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Photonic entanglement has a wide range of applications in quantum computation and communication. Here
we introduce a device: the photonic module, which allows for the rapid, deterministic preparation of a large
class of entangled photon states. The module is an application independent, “plug and play” device, with
sufficient flexibility to prepare entanglement for all major quantum computation and communication applica-
tions in a completely deterministic fashion without number-discriminated photon detection. We present two
alternative constructions for the module, one using free-space components and one in a photonic band-gap
structure. The natural operation of the module is to generate states within the stabilizer formalism and we
present an analysis on the cavity requirements to experimentally realize this device.
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I. INTRODUCTION

Multipartite entanglement is the most important resource
needed when attempting to perform quantum processing. En-
tanglement forms the basis of quantum algorithms �1,2�,
secure cryptographic protocols and secret sharing �3,4�,
Heisenberg limited optical lithography �5�, and even a ge-
neric resource for a universal quantum computer �6,7�. How-
ever, it has proven to be a difficult challenge to efficiently
generate useful multiqubit entangled states that can be used
as a resource for all these disparate applications. Here we
illustrate the construction of the photonic module �Fig. 1�. A
single atom–cavity system which leads to an extremely ver-
satile device that can be used as a static resource for prepar-
ing entangled photonic states for computation and/or com-
munication quickly, and with complete determinism.

Multipartite entanglement can be prepared in systems
such as trapped ions �8� and solid state qubits �9–14�, but as
resources for quantum cryptography and communications
they are problematic due to a high sensitivity to environmen-
tal decoherence, qubit immobility and the inevitable incorpo-
ration of quantum bus protocols �15–17�, and/or fusion meth-
ods �18–21� to solve problems related to information
transport. In contrast, photonic qubits are extremely easy to
move and are robust against decoherence. However, per-
forming appropriate gate operations to prepare photonic en-
tanglement is extremely difficult, with experimental imple-
mentations of optical computing generally utilizing down-
converted sources �22,23�. Recently, more viable methods
for the preparation of photonic entanglement have been de-
veloped �24–29� and utilized �30,31� based on the measure-
ment induced nonlinearities proposed by Knill, Laflamme,
and Milburn �32�. However, each of these measurement
based methods result in probabilistic interactions and gener-
ally require number-discriminated photon detection, the re-
sult of which is that large multiphoton entangled states need

to be probabilistically grown. Probabilistic state preparation
and slow photon detection results in long preparation times
for large entangled multiphoton states, requiring significant
resources for photon storage and limiting the applicability of
on-chip devices as entanglement resources.

Although utilizing a single atomic qubit to mediate the
preparation of photonic entanglement is not a new concept
�33� the nature of the interaction exhibited by this scheme
leads to a simple and versatile plug and play device. A single
module, or multiple connected modules, can be constructed
and with classical routing prepares entanglement without the
downsides of probabilistic interactions or single-photon de-
tection. Atom–cavity mediated entanglement is well under-
stood and there exists several schemes which can be adapted
for use in the modules. These include the cavity-assisted in-
teraction proposed by Duan, Wang, and Kimble �34,35� who
utilized a similar network to achieve gate based photonic
quantum computation and recent experimental schemes from
Schuster et al. �36� which demonstrated a photon nondemo-
lition interaction using a Cooper-pair box qubit and micro-
wave cavity photons.

We describe photonic modules for which the natural op-
eration allows for the preparation of any N-photon entangled
state which can be described via the stabilizer formalism of
Gottesman �37�. As such, the internal construction of each
module is independent of the state being prepared, no single-
photon �or multiphoton� detection is needed and the coher-
ence time required for the atomic qubit is limited only by the
time required to measure specific stabilizers describing the
state �which can be small, even for large, highly entangled,
multiphoton states�. Therefore, the module is a completely
generic resource, which can be applied to a vast variety of
quantum applications.

The possible uses for these modules are extensive. The
ability to prepare any stabilizer state allows for the determin-
istic preparation of any geometric graph state, including
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FIG. 1. �Color online� Schematics showing the basic design of a photonic module �components within the dashed boxes� in free space
and photonic crystals. �a� Photonic module design for a polarization-independent atom-photon interaction, requiring two HWP and two PBS
in free space. The polarization-dependent interferometer ensures that only the vertical component of the single photon interacts with the
atom–cavity qubit. �b� A photonic band-gap structure for a polarization-dependent atom-photon version of the photonic module, required to
prepare two-photon Bell states and higher order GHZ states. The initial two cavities represent a Q-switched single-photon source �45�. Single
photons are adiabatically switched from the source to the first Q-switch cavity and then switched into the waveguide containing a quarter
wave plate �QWP� which rotates �± �→ ��±�. The second Q-switch cavity is then used to adiabatically load the photon into the module cavity
which contains the atomic system with a differential coupling between ��±� photons. The final Q-switch cavity is then used to out-couple the
photon back into the waveguide mode once the interaction is complete, where a second QWP rotates ��±�→ �± �. In both schematics, the
atom–cavity qubit has appropriate laser control such that it can be initialized and read out. The measurement result of the atom qubit
�denoted via the green and red readout channels of the external control lasers� determines which eigenstate of X�N the exiting photon train
is projected to. A green measurement outcome corresponds to the photons projected into a +1 eigenstate while a red measurement outcome
corresponds to projecting to the −1 eigenstate.
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states appropriate for optical cluster state computation
�6,7,38�. Bell state analyzers and factories are useful re-
sources for quantum cryptographic protocols �3�, quantum
dense coding �39,40�, purification protocols, and quantum
repeaters �41,42�. Additionally, quick and deterministic
preparation of N-photon Greenberger-Horne-Zeilinger
�GHZ� states can be utilized in loss protection schemes for
optical quantum computing �43� and secret sharing protocols
�4�. We begin the discussion with the module shown in Fig.
1�a�.

The basic operation of the module is best understood if
we choose to use it as a factory for two-photon Bell states,
defined through polarization as

��+� =
�H��H� + �V��V�

�2
. �1�

Given an appropriate single-photon source, which can pro-
duce a train of single-photon pulses of known polarization,
separated by an interval �t, a two-photon train is prepared in
the product state �H�2

I �H�1
I , and sequentially sent through the

module. The indices, �1,2	= �0,�t	, represent the temporal
mode of each single-photon pulse, I the spatial mode �in this
case the optical input�, and �t is predefined and must be
greater than the total time a single photon is present within
the network.

For a single photon passing through the module, the natu-
ral operation of the module, M, is given by

M� + �I��� → � + �O��� ,

M�− �I��� → �− �O���� , �2�

where �± �= ��H�± �V�� /�2, ���=��0�+��1� is the state of the
atomic qubit, ����=X���=��1�+��0�, and the indices �I ,O	
represent the input and output optical modes.

The atom–cavity system is positioned such that the cavity
mode is coupled to the spatial mode � � �B2, where � denotes
the photon polarization and cavity Q switching �which al-
lows for the adiabatic loading of a single photon into a cav-
ity� is employed before and after the atom-photon interaction
to ensure appropriate in and out coupling to and from the
cavity. The mode � � �B1 contains an optical delay equal to the
time required for the photon-atom interaction which is spe-
cific. A single photon passing through the atom–cavity sys-
tem must induce a photonic nondemolition bit flip on the
two-level atom, releasing the photon again into � � �B2 once
the interaction is complete.

If the photonic state is �+ �, the initial half-wave plate
�HWP� will rotate the state to �H� after which it will continue
into the mode � � �B1 and not interact with the atom. The sec-
ond polarizing beam splitter �PBS� and HWP will then
couple � � �B1 to the output mode and rotate �H� back to �+ �. If
the initial photonic state is �−�, the HWP will rotate the state
to �V� and the PBS will reflect the photon into the � � �B2

mode, where it flips the state of the atomic qubit. The photon

is then released back into � � �B2 where the second PBS and
HWP will reflect the photon into the output mode and rotate
it from �V� to �−�. Therefore, the two basis states, �± �, of a
single photon passing through the module will enact the
transformation M shown in Eq. �2�.

For a two-photon train, polarized in the state �H�2
I �H�1

I

= ��+ �2
I + �−�2

I ���+ �1
I + �−�1

I � /2, we are able to enact the same
transformations on the photon-atom interaction, giving

M2,1�H�2
I �H�1

I ��� =
1
�2

M2��H�2
I � + �1

O��� + �H�2
I �− �1

O�����

=
1

2
��− �2

O� + �1
O + � + �2

O�− �1
O�����

+
1

2
�− �2

O�− �1
O���� +

1

2
� + �2

O� + �1
O��� ,

�3�

where ����=X����=X2���. Since X2= I, we can expand out
the �± � states to give

M2,1�H�2
I �H�1

I ��� =
1

2
��H�2

O�H�1
O + �V�2

O�V�1
O����

+
1

2
��H�2

O�H�1
O − �V�2

O�V�1
O����� . �4�

After both photons have passed through the module the final
step is to measure the state of the atom–cavity qubit. If prior
to the interactions, the atomic qubit is initialized in the state
���= �0� and the subsequent measurement is also �0�, the pho-
tons are projected to the state

1
�2

��H�2
O�H�1

O + �V�2
O�V�1

O� , �5�

which represents an even parity Bell state. If the atom is
measured in the state �1�, the photons are projected to

1
�2

��H�2
O�H�1

O − �V�2
O�V�1

O� , �6�

which is an odd parity Bell state. The output pulse consists of
the original two-photon train which is now polarization en-
tangled into a two-photon Bell state. Unlike other schemes,
the measurement result of the atom–cavity system never col-
lapses the photons to unentangled states. In fact, since the
odd and even parity Bell states differ through local phase
flips, either result is acceptable and a positive parity state can
be prepared by applying a local, classically controlled phase
flip on any photon once the atom–cavity qubit is measured.

The preparation of the Bell state is therefore completely
deterministic, with the classical result only giving parity in-
formation of the photon state. Additionally, since positive
and negative parity states are interchangeable through local
Clifford gates, correction can be fed forward to the end of
subsequent operations on the photonic state. Although we
explicitly considered the case when the induced operation
was a bit flip, any Hermitian unitary operation, U2= I, is
acceptable provided it transforms the state of the atomic qu-
bit between two orthogonal states.
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The transformation, M, shown in Eq. �2� is also exhibited
by the module illustrated in Fig. 1�b� for a polarization-
dependent interaction. For appropriate atomic systems it is
well known that there exists states with a differential dipole
coupling between �+ and �− polarized photons, e.g., NV−

diamond �44� or rubidium. If the atomic coupling to the cav-
ity mode is chosen such that only �− polarized photons in-
teract with the atomic qubit, we are able to eliminate the
interferometer shown in Fig. 1�a�. Instead, single-photon
wave plates are used to rotate �± �↔ ��±� before and after the
atom–cavity interaction. As the atom-photon interaction is
polarization dependent, the transformation, M, for this modi-
fied version of the module still holds.

The engineering of the module when a polarization-
dependent interaction is available is beneficial. The lack of
the interferometer implies that this structure can be directly
fabricated in systems such as photonic band-gap crystals,
with cavity Q-switching protocols fabricated on-chip to con-
trol the in and out coupling of the single-photon pulses �Fig.
1�b��.

II. ATOM–CAVITY INTERACTION
WITH PHOTON PULSE

The required atom–cavity interaction, crucial to the opera-
tion of the modules, has already been demonstrated at micro-
wave frequencies. Schuster et al. �36� has demonstrated the
nondestructive interaction we require where a single micro-
wave cavity photon produces an effective Stark shift on a
classically driven transition on a Cooper-pair box. These re-
sults were presented from the perspective of individual pho-
ton number detection, but the scheme can be inverted and
used as the primary resource for a microwave version of the
photonic module.

In the optical regime, we can consider two separate
schemes. The proposal of Duan, Wang, and Kimble �34,35�
considers a single atom–cavity system, such that a single
photon reflecting from the cavity will produce a � phase
shift only if the atomic qubit is in the state �0�. Hence, if the
atomic qubit is initially placed in the state �+ �= ��0�
+ �1�� /�2, subsequent photonic reflections will cause the
atom to oscillate between the ��+ � , �−�	 states. Performing
readout in the ��0� , �1�	 basis corresponds to the �photonic�
nondemolition, X operation on the atom, as required.

A second method employs a four-level atom in the N con-
figuration, shown in Fig. 2, which can be utilized for both the
polarization-dependent and polarization-independent mod-
ules illustrated in Fig. 1. The general principle is to induce a
phase shift Z
�z on the atom, conditional on the presence or
absence of a photon in the cavity mode.

Initialization. The atomic system is initialized in the
ground state; classical fields ��1 , �2� are then used to take
�1�→ ��1�− �3�� /�2.

Interaction. We employ the idea of cavity Q switching
�45� in order to control the input-output pulse into the cavity
system. A single photon is adiabatically switched into the
cavity, where it is off-resonant with the �3�→ �4� transition
�which may be polarization dependent�, inducing a light shift
on the state �3�. The magnitude of the shift is well known and
is given by 	=−�2/� for �
�. Therefore, to induce a phase
shift of �, the photon must be present in the cavity for a time
given by t= ����/�2. Consistent with the analysis in �45�,
this implies that the photon storage time, �=1/ t, must be �
=�2 / ����. Taking �=� ensures that the state ��1�
− �3�� /�2↔ ��1�+ �3���2 performs the required Z operation
on the atomic system. The photon is then Q switched out of
the cavity back into the optical mode using appropriate shap-
ing techniques �45,46�.

Readout. Readout is achieved by performing a second
transform on the atomic state using the classical fields, �1
and �2, in the same way as for initialization. This takes the
state ��1�− �3�� /�2→ �1� and ��1�+ �3�� /�2→ �3�. Computa-
tional readout can be performed by classically pumping the
transition �3�↔ �4� and observing photoluminescence. Al-
though the atom-photon interaction induces a Z gate on the
basis states ���1�± �3�� /�2	, the atomic rotations and readout
in the ��1� , �3�	 basis ensures that a bit flip is performed on
the atomic state.

Operational time. For this specific method, we can exam-
ine the transition time for a single photon in the module and
compare our cavity requirements with systems currently in
existence. In general, we wish to maintain single-photon ab-
sorption probabilities on the �3�↔ �4� transition of less than

�1, hence ��� /�
. For a � phase shift, and choosing the
equality, this corresponds to t= ���−1=� / ���
�. For a proof
of concept device, we assume 
=0.1, which corresponds to
an average of one in 10 photons being absorbed. Conse-
quently, we can examine t as a function of some of the cur-
rent experimental values for � and � �Table I�, The last col-
umn in Table I specifies the atomic decay rates, �, for the
atomic systems used in each cavity �cesium, rubidium, and
NV diamond�. The coherence time of the atomic system will
dictate the maximum parity weight which can be measured

FIG. 2. �Color online� Four level atomic system required for the
photonic module. The atomic system is initialized in the �1� state
and classical pumping fields are used to take �1�→ ��1�− �3�� /�2.
The single-photon pulse is introduced to the cavity in a controlled
manner using Q-switched cavities. The photon will induce a light
shift on state �3� through the transition �3�↔ �4� �which may be
polarization dependent�, with strength −�2 /�. Provided the photon
remains in the cavity long enough, a � phase shift can be induced
on �3� without destroying the photon, taking ��1�− �3�� /�2→ ��1�
+ �3�� /�2. After all atom-photon interactions have occurred, the
classical fields are again applied and the atom readout is in the
��1� , �3�	 basis.
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in any one step using the module. Hence taking the ratio of
the required photon storage time to �, the Cs cavity of
Boozer et al. �47� falls slightly short of being able to perform
two-photon parity measurements �which are sufficient to pre-
pare Bell states, GHZ states, and linear cluster states �17��.
The microcavity of Trupke et al. �48�, using Rb, theoretically
has sufficient coherence to allow a parity check over six
photons �sufficient for universal cluster states�, while NV− in
photonic band-gap cavities could allow for parity weights up
to 12 �13,49�, allowing for a huge amount of flexibility in
preparing highly entangled graph states very quickly.

III. ARBITRARY ENTANGLED STATE PREPARATION

The potential of these modules goes far beyond the prepa-
ration of Bell states. In fact, the unit can be augmented with
appropriate single-photon routing and local operations to
prepare any entangled photon state that can be expressed in
terms of stabilizers �37�. These include codeword states for
quantum error correction, Bell states, GHZ states, and arbi-
trary graph states �of which cluster states are a specific topo-
logical subset�.

A remarkable property of the module is that the number of
entangled photons that are prepared depends only on the
number sent through the module; no internal structure of the
module needs to be altered to entangle more photons.

To illustrate, consider an N-photon train, with each single-
photon pulse separated by �t. Each basis element, ���,
of the state, ���, can be written in the form ���= �a=0

N−1�ca�a

= �a=0
N−1��+ �a+ �−1�ca�−�a�, where �ca�= ��H
0� , �V
1�	 and

�± �= ��H�± �V�� /�2, with each single-photon pulse centered
at time t=a�t. As we have shown, the transformations per-
formed by the module are given by M�+ �I���q= �+ �O���q and
M�−�I���q= �−�O����q, where ���q is the state of the atomic
qubit, ����q=X���q, I and O are the input-output modes of
the module and, for clarity, we have omitted the time index
for the pulse. Assuming that the atomic system is initialized
in the state ���q= �0�, an arbitrary basis state of ���N trans-
forms as

MN,. . .,1����0�q = MN,. . .,1�
a=0

N−1

�� + � + �− 1�ca�− ���0�q

= �0�q�
a=0

N−1

�� + � + �− 1�ca�− ��Ev�−�

+ �1�q�
a=0

N−1

�� + � + �− 1�ca�− ��Od�−�, �7�

where the first term represents all states of the tensor product
formed with an even number of �−� states and the second
term represents all tensor products formed with an odd num-
ber of �−� states. The even and odd components of the basis
terms, ���, can be written in the following manner:

�
a=0

N−1

�� + � + �− 1�ca�− ��Ev�−� =
1

2
�
a=0

N−1

�� + � + �− 1�ca�− ��

+
1

2
�
a=0

N−1

�� + � + �− 1�ca+1�− �� ,

�
a=0

N−1

�� + � + �− 1�ca�− ��Od�−� =
1

2
�
a=0

N−1

�� + � + �− 1�ca�− ��

−
1

2
�
a=0

N−1

�� + � + �− 1�ca+1�− �� .

�8�

Noting that the second term in each equation is simply the
state X�N���, each basis term, ���, transforms as

MN,. . .,1����0�q =
1

2
���� + X�N�����0�q +

1

2
���� − X�N�����1�q,

�9�

and consequently, the total state, ���=� j� j��� j, transforms
as

MN,. . .,1����0�q =
1

2
���� + X�N�����0�q

+
1

2
���� − X�N�����1�q. �10�

Therefore, the natural operation of the module is to project
the train of photons into a ±1 eigenstate of the X�N operator,
i.e., any arbitrary N-photon state will be transformed to

TABLE I. Estimates on cavity requirements for various systems.
The cavity from Boozer et al. �47� has been experimentally dem-
onstrated, while the atom chip cavity of Trupke et al. �48� and the
photonic band-gap cavity of Song et al. �49� have yet to couple the
atomic qubit. Hence we use their theoretical estimates for the cou-
pling, �, and atomic decay rates, �, for rubidium and NV− �13,45�
qubits. The first column quotes the atom–cavity coupling while the
second column estimates the required photon storage time in the
cavity to invoke a � phase shift in the atom with a single-photon
absorption probability of 10%. The final column quotes the current
photon storage time which has been experimentally demonstrated
�estimated� for each cavity system. For both the Boozer and Trupke
cavities, approximately an order of magnitude improvement in ei-
ther the coupling constant or cavity lifetime is required. Current
estimates suggest that the photonic band-gap cavity will be able to
exhibit the interaction with the fastest operational time of all the
systems and is also more amenable to current cavity Q-switching
protocols �45�. The last column details estimates on atomic decay
rates for the systems considered for each cavity, the ratio of the
required photon storage time to the coherence time of the atomic
system dictates the maximum parity weight a single module can
measure in any one step.

Cavity � �MHz� t at 
=10−1 Expt. t=�−1 � �MHz�

Cs �47� 34 0.29 �s 0.24 �s 2.6

Rb �48� 366 27 ns 1.7 ns 6.3

NV− �49� �104 �1 ns �3.4 ns 83
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MN,. . .,1���N�0� =
1

2
����N + X�N���N��0�

+
1

2
����N − X�N���N��1� , �11�

where ��0� , �1�	 are the states of the atom–cavity qubit and all
N photons have been passed through the module. The mea-
surement outcome of the atomic system will determine
which eigenstate is projected, with local operations applied
to switch between eigenstates. The stabilizer formalism for
describing large entangled states is extremely useful in this
discussion as they are linked very closely to the concept of
parity measurements.

To prepare any N-photon stabilized state, a parity check is
performed on the N stabilizers which describe the state. As
each of the stabilizers for an arbitrary N-photon state are
described via an N-fold tensor product of the operators
�I ,X ,Y ,Z	, the ability to perform a parity check of the op-
erator X�N� for N��N and apply local operations is suffi-
cient to stabilize an arbitrary state with respect to any opera-
tor of this form. Therefore, if we assume that we can
selectively route photons within the train �which is possible,
as each pulse is temporally tagged� and apply local opera-
tions to any photon, the parity measurement performed by
the module is sufficient to prepare any stabilizer state.

For a general N-photon state, N parity checks are re-
quired. This can either be done by constructing and utilizing
N separate modules, or it can be done by sequentially utiliz-
ing only one. If multiple modules are available, many parity
checks can be done in parallel without waiting for atomic
readout, potentially speeding up state preparation.

As the stabilizer structure of the desired state dictates the
number of photons passed through the module for each par-
ity check, the coherence time of the atom–cavity system does
not depend on the total number of photons in the entangled
state. Instead, the atomic system must only maintain coher-
ence until the parity of a specific stabilizer operator is mea-
sured, which is extremely beneficial. The number of non-
identity operators in any given stabilizer operator �which we
denote the “parity weight”� dictates the number of photons
passed through the module in any one step and therefore the
coherence time required for the atom–cavity system.

For example, an N-photon cluster state appropriate for
quantum computation has a well-known stabilizer structure
�6�, with a maximum parity weight of five. Hence, regardless
of the total size of the cluster, the atomic system only needs
to maintain coherence long enough for five photons to pass
through the module between initialization and measurement.

Conversely, if the coherence time of the atomic system is
short compared to Pm�t, where Pm is the maximum parity
weight of the state and �t is the time required for a single

photon to pass through the module, then fusion methods
�19,21,38� can be employed to prepare states with large Pm.
For example, N-photon GHZ states have Pm=N, correspond-
ing to the stabilizer, K=X�N. If the coherence time of the
atomic system only allows for N��N-dimensional parity
checks to be performed at any one time, then multiple
N�-GHz states can be prepared and fused together via two-
photon ZZ parity measurements.

IV. CONCLUSIONS

We have detailed the construction of a photonic module
which, given a steady source of single photons, can deter-
ministically prepare a large class of useful photonic en-
tangled states. The construction of each module is generic
and independent of which entangled state is being prepared,
and the stabilizer nature of the entangled states implies that
the coherence time of the atomic system only needs to be
long compared with the maximum parity weight �Pm�
�pulse separation ��t� of the desired state �which can be
small, even for large multiphoton entangled states�.

The practical uses of these modules is quite extensive.
Multiphoton entangled states can be utilized for quantum
computation, quantum cryptography, quantum dense coding,
and quantum repeaters.

As the internal design of the photonic module is com-
pletely independent of the state being prepared, multiple
modules, combined with an appropriate single-photon
source, optical wave plates, and classical routing can be used
to construct a static, on-chip system, tailored for fast prepa-
ration of specific entangled states. For example, pumping out
large cluster states for computation, or multiple Bell pairs, in
succession, for communications and cryptography.

The engineering of an appropriate atom-photon interac-
tion is still something that needs to be experimentally inves-
tigated. Cavity experiments reported in �36,47–50� show
exceptional promise at both optical and microwave frequen-
cies. Ideally, once the required interaction has been experi-
mentally demonstrated, additional engineering to realize the
photonic module should be straightforward.
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