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We introduce schemes for quantum computing based on local measurements on entangled resource states.
This work elaborates on the framework established in Gross and Eisert �Phys. Rev. Lett. 98, 220503 �2007�;
quant-ph/0609149�. Our method makes use of tools from many-body physics—matrix product states, finitely
correlated states, or projected entangled pairs states—to show how measurements on entangled states can be
viewed as processing quantum information. This work hence constitutes an instance where a quantum infor-
mation problem—how to realize quantum computation—was approached using tools from many-body theory
and not vice versa. We give a more detailed description of the setting and present a large number of examples.
We find computational schemes, which differ from the original one-way computer, for example, in the way the
randomness of measurement outcomes is handled. Also, schemes are presented where the logical qubits are no
longer strictly localized on the resource state. Notably, we find a great flexibility in the properties of the
universal resource states: They may, for example, exhibit nonvanishing long-range correlation functions or be
locally arbitrarily close to a pure state. We discuss variants of Kitaev’s toric code states as universal resources,
and contrast this with situations where they can be efficiently classically simulated. This framework opens up
a way of thinking of tailoring resource states to specific physical systems, such as cold atoms in optical lattices
or linear optical systems.
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I. INTRODUCTION

Consider a quantum state of some system consisting of
many particles. This system could be a collection of cold
atoms in an optical lattice, or of atoms in cavities, coupled by
light, or entirely optical systems. Assume that one is capable
of performing local projective measurements on that system,
however, there is no way to realize a controlled coherent
evolution. Can one perform universal quantum computing in
such a setting? Perhaps surprisingly, this is indeed the case:
The one-way model of Refs. �2,3� demonstrates that local
measurements on the cluster state—a certain multiparticle
entangled state on an array of qubits �4�—do possess this
computational power. The insight gives rise to an appealing
view of quantum computation: One can in principle abandon
the need for any unitary control, once the initial state has
been prepared. The local measurements—a feature that any
computing scheme would eventually embody—then take the
role of preparation of the input, the computation proper, and
the read-out. This is of course a very desirable feature: Quan-
tum computation then only amounts to �i� preparing a uni-
versal resource state and �ii� performing local projective
measurements �2–6�.

But what about other entangled quantum states, different
from cluster or graph states �5,7�? Can they form a resource
for universal computation? Is it possible to tailor resource
states to specific physical systems? For some experimental
implementations—e.g., cold atoms in optical lattices �8�, at-
oms in cavities �9,10�, optical systems �11–13�, ions in traps

�14�, or many-body ground states—it may well be that
preparation of cluster states is unfeasible, costly, or that they
are particularly fragile to finite temperature or decoherence
effects. Also, from a fundamental point of view, it is clearly
interesting to investigate the computational power of many-
body states—either for the purpose of building
measurement-based quantum computers or else for deciding
which states could possibly be classically simulated �15,16�.
Interestingly, very little progress has been made over the last
years when it comes to going beyond the cluster state as a
resource for measurement-based quantum computation
�MBQC�. To our knowledge, no single computational model
distinct from the one-way computer has been developed
which would be based on local measurements on an
algorithm-independent qubit resource state.

The apparent lack of new schemes for MBQC is all the
more surprising, given the great advances that have been
made toward an understanding of the structure of cluster
state-based computing itself. For example, it has been shown
that the computational model of the one-way computer and
teleportation-based approaches to quantum computing �17�
are essentially equivalent �18,19�. A particularly elegant way
of realizing this equivalence was discovered in Ref. �20�:
They pointed out that the maximally entangled states used
for the teleportation need not be physical. Instead, the role
can be taken on by virtual entangled pairs used in a “valence
bond” �21� description of the cluster state. This point of view
is closely related to our approach to be described below.
Further progress includes a clarification of the temporal in-
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terdependence of measurements �22�. In Ref. �23� a first non-
cluster �though not universal, but algorithm-dependent� re-
source has been introduced, which includes the natural
ability of performing three-qubit gates. Recently, Refs.
�24,25� initiated a detailed study of resource states which can
be used to prepare cluster states �see Sec. II A�.

In this work, we describe methods for the systematic con-
struction of MBQC schemes and resource states. This con-
tinues a program initiated in Ref. �1� in a more detailed fash-
ion. We analyze MBQC in terms of “computational tensor
networks,” building on a familiar tool from many-body phys-
ics known by the names of matrix-product states, finitely
correlated states �26,27�, or projected entangled pair states
�21,28�.

The problem of finding novel schemes for measurement-
based computation can be approached from two different
points of view. First, one may concentrate on the quantum
states which provide the computational power of
measurement-based computing schemes and ask:

�1� What are the properties that render a state a universal
resource for a measurement-based computing scheme?1

Second, putting the emphasize on methods, the central
question becomes

�2� How can we systematically construct new schemes for
measurement-based quantum computation? Is there a frame-
work which is flexible enough to allow for the construction
of a variety of different models?

Both of these intertwined questions will be addressed in
this work.

II. MAIN RESULTS

As our main result, we present a plethora of universal
resource states and computational schemes for MBQC. The
examples have been chosen to demonstrate the flexibility one
has when constructing models for measurement-based com-
putation. Indeed, it turns out that many properties one might
naturally conjecture to be necessary for a state to be a uni-
versal resource can in fact be relaxed. Needless to say, the
weaker the requirements are for a many-body state to form a
resource for quantum computing, the more feasible physical
implementations of MBQC become.

Below, we enumerate some specific results concerning the
properties of resource states. The list pertains to question 1
given in the Introduction.

�1� In the cluster state, every particle is maximally en-
tangled with the rest of the lattice. Also, the localizable en-
tanglement �29� is maximal �i.e., one can deterministically
prepare a maximally entangled state between any two sites
by performing local measurements on the remainder�. While
both properties are essential for the original one-way com-
puter, they turn out not to be necessary for computationally
universal resource states. To the contrary, we construct uni-
versal states which are locally arbitrarily pure.

�2� For previously known schemes for MBQC, it was es-
sential that far-apart regions of the state were uncorrelated.
This feature allowed one to logically break down a
measurement-based calculation into small parts correspond-
ing to individual quantum gates. Our framework does not
depend on this restriction and resources with nonvanishing
correlations between any two subsystems are shown to exist.
This property is common, e.g., in many-body ground-states.

�3� Cluster states can be prepared stepwise by means of a
bipartite entangling gate �controlled-phase gate�. This prop-
erty is important to the original universality proof. More gen-
erally, one might conjecture that resource states must always
result from an entangling process making use of mutually
commuting entangling gates, also known as a unitary quan-
tum cellular automaton �30�. Once more, this requirement
turns out not to be necessary.

�4� The cluster states can be used as universal prepara-
tors: Any quantum state can be distilled out of a sufficiently
large cluster state by local measurements. Once more, this
property is essential to the original one-way computer
scheme. However, computationally universal resource states
not exhibiting this property do exist �the reader is referred to
Ref. �24� for an analysis of resource states which are re-
quired to be preparators; see also the discussion in Sec. II A�.
More strongly, we construct universal resources out of which
not even a single two-qubit maximally entangled state can be
distilled.

�5� A genuine qu-trit resource is presented �distinct, of
course, from a qu-trit version of the cluster state �31��.

We will further see that there is quite some flexibility
concerning the computational model itself �addressing ques-
tion 2 mentioned in the Introduction�:

�1� The schemes differ from the one-way model in the
way the inherent randomness of quantum measurements is
dealt with.

�2� We generalize the well-known concept of by-product
operators to encompass any finite group. For example, we
show the existence of computational models, where the by-
product operators are elements of the entire single-qubit Clif-
ford group, or the dihedral group.

�3� We explore schemes where each logical qubit is en-
coded in several neighboring correlation systems �see Sec.
III for a definition of the term “correlation system”�.

�4� One can find ways to construct schemes in which in-
teractions between logical qubits are controlled by “routing”
the qubits towards an “interaction zone” or keeping them
away from it.

�5� In many schemes, we adjust the layout of the measure-
ment pattern dynamically, incorporating information about
previous measurement outcomes as we go along. In particu-
lar, the expected length of a computation is random �this
constitutes no problem, as the probability of exceeding a
finite expected length is exponentially small in the excess�.

A. Universal resource states

What are the properties from which a universal resource
state derives its power? After clarifying the terminology, we
will argue that an answer to this question—desirable as it
may be—faces formidable obstacles.

1Clearly, the answer to the previous question depends on the defi-
nition of a universal resource. See Sec. II A for a discussion, in
particular in relation to Ref. �24�.
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Quantum computation can come in a variety of different
incarnations, as diverse as, e.g., the well-known gate model
�32�, adiabatic quantum computation �33�, or MBQC. All
these models turn out to be equivalent in that they can simu-
late each other efficiently.

For measurement-based schemes, the “hardware” consists
of a multiparticle quantum system in an algorithm-
independent state and a classical computer. The input is a
gate-model description of a quantum computation. In every
step of the computation, a local measurement is performed
on the quantum state and the result is fed into the classical
computer. Based on the outcomes of previous steps, the com-
puter calculates which basis to use for the next measure-
ments and, finally, infers the result of the computation from
the measurement outcomes �3�. Having this procedure in
mind, we call a quantum state a universal resource for
MBQC, if a classical computer assisted by local measure-
ments on this state can efficiently predict the outcome of any
quantum computation.

The reader should be aware that another approach has
recently been described in the literature. The cluster state has
actually a stronger property than the one just used for the
definition of universality: it is a universal preparator. This
means that one can prepare any given quantum state on a
given subset of sites of a sufficiently large cluster by means
of local measurements. Hence cluster states could in prin-
ciple be used for information processing tasks which require
a quantum output. Reference �25� referred to this scenario as
CQ-universality, i.e., universality for problems which require
a classical input but deliver a quantum output. This observa-
tion is the basis of Ref. �24�, where a state is called a uni-
versal resource if it possesses the strong property of being a
universal preparator, or, equivalently, of being CQ-universal.

Clearly, any efficient universal preparator is also a com-
putationally universal resource for MBQC �since one can, in
particular, prepare the cluster state�; but the converse is not
true, as our results show. Indeed, while it proves possible to
come up with necessary criteria for a state to be a universal
preparator �24�, we will argue below that the current limited
understanding of quantum computers makes it extremely
hard to specify necessary conditions for computational uni-
versality.

In order to pinpoint the source of the quantum speedup,
we might try to find schemes where more and more work is
done by the classical computer, while the employed quantum
states become “simpler” �e.g., smaller or less entangled�.
How far can we push this program without losing universal-
ity? The answer is likely to be intractable. Currently, we are
not aware of a proof that quantum computation is indeed
more powerful than classical methods. Hence it can presently
not be excluded that no assistance from a quantum state is
necessary at all.

Observation 1 �Any state may be a universal resource�. If
one is unwilling to assume that there is a separation between
classical and quantum computation �i.e., BPP�BQP�, then
it is impossible to rule out any state as a universal resource.

It is, however, both common and sensible to assume su-
periority of quantum computers and we will from now on do
so. Observation 1 still serves a purpose: it teaches us that the
only known way to rule out universality is to invoke this

assumption �this avenue was taken, e.g., in Refs. �16,34��.
Observation 2 �Efficient classical simulation�. The only

currently known method for excluding the possibility that a
given quantum state forms a universal resource is to show
that any measurement-based scheme utilizing the state can
be efficiently simulated by a classical computer.

Thus the situation presents itself as follows: there is a tiny
set of quantum states for which it is possible to prove that
any local measurement-based scheme can be efficiently
simulated. On the other extreme, there is an even tinier set
for which universality is provable. For the vast majority no
assessment can be made. Furthermore, given the fact that
rigorously establishing the “hardness” of many important
problems in computer science turned out to be extremely
challenging, it seems unlikely that this situation will change
dramatically in the foreseeable future.

We conclude that a search for necessary conditions for
universality is likely to remain futile. The converse question,
however, can be pursued: it is possible to show that many
properties that one might naively assume to be present in any
universal resource are, in fact, unnecessary.

III. COMPUTATIONAL TENSOR NETWORKS

The current section is devoted to an in-depth treatment of
a class of states known, respectively, as valence-bond states,
finitely correlated states, matrix product states, or projected
entangled pairs states, adapted to our purposes of
measurement-based quantum computing. This family turns
out to be especially well-suited for a description of a com-
puting scheme.

Indeed, any systematic analysis of resources states re-
quires a framework for describing quantum states on ex-
tended systems. We briefly compile a list of desiderata, based
on which candidate techniques can be assessed.

�1� The description should be scalable, so that a class of
states on systems of arbitrary size can be treated efficiently.

�2� As quantum states which are naturally described in
terms of one-dimensional topologies have been shown to be
classically simulable �15,16,26�, the framework ought to
handle two- or higher dimensional topologies naturally.

�3� The basic operation in measurement-based computa-
tion is local measurements. It would be desirable to describe
the effect of local measurements in a local manner. Ideally,
the class of efficiently describable states should be closed
under local measurements.

�4� The class of describable states should include ele-
ments which show features that naturally occur in ground
states of quantum many-body systems, such as nonmaximal
local entropy of entanglement or nonvanishing two-point
correlations, etc.

The description of states to be introduced below complies
with all of these points.

We will introduce the construction in several steps, start-
ing with one-dimensional matrix product states. The view on
the processing of information is that the matrices appearing
in the description of resource states are taken literally, as
operators processing quantum information.
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A. Matrix product states

A matrix product state �MPS� for a chain of n systems of
physical dimension d �so d=2 for qubits� is specified by

�1� an auxiliary D-dimensional vector space �D being
some parameter, describing the amount of correlation be-
tween two consecutive blocks of the chain�;

�2� for each system i a set of d D�D-matrices Ai�j�, j
� �0¯d−1�; and

�3� two D-dimensional vectors �L� , �R� representing
boundary conditions.

The state vector ��� of the matrix product state is then
given explicitly by

��� = 	
s1,. . .,sn=0

d−1


R�An�sn� ¯ A1�s1��L� �s1, . . . ,sn� . �1�

�There is a reason why the right-hand-side boundary condi-
tion �R� appears on the left of Eq. �1�. In linear algebra for-
mulas, information usually flows from right to left: BA ���
means “��� is acted on by A, then by B.” In the graphical
notation to be introduce later, it is much more natural to let
information flow from left to right:

|ψ� �� A �� B �� .
�2�

The order in Eq. �1� anticipates the graphical notation.� From
now on we will assume that the matrices are site-
independent: Ai�j�=A�j�, so the MPS is translationally in-
variant up to the boundary conditions. We take the freedom
of disregarding normalization whenever consistently pos-
sible.

Let us spend a minute interpreting Eq. �1�. Assume we
have measured the first site in the computational basis and
obtained the outcome s1. One immediately sees that the re-
sulting state vector ����s1�� on the remaining sites is again a
MPS, where the left-hand side boundary vector now reads

�L��s1�� = A�s1��L� . �3�

Hence the state of the auxiliary system gets changed accord-
ing to the measurement outcome. So we find that the corre-
lations between the state of the first site and the rest of the
chain are mediated via the auxiliary space, which will thus
be referred to as correlation space in the sequel.

In the past, the matrices appearing in the definition of ���
have been treated mainly as a collection of variational pa-
rameters, used to parametrize ansatz states for ground states
of spin chains �26�. However, that is the basic insight under-
lying our view on MBQC. Equation�3� can also be read as an
operator A�s1� acting on some quantum state �L�. We will
elaborate on this interpretation in Sec. III B.

In order to translate Eq. �1� to the setting of 2D lattices,
we need to cast it into the form of a tensor network. Setting
Li= 
i �L� and

A�s�i,j ª 
j�A�i� , �4�

we can write Eq. �1� as


�s1, . . . ,sn��� = 	
i0,. . .,in

D

Li0
A�s1�i0,i1

¯ A�sn�in−1,in
Rin

† . �5�

While Eq. �5� is awkward enough, the 2D equivalent is
completely unintelligible. To cure this problem, we introduce
a graphical notation3 which enables an intuitive understand-
ing beyond the 1D case. In the following, tensors will be
represented by boxes and indices by edges:

Lr = L �� ,
�6�

A[s]l,r = �� A[s] �� ,
�7�

R†
l = �� R† .

�8�

Needless to say, in the equation above, “l” is the index leav-
ing the box on the left-hand side and “r” the right-hand-side
one. Connected lines designate contractions of the respective
indices. Equation �1� now reads

�s1, . . . , sn|Ψ�
= L A[s1] . . . A[sn] R† .

A single-index tensor can be interpreted as the expansion
coefficients of either a “ket” or a “bra.” Sometimes, we will
indicate what interpretation we have in mind by placing ar-
rows on the edges: outgoing arrows designating “kets,” in-
coming arrows “bras,”

L �� = |L�, �� R† = �R|.
�9�

Tensors with two indices Al,r can naturally be interpreted as
operators. In the graphical notation we often want to think of
information flowing from the left to the right, in which case
A=	l,rAl,r �r�r
l�l would be denoted as

�� A �� = A,
�10�

i.e., with the left-hand side �lhs� index being associated with
a “bra” and the right-hand side �rhs� one with a “ket.” The
following relations exemplify the definition:

�R|L� = L R ,
�11�

A|L� = L A �� ,
�12�

AB = �� B A �� ,
�13�

3These graphical formulas are compatible with various similar
systems introduced before �35�.
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tr(AB) =
B A ��

����

��
.

�14�

The formula for the expansion coefficients of a matrix prod-
uct state finally becomes

�s1, . . . , sn|Ψ�
= L A[s1] . . . A[sn] R† .

This formula suggests a more “dynamic” interpretation of
MPS: the lhs boundary conditions �L� specify an initial state
of the correlation system, which is acted on by the matrices
of the MPS representation. The next paragraph is going to
elaborate on this point.

B. Quantum computing in correlation systems

We return to the discussion of the properties of matrix
product states. Above, it has been shown how to compute the
overlap of ��� with an element of the computational basis
�cf. Eq. �5��. The next step is to generalize this to any local
projection operator. Indeed, if ��� is a general state vector in
C2, we abbreviate


��0�A�0� + 
��1�A�1� ¬ A��� . �15�

One then easily derives the following, central formula

� n�

i

�φi|
�|Ψ�= L A[φ1] . . . A[φn] R .

�16�
Now suppose we measure local observables on ��� and

obtain results corresponding to the eigenvector ��i� at the ith
site. Equation �16� allows us to reinterpret this process as
follows. Initially, the D-dimensional correlation system is
prepared in the state �L�. The result ��1� at the first site in-
duces the evolution

�L� � A��1��L� . �17�

From this point of view, a sequence of measurements on ���
is tantamount to a processing of the correlation system’s state
by the operations A��i�.

4 An appealing perspective on MBC
suggests itself.

Observation 3 �Role of correlation space�. Measurement-
based computing takes place in correlation space. The gates
acting on the correlation systems are determined by local
measurements. Intuitively, “quantum correlations” are the
source of a resource’s computational potency. The strength
of this framework lies in the fact that it assigns a concrete
mathematical object to these correlations.

Indeed, it will turn out that MBQC can be understood
completely using this interpretation.

C. Example: The 1D cluster state

To illustrate the abstract definitions made above, we will
discuss the linear cluster state vector �Cln� in this section. It
is both one of the simplest and certainly the most important
MPS in the context of MBQC.

What is the tensor network representation of �Cln�? Recall
that the cluster state can be generated by preparing n sites in
the state vector �+ �ª �0�+ �1� and subsequently applying the
controlled-Z operation

CZ = �0,0�
0,0� + �0,1�
0,1� + �1,0�
1,0� − �1,1�
1,1�
�18�

between any two nearest neighbors. Effectively, CZ intro-
duces a �-phase whenever two consecutive systems are in
the �1�-state. Hence its expansion coefficients in the compu-
tational basis are given by


s1, . . . ,sn�Cln� = 2−n/2�− 1�p, �19�

where p denotes the number of sites i such that si=si+1=1.
This observation makes it simple to derive the tensors of

the MPS representation. We need a D�two-dimensional cor-
relation system, which, loosely speaking, will convey the
information about the state si of the ith site to site i+1.
Define the matrices A�0 /1� by

�� A[0] �� = |+�r�0|l, �20�

�� A[1] �� = |−�r�1|l. �21�

The intuition behind this choice is as follows. By the elemen-
tary relations


+ �0� = 
+ �1� = 
− �0� = 2−1/2, 
− �1� = − 2−1/2, �22�

the contraction in the middle of

�� A[s1] A[s2] ��
�23�

will yield a sign of “−1” exactly if s1=s2=1. Indeed, setting
the boundary vectors to �L�= �0� , �R�= �+ � one checks easily
that


R�A�sn� ¯ A�s1��L� = 2−n/2�− 1�p, �24�

which is exactly the value required by Eq. �19�.
Below, we will interpret the correlation system of a 1D

chain as a single logical quantum system. For this interpre-
tation to be viable, we must check that the following basic
operations can be performed deterministically by local mea-
surements: �i� prepare the correlation system in a known ini-
tial state, �ii� transport that state along the chain �possibly
subject to known unitary transformations�, and �iii� read out
the final state.

To set the state of the correlation system to a definitive
value, we measure some site, say the ith, in the Z-eigenbasis.
Throughout this work, we will choose the notation X, Y, and
Z for the Pauli operators. Denote the measurement outcome
by z� �0,1�. In the case of z=0, Eq. �20� tells us that the
state of the correlation system to the right of the ith site will

4Of course, for general measurement bases, A��i� is not going to
be unitary. Choosing the bases in such a way as to ensure unitarity
is an essential part of the design of a computational scheme for a
given resource.
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be �+ � �up to an unimportant phase�. Likewise, a z=1 out-
come prepares the correlation system in �−�, according to Eq.
�21�. It follows that we can use Z measurements for prepa-
ration. How to cope with the intrinsic randomness of quan-
tum measurements will concern us later.

Second, consider the operators

�� A[+] �� = 2−1/2( �� A[0] �� + �� A[1] �� )

∝ |+��0| + |−��1| = H, �25�

�� A[−] �� ∝ HZ,
�26�

where H is the Hadamard gate. We see immediately that
measurements in the X eigenbasis give rise to a unitary evo-
lution on the correlation space. Similarly, one can show that
one can generate arbitrary local unitaries by appropriate mea-
surements in the Y-Z plane.

Below, we will frequently be confronted with a situation
like the one presented in Eqs. �25� and �26�, where the cor-
relation system evolves in one of two possibilities, dependent
on the outcome of a measurement. It will be convenient to
introduce a compact notation that encompasses both cases in
a single equation. So Eqs. �25� and �26� will be represented
as

�� A[X] �� = HZx.
�27�

Here x=0 corresponds to the outcome �+ � in an X measure-
ment, whereas x=1 corresponds to the outcome �−�. In gen-
eral, a physical observable given as an argument to a tensor
corresponds to a measurement in the observable’s eigenbasis.
The measurement outcome is assigned to a suitable variable
as in the above example.

Lastly, we must show how to physically read out the state
of the purely logical correlation system. It turns out that mea-
suring the i+1th physical system in the Z eigenbasis corre-
sponds to a Z measurement of the state of the correlation
system just after site i. Indeed, suppose we have measured
the first i systems and obtained results corresponding to the
local projection operator ��1� � ¯ � ��i�. Further assume
that as a result of these measurements the correlation system
is in the state �0�:

L A[φ1] . . . A[φi] �� = |0�.
�28�

Using Eq. �21� we have that

L A[φ1] . . . A[φi] A[1] ��

∝ |+��1|0� = 0. �29�

But then it follows from Eq. �16� that the probability of
obtaining the result 1 for a Z measurement on site i+1 is
equal to zero. In other words: if the correlation system is in
the state �0� after the ith site, then the i+1th physical site
must also be in the state �0�. An analogous argument for the
�1� case completes the description of the read-out scheme.

D. 2D lattices

The graphical notation greatly facilitates the passage to
2D lattices. Here, the tensors A�s� have four indices
A�s�l,r,u,d, which will be contracted with the indices of the
left, right, upper, and lower neighboring tensors, respec-
tively. After choosing a set of boundary conditions
�L� , �R� , �U� , �D��CD, the expansion coefficients of the state
vector ��� are computed as illustrated in the following ex-
ample on a 2�2-lattice:

�s1,1, . . . , s2,2|Ψ� =

U U

L A[s1,1] A[s2,1] R

L A[s1,2] A[s2,2] R

D D

.

�30�

In the 1D case, we thought of the quantum information as
moving along a single correlation system from the left to the
right. For higher-dimensional lattices, a greater deal of flex-
ibility proves to be expedient. For example, sometimes it will
be natural to interpret the tensor Al,r,u,d as specifying the
matrix elements of an operator A mapping the left and the
lower correlation systems to the right and the upper ones:

Al,r,u,d = �r| ⊗ �u|A |l� ⊗ |d�, A = �� A

��

��
�� .

�31�

Often, on the other hand, the interpretation

Al,r,u,d = �r|A |l� ⊗ |u� ⊗ |d�, A =
��

�� A ��
��

�32�
or yet another one is to be preferred.

We have seen in Sec. III B that the correlation system of a
one-dimensional matrix product state can naturally be inter-
preted as a single quantum system subject to a time evolution
induced by local measurements. It would be desirable to
carry this intuition over to the 2D case. Indeed, most of the
examples to be discussed below are all similar in relying on
the same basic scenario: some horizontal lines in the lattice
are interpreted as effectively one-dimensional systems, in
which the logical qubits travel from the left to the right. The
vertical dimension is used to either couple the logical sys-
tems or isolate them from each other �see Fig. 1�. The reader
should recall that this setting is very similar to the original
cluster state based techniques. Clearly, it would be interest-
ing to devise schemes not working in this way and the ex-
ample presented in Sec. IV B 2 takes a first step in this di-
rection.

E. Example: The 2D cluster state

Once again the cluster state serves as an example. One
can work out the tensor network representation of the 2D
cluster state vector �Cln�n� in the same way utilized for the
1D case in Sec. III C. The resulting tensors are
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�� A[0]

��

��
��

= |+�r|+�u �0|l�0|d,
�33�

�� A[1]

��

��
��

= |−�r|−�u �1|l�1|d,
�34�

�L� = �D� = � + �, �R� = �U� = �1� , �35�

An important property of Eqs. �33� and �34� is that the ten-
sors A�0 /1� factor. One could graphically represent this fact
by writing

A[0] =

+

0 +

0

,

�36�

where

0 �� = |0�, + �� = |+�.
�37�

In other words: the tensors A�0 /1� effectively decouple their
respective indices. Based on this fact, we will see momen-
tarily how Z measurements can be used to stop information
from flowing through the lattice.

Indeed, suppose three vertically adjacent sites are mea-
sured, from top to bottom, respectively, in the Z, X, and Z
eigenbasis:

�� A[Zu]

��

��

�� A[X] ��

�� A[Zd] ��
��

.

�38�

Denote the measurement results by zu ,x ,zd� �0,1�. As be-
fore, these numbers correspond to zu=0 for �0� and zu=1 for
�1�, as well as x=0 for �+ � and x=1 for �−�. In fact, we are
mainly interested in the indices of the middle tensor, as they
will be the ones which carry the logical information. To this
end Eq. �36� is of use, as it says that the upper and lower
tensors factor and hence it makes sense to disregard all of
their indices which do not influence the middle part. It hence
suffices to consider

A[Zu]

�� A[X] ��

A[Zd]

.

�39�

As a first step, we calculate

0

�� A[0] ��

+

=

0

+

�� 0 + ��

0

+

= 2−1|+��0|,

having used Eq. �36� and the basic fact

+ 0 = �0|+� = 2−1/2.
�40�

A similar calculation where A�0� is substituted by A�1�
yields 2−1 �−�
1�. Hence for A�+��A�0�+A�1�, we have

0

�� A[+] ��

+

∝ |+��0| + |−��1| = H.

�41�

Similarly,

0

�� A[−] ��

+

∝ HZ.

�42�

After these preparations it is simple to conclude that

A[Zu]

�� A[X] ��

A[Zd]

∝ HZzu+x+zd.

�43�

This finding tells us how to transport quantum information

FIG. 1. �Color online� Measurement-based quantum computing
as a generalization of the one-way model as being considered in this
work. Initially, an entangled resource state is available, different
from the cluster state, followed by local projective measurements
on all individual constituents in the regular not necessarily cubic
lattice. In all figures, dark gray circles denote individual physical
systems.
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along horizontal lines through the lattice. Namely by mea-
suring the line in the X eigenbasis to cause the information to
flow from the left to the right and measuring vertically adja-
cent sites in the Z eigenbasis to shield the information from
the rest of the lattice.

Equation �43� should be compared with Eqs. �25� and
�26�. So up to possible corrections of the form Zzu+zl, the
procedure outlined above enables us to effectively prepare a
1D cluster state within the 2D lattice.

IV. NOVEL RESOURCE STATES

Up to this point, we have reformulated the computational
model of the one-way computer in the language of compu-
tational tensor networks. This picture of one-way computa-
tion is educational in its own right. However, to convincingly
argue that the framework is rich enough to allow for quite
different models, we have to explicitly construct different
schemes. It is the purpose of this section to discuss a number
of examples of such resources. As before, important features
will be highlighted as “observations.”

A. AKLT-type states

1. 1D structures

Our first example is inspired by the Affleck, Kennedy,
Lieb, and Tasaki (AKLT) state �21�, which is well-known in
the context of condensed matter physics. The AKLT model is
a 1D, spin-1, nearest-neighbor, frustration free, gapped
Hamiltonian. Its unique ground state is a matrix product state
with D=2 and indeed, the AKLT model motivated the first
studies of such states �21,26�. The defining matrices of the
MPS description are

�� A[0] �� = Z,
�44�

�� A[1] �� = 2−1/2|0�r�1|l, �45�

�� A[2] �� = 2−1/2|1�r�0|l �46�

We will choose the boundary conditions to be �L�= �R�= �0�.
As a matter of fact, we will not work directly with the AKLT
state, but with a small variation, for which it turns out to be
more straightforward to construct a scheme for MBQC. In
this modification, the matrix A�0� is given by the Hadamard
gate, instead of the Pauli Z operator:

�� A[0] �� = H.
�47�

This state shares all the defining properties of the original: it
is the unique ground state of a spin-1 nearest-neighbor frus-
tration free gapped Hamiltonian �see Appendix Sec. B�.
Against the background of our program, the obvious ques-
tion to ask is whether these matrices can be used to imple-
ment any evolution on the correlation space.

To show that this is indeed the case, let us first analyze a
measurement in the ��0� , �+ � , �−�� basis, where �± �

ª2−1/2��1�± �2��. In a mild abuse of notation, we will hence
write �± � for state vectors in the subspace spanned by
��1� , �2�� instead of ��0� , �1��. From Eqs. �44�–�47� one finds
that depending on the measurement outcome, the operation
realized on the correlation space will be one of H ,X or ZX
= iY. At this point, we have to turn to an important issue: how
to compensate for the randomness of quantum measurement
outcomes.

2. Compensating the randomness

Assume for now that we intended to just transport the
information faithfully from left to right. In this case, we con-
sider the operator

B1 ª H,X, or ZX �48�

as an unwanted by-product of the scheme. The one-way
computer based on cluster states has the remarkable property
that the by-products can be dealt with by adjusting the mea-
surement bases depending on the previous outcomes, without
changing the general “layout” �in the sense of Fig. 1� of the
computation �3�. For more general models, as the ones con-
sidered in this work, such a simple solution seems not avail-
able. Fortunately, we can employ a “trial-until-success” strat-
egy, which proves remarkably general.

The key points to notice are that �i� the three possible
outcomes H ,X, and Z generate a finite group B and �ii� the
probability for each outcome is equal to 1 /3, independent of
the state of the correlation system. We will refer to B as the
model’s by-product group. Now suppose we measure m ad-
jacent sites in the ��0� , �+ � , �−�� basis. The resulting overall
by-product operator B=BmBm−1¯B1 will be a product of m
generators H ,X ,ZX. So by repeatedly transporting the state
of the correlation system to the right, the by-products are
subject to a random walk on B. Because B is finite, every
element will occur after a finite expected number of steps �as
one can easily prove�.

The group structure opens up a way of dealing with the
randomness. Indeed, assume that initially the state vector of
the correlation system is given by B ���, for some unwanted
B�B. Transferring the state along the chain will introduce
the additional by-product operator B−1 after some finite ex-
pected number of steps, leaving us with

B−1B��� = ��� , �49�

as desired. The technique outlined here proves to be ex-
tremely general and we will encounter it in further examples
presented below.

Observation 4 �Compensating randomness�. Possible sets
of by-product operators are not limited to the Pauli group. A
way of compensating randomness for other finite by-product
operator groups is to adopt a “trial-until-success strategy,”
which gives rise to a random length of the computation. This
length is in each case shown to be bounded on average by a
constant in the system size.

3. All single-qubit gates

By the preceding paragraphs, we can implement any ele-
ment of B on the correlation space. We next address the
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problem of realizing a phase gate S���ªdiag�1,ei�� for
some ��R. To this end, consider a measurement on the
��0� ,2−1/2��1�±ei� �2��� basis. There are three cases.

�1� The outcome corresponds to �1�+ei� �2�. In this case,
we get S��� on the correlation space and are hence done.

�2� The outcome corresponds to �1�−ei� �2�. We get
ZS���, which is the desired operation, up to an element of
the by-product group, which we can rid ourselves of as de-
scribed above.

�3� Lastly, in case of �0�, we implement H on the correla-
tion space. As H�B, we can “undo” it and then retry to
implement the phase gate.

Hence we can implement any element of B as well as
S��� on the correlation space. This implies that HS���H is
also realizable and therefore any single-qubit unitary, as
SU�2� is generated by operations of the form S��� and
HS���H.

The state of the correlation system can be prepared by
measuring in the computational basis. In case one obtains a
result of “1” or “2,” the state of the correlation system will
be �0� or �1�, respectively, irrespective of its previous state. A
“0” outcome will not leave the correlation system in a defi-
nite state. However, after a finite expected number of steps, a
measurement will give a non-“0” result. Lastly, a read-out
scheme can be realized similarly �cf. Sec. III C�.

Observation 5 �Ground states�. Ground states of one-
dimensional gapped nearest-neighbor Hamiltonians may
serve as resources for transport and arbitrary rotations.

4. 2D structures

Several horizontal 1D AKLT-type states can be coupled to
become a universal 2D resource. The coupling can be facili-
tated by performing a controlled-Z operation, embedded into
the three-dimensional spin-1 space, between vertically adja-
cent nearest neighbors. More specifically, we will use the
operation exp�i� �2�
2 � � �2�
2 � �, which introduces a �
phase between two systems exactly if both are in the state
�2�. The tensor network representation of this resource is
given by

�� A[0]

��

��
��

= Hl→r ⊗ |+�u�0|d,
�50�

�� A[1]

��

��
��

= 2−1/2|0�r�1|l ⊗ |+�u�0|d,
�51�

�� A[2]

��

��
��

= 2−1/2|1�r�0|l ⊗ |−�u�1|d,
�52�

as one can check in analogy to Sec. III E. Here,

Hl→r ª � + �r
0�l + �− �r
1�l. �53�

To verify that the resulting 2D state constitutes a universal
resource, we need to check that �a� one can isolate the cor-
relation system of a horizontal line from the rest of the lat-

tice, so that it may be interpreted as a logical qubit and �b�
one can couple these logical qubits to perform an entangling
gate.

The first step works in complete analogy to Sec. III E, see
Fig. 2. Indeed, one simply confirms that

A[Zu]

�� A[s] ��

A[Zl]

= ± �� A[s] �� ,

�54�

where s� �0,1 ,2� and Zu/l denotes a measurement in the
��0� , �1� , �2�� basis. So measuring the vertically adjacent
nodes in the computational basis gives us back the 1D state,
up to a possible sign.

A controlled-Z gate can be realized in five steps:

−2 −1 0 1 2

�� A[X] A[X] A[X ] A[X ] A[X ] ��

�� A[Z] A[Z] A[Y ] A[Z] A[Z] ��

�� A[X] A[X] A[X ] A[X ] A[X ] ��

.

�55�
The Pauli matrices X ,Y, and Z are understood as being em-
bedded into the ��1� , �2�� subspace. So, e.g., X denotes a mea-
surement in the ��0� ,2−1/2��1�± �2��� basis. When operating
the gate, we first measure all sites of the upper and lower
lines in the X eigenbasis. In the case the results for the sites
at position “0” �refer to labeling above� are different from
�+ �, the gate failed. In that case all sites on the middle line
are measured in the computational basis and we restart the
procedure five steps to the right.5 Otherwise, the systems
labeled by a Z are measured. We accept the outcome only if
we obtained �1� on sites ±2 and �0� on sites ±1, should a
different result occur, the gate is once again considered a
failure and we proceed as above. Lastly, the Y measurement

5We have chosen this approach in order to avoid an awkward
discussion of how to handle phases introduced by “wrong” mea-
surement outcomes. We are providing proofs of principle for uni-
versality here and will accept a �possibly daunting� linear overhead
in the expected number of steps, if this simplifies the discussion.
Substantial improvements to these schemes are, of course, possible.

FIG. 2. �Color online� A universal resource deriving from the
AKLT model.
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on the central site is performed. In case of a result corre-
sponding to �0�, it is easy to see that no interaction between
the upper and the lower part takes place, so this is the last
possibility for the gate to fail. Let us assume now that the
desired measurement outcomes were realized. At site −2 on
the middle line, we obtained

A[1] �� ,
�56�

which prepares the correlation system of the middle line in
�0�. At site −1, in turn, a Hadamard gate has been realized,
which causes the output of site −1 to be H �0�= �+ �. The
situation is similar on the rhs, so that the above network at
site 0 can be rewritten as

�� A[+] ��

+ A[Y ] +

�� A[+] ��

.

�57�

We will now analyze the tensor network in Eq. �57� step by
step. For proving its functionality, there is no loss of gener-
ality in restricting attention to the situation where the corre-
lation system of the lower line is initially in state �c�, for c
� �0,1�. We compute for the lower part of the tensor net-
work

|c� A[+] ��

��

= X|c�rZc|+�u.
�58�

Further, plugging the output Zc � + � of the lower stage into the
middle part, we find

+ A[Y ]

��

+

Zc|+�
∝ Zc+y(|0� + i|1�),

�59�

where y�0,1 reflects the outcome of the Y measurement on
the central site: y=0 in the case of �1�+ i �2� and y=1 for
�1�− i �2�. Lastly,

�� A[+] ��

Zc+y(|0� + i|1�)
∝ SZc+yX.

�60�

In summary, the evolution afforded on the upper line is
HSZy+c, equivalent to Zc up to by-products. This completes
the proof of universality.

For completeness, note that we never need the by-
products to vanish for all logical qubits of the full computa-
tion simultaneously. Hence the expected number of steps for
the realization of one- or two-qubit gates is a constant in the
number of total logical qubits.

B. Toric code states

In the following, we present two MBQC resource states
which are motivated by Kitaev’s toric code states �37�. This
contrasts with a result in Ref. �34� that MBQC on the planar
toric code state itself can be simulated efficiently classically.
Different from the other schemes presented, the natural gate
in these schemes is a two-qubit interaction, whereas local
operations have to be implemented indirectly. Also, indi-
vidual qubits are decoupled not by erasing sites but by
switching off the coupling between them.

Toric code states are states with nontrivial topological
properties and have been introduced in the context of quan-
tum error correction. They have a particularly simple repre-
sentation in terms of projected entangled pairs states �PEPS�
�38� or computational tensor networks �CTNs� �1� on two
centered square lattices,

��

��

����

��
��

KV

��

��

KH

����

��

��
��

��

KV

��

��
��

KH

��

��

KV

��

��

KH

����

��

��
��

����

KV

��

��
��

KH

��

��

KV

��

��

KH

��

��
��

����

KV

��

��

KH

����

��

�61�

where

��
��

KH [s]

����

��
������

=

��
�

Zs

���

Zs

��
���� �62�

and

��
��

KV [s]

����

��
������

=
��

�

Zs Zs

��
�

���

���

,

�63�

i.e., KH and KV are identical up to a rotation by 90°.
Let us first see how KH acts on two qubits in correlation

space coming from the left. The most basic operation is a
measurement in the computational basis, which simply trans-
ports both qubits to the right �up to a correlated Z by-product
operator�. Generalizing this to measurements in the Y-Z
plane, we find that

����
��

KH [φ]

������

����
��������

=
����

��

ZZ(φ)

������

����
�������� �64�

where �54�� is the angle with the Z axis, and

ZZ��� =�
1

ei�

ei�

1
� . �65�
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�Note that this gate is locally equivalent to the CNOT gate for
�= ±� /2.�

Thus the tensors in Kitaev’s toric code state have a two-
qubit operation as their natural gate in correlation space,
rather than a single-qubit gate. In MBQC schemes which are
based on these projectors, two-qubit gates are easy to realize,
whereas in order to get one-qubit gates, tricks have to be
used. In the first example, we obtain single-qubit operations
by introducing ancillae: a ZZ controlled phase between a
logical qubit and an ancilla in a computational basis state
yields a local Z rotation on the logical qubit. In the second
example, we use a different approach: we encode each logi-
cal qubit in two qubits in correlation space. Using this non-
local encoding, we obtain an easy implementation of both
one- and two-qubit operations; furthermore, the scheme al-
lows for an arbitrary parallelization of the two-qubit interac-
tions.

Observation 6 �Logical qubits in several correlation sys-
tems�. There is no need to have a one-one correspondence
between logical qubits and a single correlation system.

1. Toric codes: first scheme

Our first scheme consists of the modified tensor

����
��

K̃H [s]

������

����
��������

=

����
��

KH [s]

��������

��
��������� √

ZH
����

��

=

����
��

�

Zs

�������

√
ZHZs

��						



 �66�

�with 
Z=diag�1, i��, arranged as in Eq. �61� where both KH

and KV are replaced by K̃H. The extra H serves the same

purpose as in other schemes: it allows one to leave the sub-
space of diagonal operations and thus to implement X rota-
tions. The need for the 
Z will become clear later; it is con-
nected to the fact that

CNOT = �1 � H��
Z � 
Z�ZZ�− �/2��1 � H� . �67�

In the following, we show how this state can be used for
MBQC. The qubits run from left to right in correlation space
in zigzag lines in Eq. �61�; for the illustration in Fig. 3, we
have straightened these lines and marked the measurement-
induced ZZ interactions coming from the KH�s� in Eq. �66�
by ellipses. �The difference between filled and empty ellipses
will be explained later.� The 
ZH operations of Eq. �66� do
not depend on the measurement and are thus hard-wired;
note that the order is reversed as we are considering H and

Z as two independent operations in the circuit.

Let us first impose that all qubits are initialized to �0�; this
corresponds to a left boundary condition �0� in correlation
space. We will discuss later how to initialize the scheme.
Every second qubit is an ancilla which will be used to imple-
ment one-qubit operations. We first discuss the case of no
Pauli errors and show later how those can be dealt with.

The implementation of single-qubit operations is illus-
trated in Fig. 3�a�. There, each ellipse denotes a possible ZZ
interaction. In particular, empty ellipses denote interactions
which are switched off �i.e., measured in the Z basis�, while
filled ellipses denote sites where one can measure in the Y-Z
plane to implement a ZZ gate. If all interactions are switched
off, all qubits are transported to the right, subject to the trans-
formation 
ZH. As �
ZH�3=1, the ancillae are in the compu-
tational basis in every third step: These regions are hashed in
Fig. 3�a�. In these regions, a ZZ��� between the ancilla and
logical qubit �corresponding to the filled ellipses in the fig-
ure� results in a single-qubit Z rotation on the latter. Thus in
each block of length three as the one shown in Fig. 3�a�, the
transformation


ZH
ZHS���
ZHS��� = HS���HS��� �68�

is implemented �where S���=diag�1,ei���, which allows for
arbitrary one-qubit operations. In Fig. 3�b�, the correspond-

FIG. 3. Implementation of single-qubit and two-qubit operations in the first toric code model. �a� The measurement pattern for single-
qubit operations and �b� the corresponding circuit. �c� Pattern for a two-qubit gate between logical qubits, �d� the corresponding circuit, and
�e� the circuit after some simplifications.
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ing circuit is shown, which has been simplified using
H
ZH
Z=
X
Z= �
Z�−1H, and that diagonal matrices com-
mute.

Although the scheme has a natural two-qubit interaction,
implementing an interaction between two adjacent logical
qubits is complicated by the ancilla which is located in be-
tween. In order to obtain a coupling, we first swap the logical
qubit with the ancilla, then couple it to the now adjacent
logical neighbor, and finally swap it back. This is imple-
mented by the measurement pattern shown in Fig. 3�c�.
Again, empty ellipses correspond to switched off interac-
tions, while the filled ellipses all implement ZZ�−� /2� gates,
each of which together with two 
Z and two Hadamards as
grouped in the figure gives a CNOT gate, cf. Eq. �67�. This
measurement pattern corresponds to the circuit shown in Fig.
3�d�, where we have replaced each pair of CNOTs by a CNOT

and a SWAP. By merging each CNOT with the two adjacent
Hadamards, we effectively obtain

CZ = �0,0�
0,0� + �0,1�
0,1� + �1,0�
1,0� − �1,1�
1,1�
�69�

gates. We thus remain with only diagonal gates on the two
lower qubits �except for the SWAP�, i.e., the gates all com-
mute and the circuit can thus be simplified to the one shown
on in Fig. 3�e�, proving that the sequence effectively imple-
ments a two-qubit interaction between the logical qubits.
Note that the length of the complete sequence is compatible
with the three-periodicity of the basis of the ancillae.

Pauli errors in this scheme can be dealt with as usual: H
and 
Z are both in the Clifford group, i.e., Paulis can be
commuted through, and ZZ commutes with Z errors, while
�1 � X�ZZ���=ZZ�−���1 � X�.

Finally, we show how to read out the logical qubits. It
holds that

����
��

H [+]

������

����
��������

=

������
0

0

��
0

0

������ +

������
1

1

� �
1

1

������ ,

�70�

����
��

H [−]

������

����
��������

=

������
0

1

��
0

1

������ +

������
1

0

� �
1

0

������
�71�

i.e., a measurement in the X basis returns the parity of the
ancilla and the logical qubit. If this is done when the ancilla
is in a computational basis state, one effectively measures the
logical qubit in the computational basis. Note that both the
ancilla and the logical qubit are in a well-defined state after-
wards and can thus be reused.

Let us now turn towards the initialization procedure. In
contrast to the previous MBQC schemes, the read-out cannot
be used for initialization. The reason is that the read-out only
works if the ancilla qubit is initially in a computational basis
state; otherwise, it just projects onto the subspace spanned by
��0,0� , �1,1�� or by ��0,1� , �1,0��.

In the following, we demonstrate that it is still possible to
initialize this scheme by taking a different perspective on

how it encodes logical qubits. Therefore we group each logi-
cal qubit with the ancilla above �e.g., the first two qubits in
Fig. 3�a��, and encode the new logical qubit in their parity—
note that this is what is really measured in the read-out. The
following calculations are most conveniently carried out in a
Bell basis where each state is described as �s�s � l�l, where the
s qubit stores the sign of the Bell state and the l qubit the
parity and thus encodes our logical qubit, i.e.,

�s�s�0�l ↔ �0,0� + �− 1�s�1,1� , �72�

�s�s�1�l ↔ �0,1� + �− 1�s�1,0� . �73�

The circuit transforming between the above encoding and the
qubits in correlation space is

. �74�

Using this decoding, it is straightforward to investigate
what happens in the various steps of the MBQC scheme.
First, one can easily check that by measuring two consecu-
tive couplings of the qubit pair in the X basis, one prepares
them in a maximally entangled state �0,0�+ �1,1� up to Pauli
errors, corresponding to �0�s �0�l in the encoded system. By
pretending a Pauli Z error on one of the qubits with p=1 /2,
we effectively face the mixture �0,0�
0,0 � + �1,1�
1,1�, cor-
responding to 1s � �0�
0�l.

Since the transformation �74� is in the Clifford group,
Pauli errors remain Pauli errors in the encoded system. In the
following, we will check how the circuit acts on initial states
�± �s �0�l, where the sign can be different on each pair. As we
will show, all of them give the same output statistics, and
thus the same holds for their mixture, i.e., the actual initial
state. These considerations are illustrated in Fig. 4, where we
take the circuits of Fig. 3 and compose them with the decod-
ing and encoding circuits �boxed� in order to determine their
action on the encoded system.

First, a ZZ��� gate on a pair gives a Z rotation of the
encoded logical qubit, since the action of ZZ��� only de-
pends on the parity �Fig. 4�a��. The action of the second ZZ
rotation of Fig. 3�b� which originally gave an X rotation is
shown in Fig. 4�b�. The right-hand side is obtained by using
CNOT= �1 � H�CZ�1 � H�, H2=1, the fact that diagonal opera-
tors commute, and �CZ�2=1. As we see from the simplified
circuit, we obtain an X rotation on the upper logical qubit,
but with the rotation direction determined by the state of the
�s�s qubit below: While �+ �s results in a rotation Rx���, the
state �−�s gives

ZRx���Z � Rx�− �� .

Similarly, the circuit for the coupling of two logical qubits
can be simplified as in Fig. 4�c�: again, the coupling on the
logical qubits is Cpl���ª �H � Z�ZZ����H � 1� or

�H � ZX�ZZ����H � X� = �Z � 1�Cpl����Z � 1� ,

depending on whether the second s qubit is �+ �s or �−�s.
Therefore the error introduced by the unknown state of

each s qubit results in a Z correction around each operation
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on the logical qubit above �note that we can assume this also
for Z rotations as they commute with the Z correction�. Al-
though the error itself is unknown and different for each
logical qubit, it is consistent within each qubit, as it is always
determined by the same ancilla. Thus two subsequent Z er-
rors cancel out, and one remains only with one Z correction
on the logical qubit at the beginning and one at the end of the
sequence. The former has no effect since the initial state is
�0�l, while the latter has no effect either since the encoded
logical qubit is finally measured in the computational basis.
Thus the output statistics for the circuit is independent of the
initial state �± �s of the phase qubits, and one can equally well
start from their mixture 1s which completes the argument.

2. Toric codes: Second scheme

The second toric-code-like scheme is based on a very dif-
ferent idea. Therefore observe that the KV tensor can be writ-
ten as

����
��

KV [s]

������

����
��������

=
������

COPY† H A[s] COPY

����
��

�

�������

������
�75�

where COPY is the copy gate �0,0�
0 � + �1,1�
1�, H is the
Hadamard gate �both with no physical system associated to
them�, and A the 1D cluster projector, cf. Eqs. �20� and �21�.
Thus KV takes two qubits in correlation space, projects them
onto the ��0,0� , �1,1�� subspace, implements the 1D cluster
map up to a Hadamard, and duplicates the output to two
qubits. Concatenating these tensors horizontally �this takes
place in Eq. �61� if all KH’s are measured in Z, and one
neglects Pauli errors� therefore implements a single logical
qubit line, encoded in two qubits in correlation space. By
removing the Hadamard gate from KV, we obtain a 1D clus-
ter state encoded in two qubits which is thus capable of
implementing any one-qubit operation on the logical qubit;
in particular, this includes initialization and read-out. We
thus define the tensor

����
��

K̃V [s]

������

����
��������

=
����

��

COPY† A[s] COPY

����
��

�

�������

������

.

�76�

Then, the toric code state �61� with KV replaced by K̃V is
universal for MBQC: Initialization, one-qubit operations,
and read-out are done exactly as in the 1D cluster state. The
logical qubits are decoupled up to Z by-product operators in
correlation space by measuring the KH tensors in the Z basis.
The Z by-products in correlation space correspond to Z er-
rors on the encoded logical qubits and thus can again be dealt
with as in the cluster. In order to couple two logical qubits,
we measure a KH tensor in the Y basis and obtain a ZZ
controlled phase gate in correlation space, which translates to
the same gate on the logical qubits. Note that this model has
the additional feature that as many controlled phases �be-
tween nearest neighbors� as desired can be implemented si-
multaneously.

In the light of the discussion on the initialization of the
first scheme, one might see similarities between the two
schemes, since in both cases the information is effectively
encoded in pairs of qubits. Note, however, that in the first
scheme, the information is stored in the parity of the two
qubits, and the full four-dimensional space is being used; the
reason for this encoding came from the properties of the KH
tensor used as a map in the horizontal direction. In contrast,
the second scheme only populates the two-dimensional even
parity subspace, and the qubit is rather stored in two copies
of the same state; finally, the encoding is motivated by the
properties of the KV tensor as a map on correlation space in
the horizontal direction.

C. Weighted graph states

In this section, we will consider instances of weighted
graph states �5,36� forming universal resources. To motivate
the construction, recall that the cluster state can be prepared
by applying a controlled-phase gate

FIG. 4. Interpretation of the first toric code scheme in terms of parity encoded qubits. The boxed parts of the circuit decode and encode
the system. �a� Z rotations result in Z rotations in the encoded system. �b� X rotations result in X rotations in the encoded system, plus Z
corrections before and after the rotations in case the s qubit below is �−�s rather than �+ �s. �c� Similarly, the coupling circuit Fig. 3�d� results
in a coupling of the encoded logical qubits, up to the same Z correction on the first logical qubit which depends on the s qubit below in
exactly the same way. Thus the Z corrections on each qubit cancel out except for the first and the last, which have no effect due to the
initialization and measurement in the computational basis.
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P��� = �0,0�
0,0� + �0,1�
0,1� + �1,0�
1,0� + ei��1,1�
1,1� ,
�77�

with phase �=� between any two nearest neighbors of a
two-dimensional lattice of qubits initially in the state �+ �. If
one wants to physically implement this operation using lin-
ear optics �44�, one encounters the situation that the con-
trolled phase gate can be implemented only probabilistically,
with the probability of success decreasing as � increases. It
is hence natural to ask whether one can build a universal
resource using gates P���, 0����, in order to minimize
the probability of failure.6

1. Translationally invariant weighted graph states

Expanding the discussion presented in Ref. �1�, we treat
the weighted graph state shown in Fig. 5. A tensor network
representation of these states can be derived along the same
lines as for the original cluster in Sec. III C. Set �i�
ª2−1/2��0�+ i �1��. The relevant tensors are given by

�� A[0]

����

��

����

����
����

= |+�ru |+�lu |+�r�0|ld�0|rd�0|l,
�78�

�� A[1]

����

��

����

����
����

= |i�ru |i�lu |−�r�1|ld�1|rd�1|l.
�79�

Indices are labeled ru for “right-up” to ld for “left-down.”
The boundary conditions are �0� for the ru , lu, and
r-directions; �+ � otherwise.

We will first describe how to realize isolated evolutions of
single logical qubits in the sense of Fig. 1. Again the strategy
will be to measure the sites of one horizontal line of the
lattice in the X basis and all vertically adjacent systems in the
Z basis. The analysis of the situation proceeds in perfect
analogy to the one given in Sec. III E. One obtains

A[Zi−1,u] A[Zi+1,u]

�� A[Xi]
�� ��

��

A[Zi−1,d]
��

A[Zi+1,d]
��

= HS2xi+zi,

�80�

where

zi = zi−1,u + zi−1,d + zi+1,u + zi+1,d, �81�

and Sªdiag�1, i� denotes the � /4 gate.
The operators H and S generate the 24-element single

qubit Clifford group. Following the approach of Sec. IV A,
we take this as the model’s by-product group.

Now choose some phase �. Redoing the calculation
which led to Eq. �80�, where we now measure in the
��0�±ei� �1�� basis instead of X on the central node, shows
that the evolution of the correlation space is given by S���,
up to by-products. In complete analogy to Sec. IV A, we see
that the model allows for the realization of arbitrary SU�2�
operations.

How to prepare the state of the correlation system for a
single horizontal line and how to read it out has already been
discussed in Sec. III C. Hence the only piece missing for
universal quantum computation is a single entangling two-
qubit gate.

The schematics for a controlled-Z gate between two hori-
zontal lines in the lattice are given below. We implicitly as-
sume that all adjacent sites not shown are measured in the Z
basis,

�� A[X] A[X] A[X] ��

A[Y ]

���� ����

�� A[X]
����

A[X] A[X]

����
��

.

�82�

The measurement scheme realizes a controlled-Z gate, where
the correlation system of the lower line carries the control
qubit and the upper line the target qubit.

In detail one would proceed as follows: first one performs
the X measurements on the sites shown and the Z measure-
ments on the adjacent ones. If any of these measurements
yields the result “1,” we apply a Z measurement to the cen-
tral site and restart the procedure three sites to the right. This
approach has been chosen for convenience: it allows us to
forget about possible phases introduced by other measure-
ment outcomes. Still, the “correct” result will occur after a
finite expected number of steps, so the overhead caused due
to this simplification is only linear. It is also not hard to see
that most other outcomes can be compensated for—so for
practical purposes the scheme could be vastly optimized.

Now assume that all measurements yielded “0.” Then a Y
measurement is performed on the central site, obtaining the
result y. As we did in Sec. IV A 4, we assume that the
�lower� control line is in the basis state �c�, for c� �0,1�. The
contraction of the lowermost three tensors gives

6Alternative models with edges resulting from commuting gates
with nonmaximally entangling power can possibly also be con-
structed by exploiting ideas of nonlocal gates that are implemented
with local operations and classical communication �39,40�.

FIG. 5. �Color online� Weighted graph state as a universal re-
source. Solid lines correspond to edges that have been entangled
using phase gates with phase �=�, dotted lines correspond to edges
entangled with phase gates with �=� /2. This shows that one can
replace some edges with weakly entangled bonds.
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|c� A[X]

��

A[X] A[X] ��

��

= Sc|+�luSc|+�ruH|c�r, �83�

where as before S=S�i�=diag�1, i�. We plug this result into
the A�Y� tensor:

A[Y ]

��������
��������

Sc|+�
����

Sc|+�
����

= |+�lu |+�ru + (−1)c+yi(S ⊗ S)|+�lu |+�ru.�84�

Lastly, for �66�x� �0,1�,

�� A[X] A[X] A[X] ��

Sx|+� Sx|+�
= HZx.

�85�

Hence the evolution on the upper line is

H�1 + �− 1�c+yiZ� � HSZy+c, �86�

equivalent to Zc up to by-products. We arrive hence at the
following conclusion.

Observation 7 �Nonmaximal entangling power�. Universal
resources may be prepared using commuting gates with non-
maximal entangling power.

2. Rerouting

We will consider a second weighted graph state to exem-
plify yet another ingredient that one can make use of in
measurement-based quantum computation: One can think of
quantum information being transported in the correlation
system of some systems on the lattice forming “wires,” in a
way that gates are realized by bringing the “wires” together.
This is an element that is not present in the original one-way
computer. The subsequent example of a resource state has
not been chosen for its plausibility in the preparation in a
physical context, but in a way such that this idea of “rerout-
ing quantum information” can very transparently be ex-
plained, see Fig. 6.

The resource that we think about is defined by tensors that
are fully translationally invariant in one dimension, and has
period two in the orthogonal dimension,

A A A A A

B B B B B

A A A A A

.

�87�

This is, we have two kinds of tensors: One set is given by

�� B[0]

��

��
��

= |+�r|+�u �0|l�0|d,
�88�

�� B[1]

��

��
��

= |−�r|i�u �1|l�1|d
�89�

whereas the other one is nothing but the familiar one for a
2D cluster state as in Eqs. �88� and �89�, with boundary
conditions

�L� = �D� = � + �, �R� = �U� = �1� . �90�

The resulting state is hence again a weighted graph state,
where in one dimension every second edge is replaced by an
edge prepared using a gate with nonmaximal entangling
power. Then, it is not difficult to see that, again with
x ,zr ,zu ,zd ,zl� �0,1�,

A[Zu]

�� B[X] ��

A[Zd]

= HZx+zdSzu,

�91�

and

B[Zu]

�� A[X ] ��

B[Zd]��

= HZx+zuSzd.

�92�

Similarly, we can consider several corner elements in this
resource. We obtain

�� A[X ]

��

A[Zr]

B[Zd]

= HZx+zdSzu ,

�93�

and similarly

FIG. 6. �Color online� Weighted graph state where the gate is
achieved by appropriately bringing two wires together in a “rerout-
ing process.”
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��
A[Zl] �� A[X] ��

B[Zd]

= (HSH)zdXzl+x,

�94�

A[Zu]

�� B[X]
��

B[Zr]
= Zx+zrSzu ,

�95�

A[Zu]

B[Zl] B[X] ��
��

= HZx+zu+zl(SZ)zu,

�96�

where we have again made use of the convention that x=0
corresponds to �+ � and x=1 to �−�. We need one more ingre-
dient to the scheme, this is

B[Zl] B[0]

��

��
��

= |+�r|+�u�0|d,
�97�

B[Zl] B[1]

��

��
��

= |−�r|i�u�1|d,
�98�

and

�� A[0]

��

A[Zr]��
= |+�u�0|l�0|d,

�99�

�� A[1]

��

A[Zr]��
= (−1)zr |−�u�1|l�1|d.

�100�

Putting in these ingredients, and following an argument simi-
lar to the last section, we find that up to Clifford group by-
products, we can transport along the horizontal lines for both
kinds of local tensors. We can also use the corner pieces to
reroute as depicted in Fig. 6, and bring routes together form-
ing a “gate” imprinted in the lattice, actually, a controlled-S
gate.

It should be noted that it is not obviously possible to
faithfully transport one qubit of information vertically
through the resource. Loosely speaking, the entanglement
between a site of type B and the site of type A directly above
it is nonmaximal �this is indicated by dotted lines in Fig. 6�.
Interestingly, one can still perform a �nonmaximally entan-
gling� nonlocal gate over this connection.

Observation 8 �Rerouting�. Gates in measurement-based
quantum computation can be achieved by means of appro-
priate routing of quantum information in the lattice.

D. Qubit resource with nonvanishing correlation functions

We will very briefly sketch a matrix product state on a 1D
chain of qubits, which �i� exhibits nonvanishing two-point
correlation functions, �ii� allows for any unitary to be real-
ized in its correlation system, and �iii� can be coupled to a
universal 2D resource in a way very similar to the AKLT-
type example �Sec. IV A�. The discussion will be somewhat
superficial, however, given the extensive discussion of other
models above, the reader should have no problems filling in
the details.

Choose an integer m	2 and define

G ª exp�i�/mX� . �101�

Up to a constant, G is a mth root of X. The state is defined by
the following relations:

�� A[s] �� = |s�r�s|lG,
�102�

and

�L� = G†� + �, �R� = � + � . �103�

The two-point correlation functions for measurements on
this state never vanish completely. Indeed, in the Appendix
Sec. A it will be shown that


ZiZi+k� − 
Zi�
Zi+k� = 2
k, �104�

where 
ª2 sin2�� /m�−1.
For X measurements, we find

�� A[X ] �� = ZxG
�105�

Pursuing the strategy introduced in Sec. IV A 2, we set the
by-product group is to B= 
Z ,G�, so the group is generated
by Z and G. One can easily verify that B is indeed a finite
group, equivalent to the dihedral group of order 2m.

It is now straightforward to check that �i� measurements
in the computational basis can be used for preparation and
read-out �as in Sec. III C�, �ii� general local unitaries can be
realized by means of measurements in the equatorial plane of
the Bloch sphere �as in Sec. IV A 1�, and �iii� a 2D resource
is obtainable in a fashion similar to the one presented in Sec.
IV A 4. With similar methods, one can also find qubit re-
source states that have a local entropy smaller than unity.

E. Percolation ideas to make use of imperfect resources

For completeness, we mention yet another kind of re-
source: This is an imperfect cluster state where some edges
are missing. Such a setting is clearly relevant in a number of
physical situations: If the underlying quantum gates building
up the cluster state are fundamentally probabilistic, such as
in linear optical architectures, then one very naturally arrives
at this situation when one aims at minimizing the need for
feed-forward. A similar situation is encountered in cold at-
oms in optical lattices, when in a Mott state exhibiting hole
defects some atoms are missing. We do not present details of
such arguments, which have been considered in Ref. �41�,
based on ideas of edge percolation and renormalization �42�.
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We merely state the result for completeness. Note also that
results that may be similar to these have been announced in
Ref. �24�.

We consider the setting where one starts from a 2D or 3D
cubic lattice of size n�n. Two neighboring vertices on the
lattice are connected with an edge with probability p. The
stochastic variables deciding whether or not an edge is
present are assumed to be uncorrelated. If p	 p2=1 /2 holds,
then it is not difficult to see that one can extract a 2-D renor-
malized lattice of smaller size. This means that one can find
a function n�m�n�, such that one arrives at a cubic m�n�
�m�n� array almost certainly as n→�, with the following
property. Within each of the elements of this array, there is a
central site that is connected to the central site of the neigh-
boring array. Since all the additional sites can be removed by
means of Z measurements, we can treat this resource effec-
tively as a 2D cluster state of dimension m�n��m�n�, and
refer to this as a perfect sublattice. This state will not neces-
sarily be exactly a cluster state, as it may contain vertices
having a vertex degree of three, but which will nevertheless
function as a graph state resource just as the cluster state
does �for details, see Ref. �41��. Also, n /m�n� is arbitrarily
close to being linear in n asymptotically. However, an even
stronger statement holds.

Observation 9 �Percolation�. Whenever p	 p3=0.249, for
any �	0, one can find a function n�m�n� with the follow-
ing property: Starting from a sublattice of a 3D cubic lattice
of size n�n�2n /m�n�, one can almost certainly prepare a
perfect sublattice of size m�n��m�n�. The asymptotic be-
havior of m can be chosen to satisfy

n/m�n� = O�n�� . �106�

That is, with an overhead that is arbitrarily close to the
optimal scaling, one can obtain a perfect resource state out of
an imperfect one, even if one is merely above the percolation
threshold for a three-dimensional lattice, and not only for the
two-dimensional lattice, see Fig. 7. The latter argument is
technically more involved than the former, for details, see

Ref. �41�. This shows, however, with methods unrelated to
the ones considered primarily in the present work, that also
random aspects in the resource as such can be dealt with.

V. ONE-WAY COMPUTATION USING ENCODED
SYSTEMS

In the final section of this work, we will show that one
can find resource states for MBQC that differ substantially
from the cluster in various entanglement properties. This will
be done by encoding each system of a resource into several
physical particles. We will not develop any new computa-
tional models and make no use of the computational tensor
network formalism introduced before. The study of encoded
resource states was initiated in Ref. �1� and later pursued
more systematically in Ref. �25�.

More concretely, the following statements will be proved.
Observation 10 �Resources with weak capabilities for

state preparation�. There exists a family of universal re-
source states such that

�1� The local entropy of entanglement is arbitrarily small;
�2� The localizable entanglement is arbitrarily small; and,

more strongly,
�3� The probability of succeeding in distilling a maxi-

mally entangled pair out of the resource is arbitrarily small,
even if one does not a priori fix the two sites between which
the pair will be established.

In particular, the resource cannot be used as a state pre-
parator.

We start from a cluster state vector on n�n systems, de-
noted by �Cln�n�, referred to as logical qubits. As in Ref. �1�,
we want to “dilute” the cluster state, i.e., encode it into a
larger system, by means of invoking the code words

�0̃� ª �0��k, �1̃� ª �Wk� �107�

for some parameter k. The argument relies only on the choice
of �Wk� as a code word in that we focus on its implications on
the localizable entanglement, and for that argument, the state
vector �Wk� has the desired properties of small local entropy
and permutation invariance. However, for encoded one-way
computation to be possible, any state vector orthogonal to
�0��k may be taken, compare also Ref. �25�. Every qubit of
the cluster is subjected to the encoding operation

V ª �0̃�
0� + �1̃�
1� �108�

yielding the diluted cluster �Dn,k�. A set of physical qubits
corresponding to one cluster bit will be called a block. As
before, by a local measurement scheme we mean a sequence
of adaptive local projective measurements, local to the physi-
cal systems.

Let us first show again in more detail that such an encod-
ing constitutes no obstacle to universal quantum computa-
tion. Each of the code words is orthogonal, and for compu-
tation to be possible, we need to do local dichotomic
measurements in the logical space. By Ref. �43�, any two
pure orthogonal multipartite states on k qubits can be deter-
ministically distinguished using LOCC. By making use of
the construction of Ref. �43�, this can be done by an appro-

FIG. 7. �Color online� Cubic lattice of a graph state correspond-
ing to the situation where some edges are missing in a cluster state.
If the probability p of having an edge is sufficiently high the pro-
cesses are independent, then a renormalized perfect sublattice can
be found almost certainly, giving rise to a cluster state of smaller
size. If p	 p2=1 /2, where p2 is the percolation threshold for edge
percolation in 2D cubic lattices, then a renormalized lattice can be
found almost certainly. Interestingly, even if 1 /2	 p	 p3, p3

=0.249 denoting the percolation threshold in 3D, one can almost
certainly construct a perfect sublattice using an overhead that is
arbitrarily close to being quadratic.
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priate ordered sequence of adapted projective measurements
�1 � ¯ � �k on the sites of each code word, giving rise to an
arbitrary projective dichotomic measurement with Kraus op-
erators

A1 ª ���
��, A2 ª ����
��� = 1 − ���
�� �109�

in the logical space, ���=
 �0�+� �1� and ����=−�* �0�
+
* �1�. Hence one can translate any single-site measure-
ment on a cluster state into an LOCC protocol for the en-
coded cluster. This shows that ��� is universal for determin-
istic MBC. This is the argument of Ref. �1� �see also Ref.
�25� for a more detailed and extensive discussion on one-way
computing based on encoded systems�.

In the following we are going to show in more detail that
despite this property, we are heavily restricted to use this
resource to prepare states with a significant amount of en-
tanglement between two constituents. In fact, we cannot
even distill a perfect maximally entangled qubit pair beyond
any given probability of success. This means that these states
are universal resources, but on the level of physical systems
utterly useless for state preparation. The given resource is,
needless to say, not meant as a particularly feasible resource.
Instead, we aim at highlighting to what extent as such the
entanglement properties can be relaxed, giving a guideline to
more general settings.

Note first that the localizable entanglement EL in these
resources can easily be shown to be arbitrarily small: The
entropy for a measurement in the computational basis reads
Hb�3 / �4k+2��, where Hb : �0,1�→ �0,1� is the standard bi-
nary entropy function. Using the concavity of the entropy
function, we find

EL��Dn,k�
Dn,k�� � Hb�3/�4k + 2�� , �110�

such that limk→� EL��Dn,k�
Dn,k � �=0. This means that for
two fixed sites, the rate at which one can distill maximally
entangled pairs by performing measurements on the remain-
ing systems is arbitrarily small.

This can be seen as follows. We will aim at preparing a
maximally entangled state between any two constituents of
two different blocks. It is easy to see that within the same
block, the probability of success can be made arbitrarily
small. We hence look at a LOCC distillation scheme, a
measurement-based scheme, taking the input � and produc-
ing outputs

� � Kj�Kj
† �111�

with probability pj =tr�Kj�Kj
†�, j=1, . . . ,J. This corresponds

to a LOCC procedure, where each of the measurements may
depend on all outcomes of the previous local measurements.
Let us assume that outcomes labeled 1 , . . . ,S for some S
�J are successful in distilling a maximally entangled state.

We start by exploiting the permutation symmetry of the
code words. Choose a block i of �Dn,k�. Assume there exists
a measurement-based scheme with the property that with
probability p, the scheme will leave at least one system of
block i in a state of maximal local entropy. Then there exists
a scheme such that with probability p, the scheme will leave
the first system of block i in a state of maximal local entropy.

At some point of time the scheme is going to perform the
first measurement on the ith block. Because of permutation
invariance, we may assume that it does so on the kth system
of the block. The remaining state is still invariant under per-
mutations of the first k−1 systems. Hence there is no loss of
generality in assuming that the next measurement on the ith
block will be performed on the k−1 system. If the local
entropy of any of the unmeasured systems is now maximal,
then the same will be true for the first one, once again, by
permutation invariance.

Also, it is easy to see that the probability p that a
measurement-based scheme will leave any system of block i
in a locally maximally mixed state is bounded from above by

p � 2/k . �112�

Let p1 be the initial probability of obtaining the outcome �1�
for a Z measurement on this qubit, p1= �
1 �Dn,k��2. Clearly,

p1 � 1/k . �113�

We consider now a local scheme potentially acting on all
qubits except this distinguished one, with branches labeled
j=1, . . . ,J, aiming at preparing this qubit in a maximally
mixed state. Let ps be the probability of the qubit ending up
in a locally maximally mixed state. In case of success, so in
case of the preparation of a locally maximally entangled
state, we have that p1�s�=1 /2, in case of failure p1�f��0.
Combining these inequalities, we get

1/k 	 p1 = psp1�s� + �1 − ps�p1�f� = ps/2. �114�

We can hence show that there exists a family of universal
resource states such that the probability that a local measure-
ment scheme can prepare a maximally entangled qubit pair
�up to local unitary equivalence� out of any element of that
family is strictly smaller than �	0.

Let pi be the probability that a site of block i will end up
as a part of a maximally entangled pair. This means that
when we fix the procedure, and label as before all sequences
of measurement outcomes with j=1, . . . ,J, one does not per-
form measurements on all constituents. Let I denote the in-
dex set labeling the cases where somewhere on the lattice a
maximally entangled pair appears, so the probability p for
this to happen is bounded from above by

p � 	
i�I

pi. �115�

According to the above bound, pi�2 /k, giving a strict upper
bound of p�2n2 /k for the overall probability of success.
The family

��n� ª �Dn,k�n�� �116�

for k�n�ª2�−1n2 is clearly universal, involves only a linear
overhead as compared to the original cluster state, and satis-
fies the assumptions advertised above.

VI. CONCLUSIONS

In this work, we have shown how to construct a plethora
of models for measurement-based quantum computation.
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Our methods were taken from many-body theory. The mod-
els for quantum computation follow the paradigm of locally
measuring single sites—and hence abandoning any need for
unitary control during the computation. Other than that, how-
ever, they can be quite different from the one-way model. We
have found models where the randomness is compensated in
a different manner, the length of the computation can be
random, gates are performed by routing flows of quantum
information towards one another, and logical information
may be encoded in many correlation systems at the same
time. What is more, the resource states can in fact be radi-
cally different from the cluster states in that they may display
correlations as typical in ground states and can be weakly
entangled. A number of properties of resource states that we
found reasonable to assume to be necessary for a state to
form a universal resource could be eventually relaxed. So
after all, it seems that much less is needed for measurement-
based quantum computation than one could reasonably have
anticipated. This degree of flexibility may well pave the way
towards tailoring computational model towards many-body
states that are particularly feasible to prepare, rather than
trying to experimentally realize a specific model.
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APPENDIX

1. COMPUTING CORRELATIONS FUNCTIONS

What is the value of the two-point correlation function

ZiZi+k�− 
Zi�
Zi+k�? In this work, we have only introduced
the behavior of the correlation system when subject to a local
measurement of a rank-one observable. However, in order to
evaluate the correlation function, we need to “measure the
identity” on the intermediate systems or, equivalently, trace
them out. Without going into the general theory �26�, we just
state that tracing out a system will cause the completely posi-
tive map

�: � � 	
i

A�i��A�i�† �A1�

to act on the correlation system.
For the cluster state, using the fact that the bases ��0� , �1��

and ��+ � , �−�� are unbiased, we can easily show that �2 is the
completely depolarizing channel, sending any � to 2−11. This
causes any correlation function to vanish for k	2. How does
the situation look like for the state vector defined by Eq.
�102�? We compute:

�: � � 	
s=0,1

tr��G�s�
s�G†��0�
0� , �A2�

so for s� �0,1�:

���s�
s�� = p�s�
s� + �1 − p��s̄�
s̄� , �A3�

where 0̄ª1, 1̄ª0, and pª �
0 �G �0��2=sin2�� /m�. In other
words: when acting on the computational basis, � imple-
ments a simple two-state Markov process, which remains in
the same state with probability p and switches its state with
probability �1− p�. Now, 
ZiZi+k� equals +2 if an even num-
ber of state changes occurred and −2 if that number is odd.
So for the expectation value we find


ZiZi+k� = 2	
l=0

k+1 �k

l
�pk−l�1 − p�k�− 1�k

=2�2p − 1�k = 2�2 sin2��/m� − 1�k. �A4�

2. HAMILTONIAN OF THE AKLT-TYPE STATE

In Sec. IV A we discussed an AKLT-type matrix product
state. It was claimed that the state constitutes the unique
ground state of a spin-1 nearest-neighbor frustration free
gapped Hamiltonian. It must be noted that in this work, we
have not introduced the technical tools needed to cope with
boundary effects at the end of the chain. There are at least
three ways to make the above statement rigorous: �a� treat
the statement as being valid asymptotically in the limit of
large chains, �b� work directly with infinite-volume states
�26�, or �c� look at sufficiently large rings with periodic
boundary conditions �27�. Once one chooses one of the op-
tions outlined above, the proof of this fact proceeds along the
same lines as the one of the original AKLT state, as pre-
sented in Example 7 of Ref. �26� �see also Ref. �27��. Indeed,
using the notions of Refs. �26,27� one verifies that

�2: B�C2� → C2
� C2, �A5�

B � 	
i1,i2=1

3

tr�BA�i1�A�i2���i1,i2� �A6�

is injective. Further, if G2ª range �2, it is checked by direct
computation that dim�G2 � 1�1 � G2�=dim G2. All claims
follow as detailed in Refs. �26,27�.

In particular, let h be a positive operator supported on the
vector space spanned by

��1,1�, �2,2�,− �1/4��0,0� + �1,2� + �2,1�,− �1/
8��0,0� + �0,2�

+ �2,0�,− �1/
8��0,0� + �0,1� + �1,0�� . �A7�

Set Hª	i�i�h�, where �i translates its argument i sites along
the chain. Then H is a nondegenerate, gapped, frustration
free, nearest-neighbor Hamiltonian �called parent Hamil-
tonian in Ref. �27��, whose energy is minimized by the state
at hand.
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