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We discuss upper bounds on the rate at which unitary evolution governed by a nonlocal Hamiltonian can
generate entanglement in a bipartite system. Given a bipartite Hamiltonian H coupling two finite dimensional
particles A and B, the entangling rate is shown to be upper bounded by c log�d��H�, where d is the smallest
dimension of the interacting particles, �H� is the operator norm of H, and c is a constant close to 1. Under
certain restrictions on the initial state we prove an analogous upper bound for the ancilla-assisted entangling
rate with a constant c that does not depend upon dimensions of local ancillas. The restriction is that the initial
state has at most two distinct Schmidt coefficients �each coefficient may have arbitrarily large multiplicity�.
Our proof is based on analysis of a mixing rate—a functional measuring how fast entropy can be produced if
one mixes a time-independent state with a state evolving unitarily.
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I. INTRODUCTION

Consider two remote parties Alice and Bob controlling
finite-dimensional quantum systems A and B. Suppose A and
B interact with each other according to a time-independent
Hamiltonian H. Unless H is a sum of local Hamiltonians, a
unitary evolution eiHt is a nonlocal operation capable of cre-
ating entanglement between A and B. The goal of the present
paper is to get an upper bound on the rate at which the
entanglement between Alice and Bob can increase or de-
crease as a function of time.

We consider ancilla-assisted entangling, see Fig. 1. It
means that Alice’s laboratory consists of two subsystems: A
and a, such that the Hamiltonian H acts only on the sub-
system A. Similarly, Bob’s laboratory is partitioned into B
and b, where H acts only on the subsystem B. The sub-
systems a and b are the local ancillas held by Alice and Bob.
In the ancilla-assisted entangling Alice and Bob start from a
pure state ��� of the composite system aABb which may be
already entangled.

Time evolution of the composite system aABb is de-
scribed by a unitary operator U�t�= Ia � eiHABt � Ib. Thus the
joint state of Alice and Bob always remains pure. Accord-
ingly, the entanglement between Alice and Bob at any time t
can be quantified by entanglement entropy

S�aA� = − Tr �aA�t�log �aA�t� , �1�

where �aA�t�=TrBb U�t�������U�t�†. The quantity we are in-
terested in is entangling rate,

���,H� = �dS�aA�
dt

�
t=0

. �2�

Understanding properties of the entangling rate is crucial for
optimal generation of entanglement �1	, computing capaci-
ties of bidirectional quantum communication channels �2	,
and for describing dynamics of entanglement in quantum
spin lattice models �3	.

Our goal is to get an upper bound on ��� ,H� that would
not explicitly depend upon dimensions of the local ancillas a
and b. Upper bounds of this kind can be easily generalized
via the Trotter decomposition to arbitrary multipartite Hamil-

tonians decomposable into a sum of few-party interactions.
Throughout the paper we shall use notations �a�, �A�, �B�, and
�b� for the dimension of the Hilbert space describing the sub-
system a, A, B, and b, respectively.

A. Previous work

The maximal entangling rate ��H�=max� ��� ,H� has
been studied by many authors for the case when A and B are
qubits. The optimal state � maximizing ��� ,H� has been
found by Dür et al. �1	 for a general Hamiltonian H assum-
ing �a�= �b�=1. These authors have also observed that for
some Hamiltonians local ancillas are capable of increasing
the maximal entangling rate ��H�. A powerful technique of
getting upper bounds on ��H� for arbitrarily large a and b
was proposed by Childs et al. �4	. It was used to identify a
subclass of two-qubit Hamiltonians, including the Ising in-
teraction, for which the maximum ��H� does not depend
upon �a� and �b� �and thus can be achieved without local
ancillas�. An upper bound on the entangling rate of the Ising
interaction has been also obtained by Cirac et al. �5	 by
showing that the time evolution with the Ising Hamiltonian
for time t can be implemented by local operations and clas-
sical communication �LOCC� protocol consuming O��t��
e-bits of preshared entanglement.

Some progress has been also achieved for larger dimen-
sions �A� and �B�. The technique of �4	 has been generalized
by Wang and Sanders �6	 to prove that ��H���
1.9123 for
any product Hamiltonian H=HA � HB if HA ,HB have eigen-
values ±1. This result applies to arbitrary dimensions �a� and
�b�. An upper bound ��H����H� for the ancilla-assisted
case has been proved for arbitrary bipartite product Hamil-
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FIG. 1. �Color online� Ancilla-assisted entangling.
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tonians by Childs, Leung, and Vidal �7	. Finally, it was
shown by Bennett et al. �2	 that ��H��cd4�H�, where d
=min��A� , �B�� and c=O�1� does not depend upon �a� and �b�.
This result relies on a decomposition of an arbitrary bipartite
Hamiltonian into a sum of product Hamiltonians. Thus for
fixed d and �H� the entangling rate has a constant upper
bound independent of how large dimensions �a� and �b� are.
The authors of �2	 also proved that the supremum of ��H�
over all dimensions of local ancillas �a� , �b� coincides with
the asymptotic capacity of H to generate entanglement by
any protocol in which unitary evolution with H is inter-
spersed with LOCC. It is unknown whether the supremum
over �a� and �b� can be actually achieved for finite dimen-
sional ancillas.

It is not known whether ��H�=��−H�, i.e., whether the
maximal entangling and disentangling rates of a given
Hamiltonian H coincide. The results by Linden, Smolin, and
Winter �8	 applicable to finite unitary operators suggest that
this equality might be wrong.

B. Summary of results

We start from observing that the unitary evolution with
any Hamiltonian HAB cannot increase �decrease� the en-
tanglement S�aA� by more than 2 log�d�, where d
=min��A� , �B��, see �2	. This property can be called small to-
tal entangling, as it says that the total increase �decrease� of
entanglement throughout the unitary evolution remains
bounded as the dimensions of local ancillas �a� and �b� go to
infinity. Is there an analog of the small total entangling prop-
erty for infinitely small time intervals? The following con-
jecture was initially proposed by Kitaev �9	. We call it small
incremental entangling.

Small incremental entangling (SIE): There exists a con-
stant c=O�1� such that

���,H� � c�H�log�d�, d � min��A�, �B�� �3�

for all dimensions �a�, �b� and for all states ��� of a compos-
ite system aABb.

It is not known whether SIE is true or false. Our first
result is a proof of SIE for the special case when ��� has at
most two distinct Schmidt coefficients with respect to a par-
tition aA � Bb �each Schmidt coefficient may have arbitrarily
large multiplicity�. Our proof yields the constant c=24 al-
though the actual value of c might be much smaller. The
constraint on ��� serves technical purposes and was intro-
duced in order to make the problem tractable. It should be
mentioned that the upper bound Eq. �3� can be confirmed by
straightforward calculation if �a�= �b�=1 �no local ancillas�,
see Sec. II. In this case the optimal pair �� ,H� can be found
explicitly. It turns out that the optimal state ��� has only two
distinct Schmidt coefficients and thus falls into the category
that we consider, see Sec. II for details. We do not know
whether the optimal state has only two Schmidt coefficients
in the ancilla-assisted case.

It is known that in some cases local ancillas and preshared
entanglement can lead to counterintuitive effects, such as
entanglement embezzling �10	 or locking of classical corre-
lations �11	. In particular, it was demonstrated by DiVin-

cenzo et al. �11	 that sending a single qubit from Alice to
Bob can increase their classical mutual information by an
arbitrarily large amount in the presence of local ancillas.
Thus SIE may be violated if locking effects also occur in the
infinitesimal unitary transformations if one measures corre-
lations by entanglement entropy. For future references let us
give an explicit expression for the entangling rate that can be
easily obtained by computing the derivative in Eq. �2�.

���,H� = − i Tr�Ia � HAB��aAB, log �aA � IB	� . �4�

Our proof of SIE goes by getting an upper bound on a mixing
rate. In order to define a mixing rate, consider a probabilistic
ensemble of �mixed� states E= �p� ,���=0,1 defined on a
finite-dimensional Hilbert space �lacking any tensor product
structure�. Let �= p0�0+ p1�1 be the average state corre-
sponding to E. For any Hamiltonian H define a time depen-
dent state ��t�= p0�0+ p1eiHt�1e−iHt. Define a mixing rate as

	�E,H� = �dS„��t�…
dt

�
t=0

. �5�

Here S(��t�) is the von Neumann entropy of ��t�. Basic prop-

erties of the von Neumann entropy imply that S̄�S(��t�)
� S̄+h�p0 , p1�, where S̄= p0S��0�+ p1S��1� is the average en-
tropy for the ensemble E and h�p0 , p1�=−p0 log�p0�
− p1 log�p1� is the Shannon entropy. This property can be
called small total mixing as it says that the total increase
�decrease� of the entropy throughout the unitary evolution
goes to zero as one of the probabilities p0 or p1=1− p0 goes
to zero. Is there an analog of the small total mixing property
for infinitely small time intervals? A naive generalization
would be as follows.

Small incremental mixing (SIM): There exists a constant
c�=O�1� such that

	�E,H� � c��H�h�p0,p1� , �6�

where

h�p0,p1� = − p0 log�p0� − p1 log�p1�

for any probabilistic ensemble E= �p� ,���=0,1.
Here it is meant that the constant c� is independent of the

dimension of the Hilbert space. It is not known whether SIM
is true or false. Although SIM might seem completely unre-
lated to ancilla-assisted entangling and SIE, it turns out that
SIM is a stronger version of SIE. More strictly, we prove that
SIM with a constant c� implies SIE with a constant c=4c�,
see Sec. III.

Our second result is a proof of SIM for the special case
when �= p0�0+ p1�1 has at most two distinct eigenvalues
�each eigenvalue may have arbitrarily large multiplicity�, see
Sec. IV. We shall refer to eigenvalues obeying this constraint
as a binary spectrum. Our proof yields c�=6, although the
actual value of c� might be smaller.

The connection between SIE to SIM described in Sec. III
has a peculiar property that the number of distinct eigenval-
ues of � in SIM is exactly the same as the number of distinct
Schmidt coefficients of the initial state ��� in SIE. Thus a
proof of SIM for the case when � has a binary spectrum
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implies SIE for the case when the initial state ��� has only
two distinct Schmidt coefficients. In the general case we
prove that the mixing rate of any ensemble E has an upper
bound 	�E ,H�=O��H��, so it does not explicitly depend on
the dimension of the Hilbert space, see Sec. IV. For future
reference let us give an explicit expression for the mixing
rate:

	�E,H� = − ip1 Tr�H��1,log �	�, � = p0�0 + p1�1. �7�

The paper is organized as follows. In Sec. II we find the
maximal entangling rate and the optimal pair �� ,H� for the
case when Alice and Bob do not use local ancillas. Section
III proves that SIM implies SIE. Section IV contains the
main results of the paper. It proves SIM for the case when �
has a binary spectrum. Section V reports results of numerical
maximization aimed at verifying SIM. The data obtained in
numerical simulations are consistent with SIM.

II. MAXIMAL ENTANGLING RATE IN THE ABSENCE
OF ANCILLAS

The maximal entangling rate can be easily found in the
absence of local ancillas, i.e., when �a�= �b�=1. In this case
we can always write the initial state of Alice and Bob using
the Schmidt decomposition ���=� j=1

d �pj�jA� � �jB� with d
=min��A� , �B��. Denote �A=� j=1

d pj�j��j� the reduced density
matrix of Alice. Using the general formula Eq. �4� for the
entangling rate one gets

���,H� = − Tr �̇A log �A = − i Tr�H�������, log �A � IB	� .

�8�

Since the entangling rate is a linear function of H we can
assume that �H�=1. Using the fact that for any Hermitian
operator X

max
H:�H�=1

Tr�HX� = Tr�X� � �X�1, �9�

one can carry out the maximization over H,

����: = max
H:�H�=1

���,H� = ��log �A � IB, ������	�1.

�10�

For any vectors ��� , �
� one has the following identity:

��
���� − ����
��1 = 2�������
�
� − ����
��2. �11�

Substituting �
�= �log �A � IB���� one gets

���� = 2�F�p� ,

where

F�p� = �
j=1

d

pj log2 pj − ��
j=1

d

pj log pj�2

. �12�

We can assume that all pj �0 �otherwise replace d by d�
�d�. Then the maximum of F�p� can be found by solving
extremal point equations �F /�pj =0. After simple algebra
one gets

− log�2pj� = S ± �2 + S2,

S = − �
j=1

d

pj log pj,  =
1

ln 2
. �13�

�Here log and ln stand for base two and natural logarithm.�
The equality for the minus sign in the right-hand side �rhs� of
Eq. �13� is possible only for one value of j, since it implies
pj �1 /2. Let us agree that p1�1 /2. Then −log�2pj�=S
+�2+S2 for all j=2, . . . ,d, that is the state �A must have a
binary spectrum with multiplicities 1 ,d−1. Introduce a vari-
able � such that

p1 = �, p2 = ¯ = pd =
1 − �

d − 1
,

1

2
� � � 1. �14�

Let ���� be the state with Schmidt coefficients p1 , . . . , pd.
Using Eq. �12� the maximal entangling rate with the initial
state ���� can be written as

����� = 2���1 − ��log���d − 1�
1 − �

� . �15�

The optimal value �=��d� and the optimal entangling rate
�d=�����d�� have to be found by maximizing Eq. �15� over
1 /2���1. For example, if d=2, numerical maximization
yields ��2�
0.9168 and �2
1.9123. It coincides with the
maximal entangling rate of product two-qubit Hamiltonians
found in �1,4	. It follows that under normalization condition
�H�=1 product two-qubit Hamiltonians are capable of gen-
erating entanglement with the largest rate.

One can easily infer from Eq. �15� that ��d�
1 /2 and
�d
 log d for sufficiently large d. It proves that ��� ,H�
=O��H�log d� in the absence of local ancillas. Moreover, in
the limit of large d one can explicitly write down the optimal
state ����d�� and the optimal Hamiltonian Hd. Namely,

����d�� 

1
�2

�1� � �1� +
1
�2

�
+� ,

�
+� =
1

�d − 1
�
j=2

d

�j� � �j� , �16�

Hd 
 − i��
+��1,1� − �1,1��
+�� . �17�

Thus the optimal state is a superposition of a product state
and a maximally entangled state with locally orthogonal sup-
ports. The optimal Hamiltonian is a generator for a rotation
in the corresponding two-dimensional subspace.

For a finite d the optimal value ��d� and the correspond-
ing entangling rate �d can be found numerically, see Fig. 2.
For large d one has ��d�
�1 /2��1+1 / ln d�, while entangle-
ment entropy of ����d�� scales as Sd
�1 /2�log d.

III. SIM IMPLIES SIE

In this section we assume that SIM is true and show that
this assumption implies SIE. Consider ancilla-assisted entan-
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gling with some fixed dimensions �a� , �A� , �B� , �b� and some
initial state ���. Let us assume that �B�� �A�. Then SIE is
equivalent to an upper bound

���,H� � c�H�log�B� . �18�

Since the rhs of this inequality does not depend on �a� and
�A�, it is enough to prove Eq. �18� in the case �a�=1 since we
can always extend A to A � a. Now we have a tripartite sys-
tem ABb initially prepared in a pure state ��� and evolving
under a Hamiltonian H acting on A and B. Using Eq. �4� for
the entangling rate one gets

���,H� = − i Tr�H��AB, log �A � IB	�

= − i Tr�H��AB, log �AB	� , �19�

where �A and �AB are the reduced states of ���, and a state
�AB is defined as

�AB = �A �
IB

�B�
. �20�

In order to define a probabilistic ensemble E needed for a
reduction to SIM we shall need the following lemma.

Lemma 1. For any mixed state �AB there exists a mixed
state �AB such that

�A �
IB

�B�
=

1

�B�2
�AB + �1 −

1

�B�2��AB. �21�

Proof. Since the partial trace is a linear operation, it suf-
fices to prove the lemma for the case when �AB= ������ is a
pure state. The statement of the lemma is then equivalent to
inequality

������ � �B��A � IB. �22�

Let d be the Schmidt rank of ���. Obviously, d
�min��A� , �B��. Consider a state �I�=� j=1

d �jA� � �jB�, where
��jA� and ��jB� are the local bases of A and B that diagonal-
ize �A and �B. Then

������ = ��A
1/2

� IB��I��I���A
1/2

� IB� .

Taking into account that �I � I�=d, one concludes that �I��I�
�dIAB. Multiplying this inequality by �A

1/2
� IB on the left

and on the right we get �������d�A � IB which implies Eq.
�22�. �

Define an ensemble of states E= �p� ,���=0,1 such that
�0=�AB, �1=�AB, p0=1− �B�−2, and p1= �B�−2. Here �AB is the
state that appears in the decomposition Eq. �21�. This en-
semble has the average state �= p0�0+ p1�1=�A � IB / �B�. Let
H be a Hamiltonian that appears in Eq. �19�. Assuming that
SIM is true one gets

	�E,H� � c�h��B�−2,1 − �B�−2��H� � 4c��B�−2�log�B���H� .

�23�

�Note that for any x�1 /2 one has h�x ,1−x��2x�log x�.	 On
the other hand, Eq. �7� for the mixing rate leads to

	�E,H� = − ip1 Tr�H��1,log �	� = − i�B�−2Tr�H��AB, log �AB	� .

�24�

Combining Eqs. �23� and �24� one arrives to

− i Tr�H��AB, log �AB	� � 4c��log�B���H� .

Comparing it with Eq. �19� we infer that ��� ,H�
�4c��log�B���H�. We have proved SIE with a constant c
=4c�, see Eq. �18�.

The reduction Eq. �20� has a peculiar property that the
number of distinct eigenvalues of �AB and �A are the same.
Since we have used identification A=aA, the number of dis-
tinct eigenvalues of �A coincides with the number of distinct
Schmidt coefficients of ���. Thus if we can prove SIM with
��0� having only two distinct eigenvalues, we will prove SIE
for the case when ��� has only two distinct Schmidt coeffi-
cients.

IV. UPPER BOUNDS ON THE MIXING RATE

Let us start from proving a weaker �compared to SIM�
upper bound on the mixing rate.

Lemma 2. For any ensemble E and Hamiltonian H one has

	�E,H� � 2�H� . �25�

Proof. Suppose E= �p� ,���=0,1, where the states �0 ,�1

and a Hamiltonian H are defined on a D-dimensional Hilbert
space. Consider ancilla-assisted entangling protocol shown
in Fig. 1 with a=1, A=D, B=2, and b=D. Choose a Hamil-

tonian H̃ coupling A and B as

H̃ = HA � �1��1�B.

Choose the initial state as
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FIG. 2. Optimal � �a� and entangling rate � �b� as a function of
log d.
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��� = �p0�0�B � ��0�Ab + �p1�1�B � ��1�Ab,

where �����CD � CD is a purification of ��. Then the state
��� evolves in time as

���t�� = �p0�0�B � ��0�Ab + �p1�1�B � �eiHAt
� Ib���1�Ab.

Accordingly, �A�t�= p0�0+ p1eiHt�1e−iHt. Therefore 	�E ,H�
=��� , H̃�. Now we can use the upper bound on the entan-
gling rate obtained in �6,7	 for product Hamiltonians, namely

��� , H̃����H̃�=��H�, where �
1.9123�2. The lemma is
proved. �

This lemma implies that the whole difficulty of proving
SIM �if it is true� concerns the limiting cases p0→0 or p0
→1. Note also that 	�E ,H�=	�ET ,−H�, where ensemble ET

is obtained from E by interchanging p0 ,�0 with p1 ,�1. Thus
we can assume that 0� p1�1 /2.

In the following we shall represent an ensemble E
= �p� ,���=0,1 using the data �p ,� ,��, where

p = p1, � = �1 − p��0 + p�1, � = p�−1/2�1�−1/2. �26�

One can easily check that a triple �p ,� ,�� represents some
ensemble E if and only if

0 � p � 1, 0 � � � I, Tr �� = p . �27�

Indeed, the only nontrivial statement is that �� I. It can be
obtained from inequality p1�1�� by multiplying it by �−1/2

on the left and on the right. Using the representation Eq. �26�
one can rewrite the mixing rate as

	�E,H� = − i Tr�H�1/2��, log �	�1/2� , �28�

see Eq. �7�. Given E, the optimal Hamiltonian H maximizing
the mixing rate can be found using Eq. �9�. Thus we have

	�E�: = max
H:�H�=1

	�E,H� = ��1/2��, log �	�1/2�1. �29�

It is worth mentioning that for given � the upper bound
Eq. �6� is true for sufficiently small p. Indeed, applying the
triangle inequality for the trace norm to Eq. �29� one gets
	�E��2��1/2��1/2 log ��1. Since �AB�1� �A��B�1 for any
operators A ,B it follows that 	�E��2�log ����1/2��1/2�1. If
p is smaller than the smallest eigenvalue of �, one has
�log ��� �log p� and thus 	�E��2�log p�Tr����=2p�log p�
�2h�p ,1− p�.

In the rest of the section we prove SIM under the assump-
tion that � has binary spectrum,

� = �
j=1

D

� j�j��j�, � j = ��1 if j = 1, . . . ,m

�2 if j = m + 1, . . . ,D
� , �30�

where �1��2 and m can be an arbitrary integer between 1
and D. Define projectors R=� j=1

m �j��j� and R�= I−R such
that

� = �1R + �2R�,

�1/2 = ��1R + ��2R�,

log � = log �1R + log �2R�.

After some algebra one gets the following identity:

�1/2��, log �	�1/2 = log��1

�2
���1�2��,R	 . �31�

In order to upper bound the trace norm of the commutator
�� ,R	 we shall use the following.

Lemma 3. (Hölder inequality). Let R be a projector and �
be a positive semidefinite operator. Then

���,R	�1 � 2�Tr��R�Tr��R�� . �32�

Lemma 4. Let R be a projector of rank m and � be a
Hermitian operator such that 0��� I. Then there exists a
Hermitian operator �� such that

�i� 0�����.
�ii� �� ,R	= ��� ,R	.
�iii� Tr ���m.

We shall postpone the proof of the two lemmas above until
the end of the section. Let us apply Lemma 3 to the commu-
tator in Eqs. �31� where � is replaced by �� from Lemma 4.
Then we can upper bound the mixing rate in Eq. �29� as

	�E� � 2 log��1

�2
���1�2 Tr���R�Tr���R�� . �33�

In order to analyze the expression above introduce new vari-
ables m� , p� ,x1 ,x2 such that

m� = Tr ��, p� = Tr�����, xi = �im�. �34�

Expressing Tr���R� and Tr���R�� in terms of m� and p�
one can rewrite Eq. �33� as

	�E� � 2 log� x1

x2
��x1x2�p� − x2��x1 − p��

�x1 − x2�2 � g�x1,x2� .

�35�

Let us find constraints on the variables x1 ,x2. Noting that
�2I����1I and taking the trace with �� one gets x2� p�
�x1. Besides, condition �iii� of Lemma 4 implies that m�
�m and thus x1�m�1�Tr �=1. By obvious reasons one
also has x2�0. Summarizing,

0 � x2 � p� � x1 � 1. �36�

Now the problem of getting an upper bound on the mixing
rate reduces to maximizing a function g�x1 ,x2� in Eq. �35�
under constraints Eq. �36�. We prove �see Lemma 5 at the
end of the section� that maxx1,x2

g�x1 ,x2��6p��log p�� as long
as p��1 /2. Using condition �i� of Lemma 4 we get p�
=Tr������Tr����= p. As was mentioned in the beginning
of the section, we can assume that p�1 /2 and thus p�� p
�1 /2. Summarizing, we get

	�E� � 6p��log p�� � 6p�log p� � 6h�p,1 − p� ,

where we used the fact that a function x�log x� is monotone
increasing on the interval �0, 1/2	. Thus we have proved SIM
under the assumption that � has a binary spectrum.
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Proof of Lemma 3. Hölder inequality asserts that

�XY �1 � �Tr�X†X�Tr�Y†Y� �37�

for any operators X and Y, see �12	. In order to choose proper
X and Y let us use an identity �� ,R	=R��R−R�R� and
triangle inequality for the trace norm:

���,R	�1 � �R��R�1 + �R�R��1

= 2�R��R�1 = 2��R��1/2���1/2R��1.

Substituting X=R��1/2 and Y =�1/2R into Eq. �37� and not-
ing that R, R� are projectors we get the inequality stated in
the lemma. �

Proof of Lemma 4. Any Hermitian operator � satisfying
0��� I can be written as a convex combination of projec-
tors:

� = �
�

p���, ��
†�� = ��.

Suppose we can find the operator promised in the lemma for
every projector in the sum, that is we can find ��� such that
�i� 0���� ���, �ii� ���� ,R	= ��� ,R	, and �iii� Tr ��� �m.
Then we can choose the desired operator �� as ��
=��p���� . Thus it suffices to prove the lemma for the case
when � is a projector. Let D be the dimension of the Hilbert
space. Consider a direct sum decomposition

CD = H � H�,

where H is the range of R, so that dim�H�=m. Then we can
write

R = � I 0

0 0
�, � = � A C

C† B
� . �38�

Here 0�A� I and 0�B� I are Hermitian operators on H
and H� and C is some operator C :H�→H. The require-
ment that � is a projector implies

A�I − A� = CC†, B�I − B� = C†C, C�I − B� = AC .

�39�

Consider a decomposition A=A� � A�, B=B� � B� where 0
�A�� I and 0�B�� I, while A� and B� have only eigenval-
ues 0, 1. It follows from Eq. �39� that

A�CC† = CC†A� = 0, B�C†C = C†CB� = 0.

Thus C†���=0 for any ��� from the range of A� and C���
=0 for any ��� from the range of B�. Accordingly, the pro-
jector � has the following block structure:

� =�
A� 0 0 0

0 A� C� 0

0 �C��† B� 0

0 0 0 B�
� . �40�

Let �� be the central block in �. Clearly �� is a projector
and �� satisfies conditions �i� and �ii� of the lemma. It re-
mains to check that Tr ���m. Let m� be the dimension of
the block A�. By definition, m��m. Since �� is a projector,

the operators A� ,B� ,C� obey the same constraint as Eq. �39�,
that is

A��I − A�� = C�C��†,

B��I − B�� = �C��†C ,

C��I − B�� = AC�. �41�

Since 0�A�� I and 0�B�� I we conclude that C��C��† and
�C��†C� are nonsingular matrices and thus the dimensions of
the blocks A� and B� both equal m�. Also from Eq. �41� we
infer that A�=C��I−B���C��−1, that is the spectrum of A�
coincides with the spectrum of I−B� including multiplicities.
Accordingly, Tr ��=Tr A�+Tr B�=m��m. Therefore ��
satisfies all three conditions of the lemma. �

Lemma 5. Let 0�q�1 /2 be a real number. Consider a
function

g�x1,x2� = 2 log� x1

x2
��x1x2�q − x2��x1 − q�

�x1 − x2�2 .

Suppose 0�x2�q and q�x1�1. Then g�x1 ,x2�
�6q�log q�.

Proof. Let us consider three cases.
Case 1. 2q�x1�1, q /4�x2�q.
Then log�x1 /x2�� log�4 /q��3�log q�. Using an upper

bound x2�q−x2��q2 /4 we arrive at

g�x1,x2� � 3q�log q��x1�x1 − q�
�x1 − x2�2 � 3q�log q�� x1

�x1 − q�

� 3q�log q�� 2q

2q − q
� 3�2q�log q� .

The last inequality follows from monotonicity of a function
x1 / �x1−q� on the interval �q ,��.

Case 2. q�x1�2q, q /4�x2�q.
First note that log�x1 /x2�� log�8�=3. Take into account

that

�q − x2��x1 − q�
�x1 − x2�2 �

1

2
.

Therefore

g�x1,x2� � 3�2�x1x2 � 3�2��2q�q � 6q � 6q�log q� .

Case 3. q�x1�1, 0�x2�q /4.
Introduce new variable y such that x2=qy, that is 0�y

�1 /4. Then

g�x1,x2� � 2q�y�1 − y��log qy�k�x1� ,

where

k�x1� =� x1�x1 − q�
�x1 − q/4�2 .

One can check that k�x1��2 /�3 for all q�x1�1. Using
inequality
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�y�1 − y��log qy� � �y�log qy� = �y�log q� + 2�y�log�y�

and noticing that t�log t� is monotone increasing for 0� t
�1 /2 we conclude that

�y�log qy� �
1

2
�log�q/4�� �

3

2
�log q�

for any 0�y�1 /4. Thus

g�x1,x2� � 2�3q�log q� .

Combining all three cases we get

g�x1,x2� � 6q�log q� .

�

V. NUMERICAL MAXIMIZATION
OF THE MIXING RATE

This section describes numerical simulations aimed at
verifying SIM. Let us start from expression Eq. �28� for the
mixing rate and the constraints Eq. �27�. It is convenient to
represent the Hamiltonian as H=2K− I. Note that �H��1 if
and only if 0�K� I. Then 	�E ,H�=F�K ,�� where

F�K,�� = − 2i Tr�K�1/2��, log �	�1/2�

= 2i Tr���1/2�K, log �	�1/2� . �42�

For a fixed average state � SIM is equivalent to an upper
bound

max
K,�

F�K,�� � c�h�p,1 − p� , �43�

where the maximization is subject to

0 � K � I, 0 � � � I, Tr���� = p . �44�

We found the maximum of F�K ,�� numerically for the av-
erage states

� = ��D� = Z−1�
j=1

D

j−1�j��j�, Z = �
j=1

D

j−1, �45�

with the dimension D=4,8 ,16,32 and for several values of
p between 0 and 1/2, see Fig. 3 �as was mentioned in Sec. IV,
it is enough to consider p between the smallest eigenvalue of
� and 1/2�.

The motivation for this particular choice of the average
state comes from the fact that the states ��D� can “embezzle”

any other mixed state for sufficiently large D, see �10	. More
strictly, it was proved in �10	 that for any state � there exists
an isometry V such that ��D�
V†���D� � ��V in the sense that
fidelity between the two states goes to 1 as D goes to infinity.
In particular this is true for the optimal state � corresponding
to the optimal ensemble E= �p ,� ,�� maximizing the mixing
rate in Eq. �29� for a fixed p. On the other hand, the state
��D� � � is at least as good as � as far as the mixing rate is
concerned. Indeed, one can easily verify that the mixing rate
for the ensemble �p ,� ,�� is the same as the mixing rate for

the ensemble �p , �̃ ,�̃�, where �̃=��D� � � and �̃= I � �.
Thus a verification of SIM for the family of states ��D� is a
good test for general validity of SIM.

The data obtained in the numerical maximization of
F�K ,�� are presented in Fig. 3. They are consistent with the
conjecture Eq. �43� with a constant c�=1. The numerical
algorithm that we used is based on reformulation of the
maximization problem as a semidefinite program. The details
of the algorithm can be found in �13	.
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