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We find tight lower and upper bounds on the entanglement of a superposition of two bipartite states in terms
of the entanglement of the two states constituting the superposition. Our upper bound is dramatically tighter
than the one presented by Linden et al. �Phys. Rev. Lett. 97, 100502 �2006�� and our lower bound can be used
to provide lower bounds on different measures of entanglement such as the entanglement of formation and the
entanglement of subspaces. We also find that in the case in which the two states are one-sided orthogonal, the
entanglement of the superposition state can be expressed explicitly in terms of the entanglement of the two
states in the superposition.
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In a recent paper by Linden, Popescu, and Smolin �LPS�
�1�, the authors raised the following question: Given a bipar-
tite state ���, and given a certain decomposition of it as a
superposition of two bipartite states,

��� = ���� + ����, ���2 + ���2 = 1,

what is the relation between the entanglement of ��� and the
entanglement of ��� and ���? It is somewhat surprising that
very little is known about this basic question given how im-
portant entanglement is to quantum mechanics and how in
bipartite settings superposition is almost a synonymous term
to entanglement. Perhaps one of the reasons for that is that
the entanglement of ���, depends also on the coherence be-
tween the two terms in the decomposition, and therefore in
general it does not depend only on the entanglement of ���
and ���. This can be seen most clearly in the Bell state
example with ���= �00�, ���= �11�, and �=�=1 /�2. Never-
theless, in Ref. �1� the authors have found an upper bound
�dubbed here the LPS bound� on the entropy of entanglement
of ��� given in terms of the entanglement of ��� and ���.
Subsequently, several authors generalized this result to in-
clude different measures of entanglement �2–4�, entangle-
ment of superpositions of multipartite states �5,6� and en-
tanglement superpositions of more than two states �7�.

In this paper we show that the LPS upper bound is not
tight and can be improved dramatically if one includes two
factors. The first one is based on a generalization of bior-
thogonal states to include one-sided orthogonal bipartite
states. This factor leads to a slight improvement of the LPS
bound. The second more important factor that leads to a
dramatic improvement is based on the relation between dif-
ferent convex decompositions of a density matrix. We find
that unless E���=E��� and ���= ��� our bound is strictly
tighter and in general, in the limit of large dimensions can be
arbitrarily tighter. Our method also enables us to find a tight
lower bound that depends only on E���, E���, ���, and ���.

We start with a definition of one-sided orthogonal bipar-
tite states and a simple improvement of the LPS bound.

Definition 1. One-sided orthogonal bipartite states: Two
bipartite states ���AB and ���AB are one-sided orthogonal if

TrB�TrA��������TrA��������� = 0 �1�

or

TrA�TrB��������TrB��������� = 0. �2�

Note that one-sided orthogonal states are orthogonal but
not necessarily biorthogonal �i.e., for one-sided orthogonal
states in general only one of the two equations above is sat-
isfied�. In the following, without loss of generality, we as-
sume that one-sided orthogonal states satisfy Eq. �1� but not
necessarily Eq. �2�.

Lemma 1. Up to local unitary transformations, one-sided
orthogonal states can be written as

��� = 	
i=1

d1

�pi�ui�A�i�B and ��� = 	
i=1

d2

�qi�vi�A�i + d1�B,

�3�

where 
pi� and 
qi� are two sets of positive numbers that
sums to one, and 
�ui�A� and 
�vi�A� are two sets of orthonor-
mal states.

Note that if A�vi� �ui�A=0 for all i=1,2 , . . . ,d1 and i�
=1,2 , . . . ,d2 then the states are biorthogonal.

Proof. Due to the Shmidt decomposition, we have

��� = 	
i=1

d1

�pi�ui�A�ui�B and ��� = 	
i=1

d2

�qi�vi�A�vi�B,

where 
�ui�� and 
�vi�� are sets of orthonormal states, and 
pi�
and 
qi� are two sets of positive numbers that sums to one.
Since we assume that the states satisfy Eq. �1�, we get that

B�vi� �ui�B=0 for all i=1,2 , . . . ,d1 and i�=1,2 , . . . ,d2. Thus,
we can define the set 
�i�B�i=1

d1+d2, where �i�B= �ui�B for 1� i
�d1 and �i�B= �vi−d1

�B for d1+1� i�d1+d2. With these no-
tations we obtain Eq. �3�. �

Theorem 2. Given ��� and ��� one-sided orthogonal, and
���2+ ���2=1, the entanglement of the superposition ���
=����+���� obeys*gour@math.ucalgary.ca
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E��� = S��A� = ���2E��� + ���2E��� + S��AB�

− �S��A� − S��B�� , �4�

where �AB= ���2������+ ���2������ and �A and �B are ob-
tained by tracing �AB over B and A, respectively.

Few remarks are in order. First, since ��� and ��� are
orthogonal we have S��AB�=h2����2�, where h2�x�=−x ln x
− �1−x�ln�1−x� is the binary entropy function. Second, for
biorthogonal states S��A�=S��B� and so we obtain the for-
mula given in Ref. �1� for that case. Third, note that the
right-hand side of Eq. �4� depends only on quantities with no
coherence between ��� and ���. Fourth, from the triangle
inequality of the von Neumann entropy �i.e., the Araki-Lieb
inequality� we have S��AB�� �S��A�−S��B��.

Proof. Due to Lemma 1 we have TrB������=�A. Hence,
E���=S��A�. Further, from Lemma 1 it follows that the ei-
genvalues of �B����2TrA������+ ���2TrA������ are 
���2pi�
and 
���2qj� for i=1, . . . ,d1 and j=1, . . . ,d2. Thus, S��B�
= ���2E���+ ���2E���+S��AB�. This also implies that for
one-sided orthogonal states satisfying Eq. �1�, S��B��S��A�.
This completes the proof. �

Example 1. Consider the one-sided orthogonal states

��� =
1
�2

��0��0� + �1��1�� and ��� =
1
�2

��0��2� + �1��3�� .

Clearly, E���=E���=1. Now, it is also easy to check that
E���=1 for any coherent superposition ���=����+����.
Therefore, the left-hand side of Eq. �4� is equal to 1. One can
also check that S��A�=1 whereas S��B�=1+h2����2�. Thus,
the right-hand side of Eq. �4� is also equal to 1.

Before we present our two main results �Theorem 3 and
Theorem 4�, we briefly review the main theorem in Ref. �1�
and provide a slight improvement of it. The authors in Ref.
�1� have used two properties of the von Neumann entropy,

���2S�	1� + ���2S�	2� � S����2	1 + ���2	2� �5�

and

S����2	1 + ���2	2� � ���2S�	1� + ���2S�	2� + h2����2� .

�6�

Now, consider �AB and �A as defined in Theorem 1, except
that now � and � are not necessarily orthogonal. We can
write �A= ���2	1+ ���2	2, where 	1=TrB������ and 	2

=TrB������. Using Eq. �6� we obtain

S��A� � ���2E��� + ���2E��� + h2����2� . �7�

Next, the state �A can also be decomposed as �A= �n+ /2�	+

+ �n− /2�	−, where 	±��1 /n±�TrB��±���±�, ��±�
=����±����, and n±= ��±�2. Thus, from Eq. �5� we obtain

n+

2
E��+� +

n−

2
E��−� � S��A� �8�

�the notation E��±� refers to the entanglement of the normal-
ized states �1 /�n±���±��. Combining Eq. �7� with Eq. �8� and
using the fact that E��−��0 one obtains the LPS bound

�2E��� � 2����2E��� + ���2E��� + h2����2��

�here ���+�.
We now present a simple improvement of the above LPS

bound.
Theorem 3. Let ��� and ��� be two bipartite states, and let

� ,��C such that ���2+ ���2=1. Then,

���� + ����2E����� + ����� � 2����2E��� + ���2E���

+ h2����2� − �S��A� − S��B��� .

Proof. To prove this we improve the bounds given in Eqs.
�7� and �8�. Equation �8� can be slightly improved by writing

n+

2
E��+� +

n−

2
E��−� � min
S��A�,S��B�� , �9�

since one can repeat the same arguments that lead to Eq. �8�
with �B instead of �A. In the same way, Eq. �7� can be im-
proved to the following:

max
S��A�,S��B�� � ���2E��� + ���2E��� + h2����2� .

Thus,

min
S��A�,S��B�� � ���2E��� + ���2E��� + h2����2�

− �S��A� − S��B�� . �10�

The combination of Eq. �9� and Eq. �10� provides the proof
for Theorem 2. �

Example 2. Consider the following example when Alice
and Bob have Hilbert spaces of dimensions 3 and 4, respec-
tively:

��� =�1

2
�00� +

1

2
�11� +

1

2
�22� ,

��� =�1

2
�03� +

1

2
�11� +

1

2
�22� ,

� = � =
1
�2

.

The entanglement of ��� and ��� is 3/2, and the entangle-
ment of ����+���� is ln 3
3 /2. Since ����+����
=�3 /2, the LPS upper bound is E�����+������5�2 /3.
Since S��A�=3 /2 and S��B�=2, our bound is E�����
+������4�2 /3 �i.e., an improvement by almost 1 ebit�.

The bound in Theorem 2 provides an improvement of the
LPS bound. However, since h2����2�� �S��A�−S��B�� our
bound is smaller by no more than 2 ebits from the LPS
bound. We now introduce the first of our two main results
which provides a new upper bound that can be arbitrarily
smaller than the LPS bound.

Theorem 4. Let ��� and ��� be two bipartite states, and let
� ,��C such that ���2+ ���2=1. Then,

���� + ����2E����� + ����� � f�t� , �11�

for all 0� t�1, where
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f�t� =
t���2 + �1 − t����2

t�1 − t�
�tE����� + �1 − t�E����� + h2�t�� .

Comments. �i� For t= ���2 we obtain the LPS bound; i.e.,
f����2�=2����2E���+ ���2E���+h2����2��.

�ii� Note that f�t�� ���2E���+ ���2E���+h2����2�. This is
consistent with the case of biorthogonal states.

�iii� The minimum of the function f�t� is obtained at t
= t� where t� satisfies the implicit equation

���2�1 − t��2

���2�t��2 =
E��� − ln t�

E��� − ln�1 − t��
.

�iv� Using the same idea presented in Theorem 2, the
upper bound in Theorem 3 can be improved by replacing
h2�t� in f�t� with h2�t�− �S��t

A�−S��t
B��.

�v� For the trivial case where �=1��=0� we obtain f�t�
=E��� for t=1. That is, the upper bound equals E���. On the
other hand, the LPS bound for �=1 is 2E���=2E���.

Proof. Consider the state

�t
AB = t������ + �1 − t������� ,

where 0� t�1. For any � ,�� �0,2� we can construct a
new decomposition of �t

AB,

�t
AB = q��1���1� + �1 − q���2���2� , �12�

where

�q��1� = �t cos ���� + �1 − tei� sin ���� ,

�1 − q��2� = − �te−i� sin ���� + �1 − t cos ���� ,

q = �t cos ���� + �1 − tei� sin ���� . �13�

Now, from the properties of the von Neumann entropy given
in Eqs. �5� and �6�, we deduce that

0 � S��t
A� − tE����� − �1 − t�E����� � h2�t� ,

0 � S��t
A� − qE���1�� − �1 − q�E���2�� � h2�q� .

From these inequalities we obtain

qE���1�� + �1 − q�E���2�� � tE����� + �1 − t�E����� + h2�t� .

�14�

Thus, since E���2���0 we find that

E���1�� �
1

q
�tE����� + �1 − t�E����� + h2�t�� . �15�

Note that so far we have three free parameters: t, �, and �.
We now concentrate on all the convex decompositions of �t

AB

with ��1�= ��� / �. This requirement reduces the number of
free parameters to one and can be expressed in terms of the
following conditions �see Eq. �13��:

�� �
�

�
=� t

q
cos � and �� �

�

�
=�1 − t

q
ei� sin � .

�16�

Since ���=����+���� is defined up to a global phase we
will assume, without loss of generality, that � is real and
non-negative. Similarly, we take � to be equal to the phase
of � so that ����=��t−1� /q sin �. The parameter q can be
written as a function of t and �. Note that

1

�2 = ����2 + ����2 =
t

q
cos2 � +

1 − t

q
sin2 � .

Hence,

q

�2 = t cos2 � + �1 − t�sin2 � . �17�

Now, substituting this form of q into Eq. �16� provides the
relation between t and �,

cos2 � =
�1 − t����2

t���2 + �1 − t����2
, sin2 � =

t���2

t���2 + �1 − t����2
.

Finally, using these relations in Eq. �17� gives

q

�2 =
t�1 − t�

t���2 + �1 − t����2
.

Hence, for decompositions with ��1�= ��� / �, we obtain
�see Eq. �15��

�2E����� �
t���2 + �1 − t����2

t�1 − t�
�tE����� + �1 − t�E�����

+ h2�t��

for all 0� t�1. �
Example 3. Here we consider an example where both Al-

ice and Bob have Hilbert spaces of dimension d,

��� =
1
�2
��11� +

1
�d − 1

��22� + �33� + ¯ + �dd��� ,

��� =
1
�2
��11� −

1
�d − 1

��22� + �33� + ¯ + �dd��� ,

� =
3

5
and � = −

4

5
. �18�

This is the same example as one of the examples given in
Ref. �1� except that here ��−�. One can easily check that
E���=E���= 1

2 ln�d−1�+1 and E�����+�����
= �49 /50�ln�d−1�+h2�1 /50�. Furthermore, it can be shown
that in the limit d→� the minimum of the function f�t� is
obtained at t=3 /7. We therefore take this value to obtain an
upper bound f�3 /7�= �49 /50�ln�d−1�+ �49 /25�h2�3 /7�.
Thus, we have f�3 /7�−E���=O�1�. On the other hand, for
large d the LPS bound is approximately ln�d−1� and so we
have ln�d−1�−E�����1 /50�ln�d−1�→� as d→�. That is,
in the limit of high dimensions the LPS bound diverges from
E��� whereas our bound approaches E���.
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We now move to discuss lower bounds.
Theorem 5. Let ��� and ��� be two bipartite states, and let

���=����+���� be a normalized state �i.e., �=1� for
some � ,��C. Then,

E����� � max
L1�t�,L2�t�� , �19�

for all 0� t�1, where

L1�t� =
�1 − t����2

1 − t�1 − ���2�
E��� −

1 − t

t
E��� −

1

t
h2�t� ,

L2�t� =
�1 − t����2

1 − t�1 − ���2�
E��� −

1 − t

t
E��� −

1

t
h2�t� .

Comments. �i� If ��� and ��� are orthogonal �i.e., ���2
+ ���2=1� then we can obtain a simple lower bound by taking
t=1 / �2���2� �or t=1 / �2���2� if ���2�1 /2�:

E����� � ����2 − ���2��E��� − E���� −
1

���2
h2����2� ,

where ���2=max
���2 , ���2�. Note that in general t
=1 / �2���2� does not maximize the function L1�t� �or L1�t��
and therefore the bound above is just a simple bound and not
the optimal one.

�ii� Note that it is inappropriate to replace h2�t� in the
theorem above with h2�t�− �S��t

A�−S��t
B�� in order to improve

it. The reason is that this time �t
A is a mixture that consists of

��� itself.
�iii� For �=0 �or �=0� the lower bound is E���. This

gives us the first indication that the lower bound is tight.
�iv� The maximum of the function L1�t� is obtained at t

= t� where t� satisfies the implicit equation

���2���2�t��2

�1 − �1 − ���2�t��2E��� = E��� − ln�1 − t�� . �20�

Similar expression can be found for the value of t that maxi-
mizes L2�t�.

Proof. Consider the state

�t
AB = t������ + �1 − t������� .

where 0� t�1. For any � ,�� �0,2� we can construct a
new decomposition of �t

AB just as in Eq. �12� except that now

�q��1� = �t cos ���� + �1 − tei� sin ���� ,

�1 − q��2� = − �te−i� sin ���� + �1 − t cos ���� ,

q = �t cos ���� + �1 − tei� sin ���� . �21�

Using the same arguments as in Theorem 3 we find that

qE���1�� + �1 − q�E���2�� � tE����� + �1 − t�E����� + h2�t� .

Now, since E���2���0, we have

E����� �
1

t
�qE���1�� − �1 − t�E����� − h2�t�� . �22�

This equation holds for any choice of � and �. We now
choose � and � such that ��1�= ���. From Eq. �21� we find
that it is possible if

�q = ��t cos � and �t� cos � = − �1 − tei� sin � .

Without loss of generality, we can assume that � is real
�since ��� is defined up to a global phase� and we take −ei� to
be the phase of �. Furthermore, from these equations it fol-
lows that

q =
t�1 − t����2

1 − t�1 − ���2�
.

Substituting this value for q in Eq. �22� gives the lower
bound L1�t�. The lower bound L2�t� is similarly obtained by
exchanging the roles of ��� and ���. �

In the following example we show that our lower bound
can be very tight.

Example 4. Here we take ���, ���, and � to be exactly the
same as in Example 3, and �=4 /5. We therefore have
E���=E���= 1

2 ln�d−1�+1, whereas E�����+�����
= �1 /50�ln�d−1�+h2�1 /50�. Now we would like to find the
value t= t� in Eq. �20� at which L1�t� is maximum. In the
limit d→� we can ignore the logarithmic term in Eq. �20�
and so we obtain t�=25 /28. The value of L1�t� at t=25 /28 is
L1�25 /28�= �1 /50�ln�d−1�+ �1 /25�− �28 /25�h2�25 /28�. We
therefore get that L1�25 /28� /E�����+�����→1 at the limit
d→� and E�����+�����−L1�25 /28��0.65. The last value
can be improved if one takes into account the logarithmic
term in Eq. �20�.

We end by making two observations. First, the lower
bound given in Theorem 4 can also provide a lower bound
on the entanglement of two-dimensional bipartite subspaces
�8� �see also Ref. �9� for the Schmidt rank of subspaces� by
minimizing the bound over � and �. This minimization also
provides a lower bound on the entanglement of formation of
a density matrix whose support subspace is spanned by ���
and ���. Second, in this paper we have given lower and
upper bounds for the entanglement of superpositions includ-
ing two states. The question regarding the entanglement of
superpositions with more than two terms is an important one
for future work.
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