beyond the scope of the
present work.

Considering future research along these lines of investi-
gation, it will be interesting to consider practical schemes for
the realization of this kind of spin systems in highly control-
lable situations, for instance resorting to ultracold atomic
mixtures in optical lattices. Another interesting open problem
worth further study is to assess the existence and the possible
location of a crossover between true long-distance and prima
facie quasi-long-distance entanglement behaviors.
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