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We describe a measurement-based state preparation scheme for the efficient build-up of cluster states in
atom-cavity systems. As in a recent proposal for the generation of maximally entangled atom pairs �Metz et al.,
Phys. Rev. Lett. 97, 040503 �2006��, we use an electron shelving technique to avoid the necessity for the
detection of single photons. Instead, the successful fusion of smaller into larger clusters is heralded by an
easy-to-detect macroscopic fluorescence signal. High fidelities are achieved even in the vicinity of the bad
cavity limit and are essentially independent of the concrete size of the system parameters.
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I. INTRODUCTION

In 2001 Raussendorf and Briegel pointed out that certain
highly entangled states present an innovative approach to
quantum computing �1�. The attractiveness of these so-called
cluster states �2� arises from the fact that they can be grown
off-line in a probabilistic fashion. Afterwards, a so-called
one-way quantum computation can be carried out without
having to create additional entanglement. Any quantum algo-
rithm can then be performed using only single-qubit rota-
tions and single-qubit measurements. Scalable fault-tolerant
one-way computation is possible, provided the noise in the
implementation is below a certain threshold �3,4�. For ex-
ample, Raussendorf et al. �5� recently introduced a fault-
tolerant three-dimensional cluster state quantum computer
based on methods of topological quantum error correction.
Other authors identified highly efficient cluster state purifi-
cation protocols �6,7�.

A very efficient way to create a cluster state of a very
large number of atoms with very few steps is to employ cold
controlled collisions within optical lattices with one atom on
each site �8�. Using this approach, Mandel et al. �9� already
created cluster state entanglement and reported the observa-
tion of coherence of an atom delocalized over many sites.
Unfortunately, single-qubit rotations cannot be easily real-
ized, since laser fields applied to one atom generally affect
also its neighbors. To facilitate one-way quantum computing
in optical lattices several schemes have been proposed for
the realization of single-qubit rotations without having to
address the atoms individually �10–12�.

However, higher fidelities can be obtained using a
measurement-based cluster state growth approach. An ex-
ample is the linear optics proposal by Browne and Rudolph
�13�. Using linear optics, a four-photon cluster state has al-
ready been generated in the laboratory �14�. Currently, the
scalability of this approach is hampered by the lack of reli-
able photon storage. To overcome this and the above men-
tioned addressability problem in optical lattices, quantum
computing architectures have been proposed using hybrid
systems based on atomic and photonic qubits �15–19�. To
create entanglement between distant atoms, the atoms are
operated as sources for the generation of single photons on
demand followed by photon pair measurements in a carefully

chosen basis. The main limitation of these two approaches
lies in the difficulty of detecting single photons.

Here we avoid the necessity of detecting single photons.
Instead the successful fusion of two smaller clusters into a
larger one is heralded by a macroscopic fluorescence signal.
The experimental setup is shown in Fig. 1�a�. Suppose two
atoms are placed into the antinodes of an optical cavity and a
laser with Rabi frequency � and detuning � is applied. It
drives the 1–2 transition of each atom as shown in Fig. 1�b�.
The same transition should also interact with the resonator
field with the atom-cavity coupling constant g and detuning
�. We denote the decay rate of a single photon through the
cavity mirrors by � �20� and � is the spontaneous decay rate
of the excited atomic state. Here we are especially interested
in the parameter regime where

� � �,g,�,� . �1�

A detector constantly monitors the emission of photons
through the cavity mirrors.

As in Refs. �21,22�, we assume that both atoms experi-
ence similar interactions. Here the state �0� is decoupled
from any dynamics of the system. As we see below, there are
therefore three distinct fluorescence levels in the leakage of
photons through the cavity mirrors. These are similar to the
discrete fluorescence levels of two dipole interacting three-
level atoms, which exhibit macroscopic quantum jumps
�23–25�. The lack of cavity photons indicates that both atoms
are in �0�. The emission of cavity photons at a lower intensity
level indicates that one atom is in �0� and one atom is in �1�

FIG. 1. �Color online� �a� Experimental setup for the cluster
state growth of atomic qubits. Fusing two clusters requires placing
an atom from each cluster into the resonator, where they are illumi-
nated by a laser field. �b� Level scheme of a single atom in the
cavity. Both atoms should experience similar coupling constants.
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without revealing which one, while cavity photons at a maxi-
mum rate indicate that the atoms are in �11�. In fact, the
observation of the cavity fluorescence implements a proba-
bilistic parity measurement with the projections

P00 � �00��00� ,

P01 + P10 � �01��01� + �10��10� ,

P11 � �11��11� . �2�

The successful projection of the atoms onto the subspace
spanned by the states �01� and �10� can be used to create
entanglement �26–28�. For example,

�P01 + P10�� 1
2 ��0� + �1�� � ��0� + �1��� = 1

2 ��01� + �10�� .

�3�

However, it can also be used to generate entanglement be-
tween atoms without destroying any previous entanglement
of these atoms with other atoms. For example, the projection
P01+P10 applied to atoms 2 and 3 obtained from two differ-
ent Bell pairs,

�P01 + P10��2,3�� 1
2 ��01� + �10�� � ��01� + �10���

= 1
2 ��0101� + �1010�� , �4�

results in the generation of a four-atom Greenberger-Horne-
Zeilinger �GHZ� state. Browne and Rudolph moreover
showed that the measurement �2� enables the fusion of two
smaller cluster states into one larger one with a success rate
of 50% �13�. It can therefore be used for the sequential
build-up of large cluster states. Detailed analyses on the scal-
ability of related probabilistic cluster state growth schemes
can be found for example in Refs. �17,19,29–31�.

Achieving high fidelities is possible, even when using
moderate atom-cavity systems with relatively large sponta-
neous decay rates. The reason is that the qubits are encoded
in long-living atomic ground states. Moreover, as in Refs.
�21,22,27,28�, we can allow for single atom-cooperativity
parameters C,

C �
g2

��
, �5�

of the order of one and larger, as they are currently becoming
available in the laboratory �32–37�. For C=1 and when using
a perfect single photon detector, we show that it is possible
to achieve fidelities above 0.88. Lower photon detector effi-
ciencies � require larger C’s. For example, if �=0.2 the co-
operativity parameter C should be five or larger.

The above described distinct fluorescence levels occur in
the emission from the cavity mode for a very wide range of
experimental parameters. The performance of the proposed
state preparation scheme is therefore essentially independent
of the concrete size of the system parameters. To illustrate
this we show that high fidelity parity measurements are pos-
sible even when the two atoms experience coupling con-
stants differ from each other by up to 30%. Once a cluster
state has been built, performing a one-way quantum compu-
tation requires only single-qubit rotations and measurements

as they are routinely used in ion trap experiments �38,39�.
More specifically, read out measurements are performed via
the creation of macroscopic fluorescence signals and too
have a very high accuracy even when using finite efficiency
photon detectors �40�.

It is experimentally feasible to trap two atoms fairly ac-
curately in different antinodes of the cavity field. The effi-
ciency of cavity cooling has recently been demonstrated by
Nußmann et al. �41�. Domokos and Ritsch showed that it is
possible to take advantage of cavity-mediated forces to keep
the atoms predominantly at positions with maximum atom-
cavity couplings �42�. A disadvantage of the proposed state
preparation scheme lies in the necessity to move atoms in
and out of an optical cavity. The so-called shuttling of atoms
�43� is relatively time consuming and limits the efficiency
with which one can build large cluster states. However, its
feasibility has already been demonstrated by several groups
who combined for example atom trapping �34,37,44,45� or
ion trapping �46,47� technology with optical cavities. New
perspectives arise from the development of atom-cavity sys-
tems mounted on atom chips �36,48�.

There are six sections in this paper. In Sec. II we describe
the setup shown in Fig. 1 and derive its effective dynamics.
In Sec. III we discuss the nature of the three distinct levels in
the fluorescence through the cavity mirrors and describe how
to exploit these for the implementation of the probabilistic
parity measurement �2�. In Sec. IV we analyze the perfor-
mance of the proposed protocol. In Sec. V we review the
cluster state build-up with parity checks. Finally, we summa-
rize our findings in Sec. VI. Some mathematical details are
given in the Appendix.

II. THEORETICAL MODEL

In this section we use the quantum jump approach
�49–51� to obtain an effective theoretical model for the de-
scription of the atom-cavity system in Fig. 1.

A. No-photon evolution

Proceeding as in Ref. �49�, i.e., assuming rapidly repeated
environment-induced measurements and starting from the to-
tal Hamiltonian for the atom-cavity system and the surround-
ing free radiation fields, one can show that the �unnormal-
ized� state of the system under the condition of no photon
emission within �0, t� can be written as

��0�t�� = Ucond�t,0���0� . �6�

Here ��0� is the state of the system at t=0 and Ucond�t ,0� is
the no-photon evolution operator. The corresponding condi-
tional Hamiltonian equals, with respect to an appropriately
chosen interaction picture,

Hcond = 	
i=1,2

1

2
����1�ii�2� + �2�ii�1�� + 	

i=1,2
�g��1�ii�2�b†

+ �2�ii�1�b� + 	
i=1,2

�
� −
i

2
���2�ii�2� −

i

2
��b†b .

�7�
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The non-Hermitian terms in the last line of this equation
damp away population in states that can cause an emission.
After renormalization of the state vector ��0�t��, this results
in a relative increase in population of states with a lower
spontaneous decay rate. In this way, the quantum jump ap-
proach takes into account that the observation of no photons
reveals information about the system. It gradually reveals
that the system is more likely to be in a state where it cannot
emit.

In the following, we decompose ��0� in Eq. �6� as

��0� = 	
j,k=0

2

	
n=0

	

cjk;n�jk;n� , �8�

where cjk;n is the amplitude of the state �jk ;n� with the first
atom in �j�, the second atom in �k� and n photons in the
cavity mode. According to the Schrödinger equation, the
evolution of these coefficients is given by

ċjk;n = −
i

�
�jk;n�Hcond��0� . �9�

Writing out these equations and using Eq. �1� we find that the
coefficients of states with population in �2� change on a
much faster time scale than the coefficients of atomic ground
states. We can therefore eliminate them adiabatically from
the system’s evolution. Doing so, and setting their derivative
equal to zero, we obtain

c02;n =
i

4�2 �2i� − � − n����c01;n + 2�n + 1gc01;n+1� ,

c20;n =
i

4�2 �2i� − � − n����c10;n + 2�n + 1gc10;n+1� ,

c12;n = c21;n =
i

4�2 �2i� − � − n����c11;n + 2�n + 1gc11;n+1� ,

c22;n =
1

4�2 ��2c11;n + 4�n + 1�gc11;n+1

+ 4��n + 1��n + 2�g2c11;n+2� �10�

up to second order in 1/�, given that most of the population
remains in the atomic ground states. Substituting Eq. �10�
into the differential equation �9�, we then find that

ċ00;n = − 1
2n�c00;n,

ċ01;n =
�

8�2 �2i� − � − n����c01;n + 2�n + 1gc01;n+1�

+
�ng

4�2 �2i� − � − �n − 1�����c01;n−1 + 2�ngc01;n�

−
1

2
n�c01;n,

ċ10;n =
�

8�2 �2i� − � − n����c10;n + 2�n + 1gc10;n+1�

+
�ng

4�2 �2i� − � − �n − 1�����c10;n−1 + 2�ngc10;n�

−
1

2
n�c10;n,

ċ11;n =
�

4�2 �2i� − � − n����c11;n + 2�n + 1gc11;n+1�

+
�ng

2�2 �2i� − � − �n − 1�����c11;n−1 + 2�ngc11;n�

−
1

2
n�c11;n �11�

up to second order in 1/�. Given the parameter regime in
Eq. �1�, these differential equations contain two very differ-
ent time scales. Since � is much larger than all other frequen-
cies that scale as 1 /� or 1/�2, the coefficients of states with
n
1 evolve much faster than the coefficients of states with
n=0. This allows us to eliminate the cavity field adiabati-
cally from the evolution of the system. Setting the derivative
of the coefficients with n=1 equal to zero, we find that

c00;1 = 0,

c01;1 =
�g

2�2�2 �2i�� − �2 − 4g2 − ���c01,0,

c10;1 =
�g

2�2�2 �2i�� − �2 − 4g2 − ���c10,0,

c11;1 =
�g

�2�2 �2i�� − 2�2 − 8g2 − ���c11,0 �12�

up to second order in 1/�. On average there is much less
than one photon in the cavity mode.

Finally we derive a set of differential equations for the
ground state coefficients of the atom-cavity system. Intro-
ducing the effective parameters

�eff �
�2

4�
, �eff �

�2�

4�2 , �eff �
�2g2

�2�
�13�

and substituting Eqs. �10� and �12� into Eq. �9�, we obtain
the effective differential equations

ċ00;0 = 0,

ċ01;0 = �i�eff − 1
2�eff − 1

2�eff�c01;0,

ċ10;0 = �i�eff − 1
2�eff − 1

2�eff�c10;0,

ċ11;0 = �2i�eff − �eff − 2�eff�c11;0. �14�

Here the spontaneous decay rates are correct up to second
order in 1/�, while level shifts small compared to �eff have
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been neglected. Equation �14� can be summarized in the ef-
fective Hamiltonian

Heff = − �
�eff +
i

2
�eff +

i

2
�eff���01��01� + �10��10��

− ��2�eff + i�eff + 2i�eff��11��11� , �15�

which acts only on the atomic ground states. The state �00� is
effectively decoupled from the dynamics of the system,
while the states �01� and �10� evolve in the same way. Both
cause an atomic emission with the effective decay rate �eff or
the leakage of a photon through the cavity mirrors with �eff.
The state �11� causes an atomic emission with the decay rate
2�eff and the emission of a cavity photon with 4�eff.

B. Effect of a photon emission

The effect of a photon emission on the state of the atom-
cavity system can be described with the help of supplemen-
tary jump or reset operators Rx. If ��� is the state prior to a
photon emission of type x, then Rx ��� is the �unnormalized�
state immediately afterwards. For convenience we define the
reset operators Rx in the following such that

wx��� = Rx���2, �16�

is the probability density for the corresponding emission to
take place.

According to the quantum jump approach �49�, the reset
operator for the emission of a photon via the 2-j transition of
the atoms is given by

Rj = �� j 	
i=1,2

�j�ii�2� , �17�

if the photons from the 2–0 and the 2–1 transition are distin-
guishable. The discussion in the previous subsection shows
that the only states with population in the excited atomic
state are �02;0�, �20;0�, �12;0�, �21;0�, and �22;0�. From Eq.
�10� we see that coefficients of these states depend to first
order in 1/� only on the coefficients c00;0, c01;0, c10;0, and
c11;0. Combining Eqs. �10� and �17�, we see that the reset
operators for the photon emission from the atoms are effec-
tively and up to an overall phase factor given by

Reff;0 = ��eff;0��00��01� + �00��10� + �01��11� + �10��11�� ,

Reff;1 = ��eff;1��01��01� + �10��10� + 2�11��11�� �18�

with

�eff;j �
� j�eff

�
, �19�

and �eff;0+�eff;1=�eff. Again we find that the states �01� and
�10� have the atomic decay rate �eff, while �11� has the
atomic decay rate 2�eff.

During the leakage of a photon through the cavity mirrors
with decay rate �, one photon is removed from the resonator
field. The corresponding reset operator is therefore given by

RC = ��b . �20�

In the previous section we have seen that there is on average
at most one photon in the cavity. Only the states �01;1�,
�01;1�, and �11;1� contribute to a cavity photon emission.
We know that their coefficients depend only on c01;0, c10;0
and c11;0. Combining Eqs. �12� and �20� we find that the
cavity jump operator RC is to first order in 1/� given by

Reff;C = ��eff��01��01� + �10��10� + 2�11��11�� . �21�

Again, we see that the states �01� and �10� can cause a cavity
photon emission with decay rate �eff, while �11� has the col-
lectively enhanced cavity decay rate 4�eff.

C. Master equation

It should also be noted that the quantum jump approach
above is consistent with the master equation, which is often
alternatively used for the description of an open quantum
system. It reads

�̇ = −
i

�
�Hcond� − �Hcond

† � + Reff��� , �22�

and can be obtained by averaging over all the possible tra-
jectories that a single atom-cavity system can undergo �49�.
The master equation is particularly well suited to the predic-
tion of ensemble averages. For example, instead of display-
ing the existence of discrete levels in the fluorescence of a
single system, the master equation can be used to predict the
intensity of the emitted light averaged over all possible tra-
jectories.

III. BASIC PRINCIPLE

Let us now discuss the dynamics of the atom-cavity sys-
tem shown in Fig. 1 in more detail. Suppose the atoms are
initially in

��0� = c00�00� + c01�01� + c10�10� + c11�11� . �23�

As we see below, there are three distinct fluorescence levels
in the leakage of photons through the cavity mirrors. Their
origin is the existence of three decoupled subspaces in the
effective evolution of the atomic ground states, when spon-
taneous emission from the atoms remains negligible. We de-
note them in the following by D, L, and H �cf. Fig. 2�. The
emission of photons at a certain rate or their complete ab-
sence gradually reveals information about the atoms. This
gain of information gradually increases the population in one
subspace with respect to the others until the population in
any other subspace is irreversibly lost. The result is the pro-
jection of the atomic state ��0� into one subspace.

A. Three distinct fluorescence levels

Here the laser interaction is chosen such that the state �00�
is not involved in the evolution of the system. If no cavity
photon is emitted for a time of the order of a few 1/�eff, we
therefore learn that the atoms are in a state where they cannot
transfer population into the cavity mode. Consequently, the
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relative population in �00� increases, while the population in
the L and in the H subspace decrease. Eventually this results
in the projection of the state �23� into �00� as shown in Fig. 3.

The occurrence of two distinct fluorescence periods when
the atoms do lead to the emission of cavity photons may
seem less obvious. Figures 4 and 5 show possible trajectories
of the system in these cases. Any population in �00� vanishes
with the first photon emission. Figure 4 shows how relatively
frequent cavity emissions result in an ever increasing popu-
lation in �11�, since this reveals that the atoms are most likely
in the H subspace. Eventually all atomic population accumu-
lates in �11�, and can no longer return into another subspace
via cavity photon emission. The system therefore continues
to emit photons at its maximum rate given by 4�eff.

However, it is also possible that the time between two
subsequent photons is comparatively long. Such less fre-
quent events result in a relative increase in population of the
states �01� and �10� with respect to the population in �11�.
This is illustrated in Fig. 5. The reason for this is that seeing
no photon for a time that is long compared to 1/4�eff and
after the first photon emission reveals that the system is more
likely to be in the subspace with the lower emission rate.
Eventually, the population in �11� vanishes completely and
the system emits cavity photons at the rate �eff. Numerical
simulations confirm that the probability of the odd-parity
projection, P01+P10 �cf. Eq. �2��, indeed equals the initial
population in the L subspace, as predicted for an ideal mea-
surement.

B. Implementation of a parity measurement

In order to implement the parity measurement �2� in the
absence of spontaneous emission from the atoms, it is suffi-
cient to observe the cavity fluorescence over a time T long
enough to clearly distinguish the three fluorescence levels
mentioned above. The concrete protocol is as follows. �1�
Place respective atoms inside the resonator. �2� Turn on driv-
ing laser for a time T longer than a few 1/�eff and count the
number of detected photons.

The parity measurement is successful and results in the
projection P01+P10, when the number of emitted photons is
close to ��effT, which is the average number of photon de-
tections when the system is in the L subspace. The average
number of photon detections when the system is in the H
subspace is given by 4��effT. No photons indicate a projec-
tion onto the D subspace. Figure 6 shows the fidelity and
event probability for different detector click events for op-
eration �3� and for a concrete choice of experimental param-
eters �C=10�. Even in the presence of a non-negligible spon-
taneous decay rate of the atoms, it is possible to achieve
fidelities well above 0.9.

FIG. 2. Illustration of the effective evolution of the atoms. When
spontaneous emission from the atoms is negligible, the state of the
atoms converges within a relatively short time into one of the three
subspaces D, L, and H. Each subspace is characterized by a discrete
fluorescence level in the leakage of photons through the cavity
mirrors.

FIG. 3. �Color online� A possible trajectory of the atom-cavity
system given the initial state �3� obtained from a quantum jump
simulation with �0=�1=0.1�, g=�=�, and �=50�. Here no pho-
tons are emitted and all population eventually accumulates in the D
subspace.

FIG. 4. �Color online� A possible trajectory of the atom-cavity
system for the same initial state and the same parameters as in Fig.
3. Here photons are emitted at a relatively high rate. This results
eventually in a projection of the atomic state into the H subspace.

FIG. 5. �Color online� A possible trajectory of the atom-cavity
system for the same initial state and the same parameters as in Figs.
3 and 4. Here the time between two photon emissions is initially
relatively long. This reveals that the atoms are most likely in the L
subspace and all population in D and H gradually vanishes.
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C. Optimized protocol

Deviations in the fidelity from unity in Fig. 6 are largely
due to the possibility of photon emission from the atoms
with �eff. For example, when starting in �11�, the emission of
a photon with reset operator Reff;0 in Eq. �18� projects the
atoms onto the L subspace. Similarly, such an emission can
transfer population from the L subspace into the D subspace.
In both cases, it might be assumed that the atoms are in L,
consequently resulting in a decrease of the fidelity of the
prepared state. When using the parity measurement for the
generation of multiqubit entanglement, as described for ex-
ample in Eq. �4�, the result is the loss of the entanglement
with atoms outside the cavity.

Reducing the occurrence of atomic emissions requires
shortening the interaction time T. However, in the above pro-
tocol, this would make it difficult to distinguish the fluores-
cence when in H from that in L. As a solution we propose to
use the double heralding technique of Barrett and Kok �17�.
We now consider the following variant of the above protocol
�cf. Fig. 7�.

�1� Place respective atoms inside the resonator.
�2� Turn on driving laser for a maximum time Tmax or

until the first detection of a photon.
�3� Swap the states �0� and �1� of each atom.
�4� Repeat steps �2� and �3�.
This protocol allows us to measure the parity of atoms in

a relatively short time. In the ideal case, the only events that
produce two detector clicks are due to the system being in L.
The reason for this is that atoms in �00� cannot produce a
click in step �2�. Atoms initially in �11� are transferred into
�00� in step �3� and are therefore unable to emit a photon in
step �4�.

Finally we comment on the optimal size of Tmax. The
duration of the applied laser pulse should be comparable to
the mean time between two photon detections when the
system is in the L subspace. This is sufficient to assure that
there is a high probability for the detection of a photon in
steps �2� and �4�, if the atoms are in L. For example, if
Tmax=3/��eff, this probability is already above 90%. Longer
laser pulses do not increase this probability significantly and
can therefore be avoided. They might only lead to a slight
decrease of the fidelity of the odd-parity measurement due to
an increase in the probability for the spontaneous emission of
a photon from one of the atoms before the detection of the
first cavity photons. In the remainder of this paper, we nev-
ertheless assume that Tmax=	. This simplifies the following
calculations which nevertheless yield good approximations
for the actual fidelity and the success rate of the proposed
scheme for finite Tmax.

IV. PERFORMANCE ANALYSIS OF THE OPTIMIZED
PROTOCOL

In the following we analyze the optimized protocol in
detail and show that its performance is comparable to the
scheme presented in Ref. �21�. As an example, we consider
the operation described in Eq. �4� and calculate the average
fidelity and success rate for the preparation of a four-atom
GHZ state. In Sec. IV A we analyze the ideal scenario of
perfect photon detection. Finite photon detector efficiencies
are taken into account in Sec. IV B. In Sec. IV C we empha-
size that the performance of the proposed state preparation
scheme is essentially independent of the concrete size of the
system parameters and hence very robust against parameter
fluctuations.

A. Average fidelity for unit efficiency photon detectors

One factor that decreases the fidelity of the prepared state
is population in excited atomic states after the laser field has
been turned off. This population might result in an atomic
emission, which transfers the system into a state with a re-
duced overlap with the target state. From Eq. �10� we see
that it equals

FIG. 6. �Color online� Fidelity of the prepared state in case of n
detector clicks in �0,T� averaged over many trajectories and the
corresponding probability for this to happen. Here we compare the
results from an analytical calculation �52� with the results obtained
from a quantum trajectory simulation with T=5/�eff, �0=�1

=0.05�, g=�=�, �=50�, and �=1. A photon number close the
�effT indicates that the atoms are most likely in the L subspace,
while no detector clicks or a relatively large number of clicks shows
that the atoms are in �00� or �11�, respectively.

FIG. 7. �Color online� Schematic view of the main stages of the
optimized protocol. After the atoms have been placed into the reso-
nator in step �1�, the laser field is switched on in step �2� until a
cavity photon is detected at time T1. In step �3� a �-pulse transfers
�0� into �1� and vice versa. In step �4� the laser is turned on again
until a second click at T2. This second click signals an odd parity
state of the atoms.
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Patom excited =
�2

4�2 , �24�

up to second order in 1/�, in the case of the odd parity
projection P01+P10. This population can be made arbitrarily
small even in the presence of relatively large spontaneous
decay rates by simply increasing the detuning �. In the pa-
rameter regime �1�, corrections due to the population in Eq.
�24� are hence negligible. Possible remaining cavity excita-
tions do not affect the fidelity of operation �4�, since their
emission does not affect the state of the atoms once the pro-
jection onto one of the subspaces D, L, or H has occurred.

Corrections to the fidelity of the state prepared through an
odd-parity projection are generally dominated by effects due
to spontaneous emission from the atoms. To calculate these
corrections for unit efficiency photon detectors, we consider
the following two events.

Event A. The atoms emit the first cavity photon at T1 in
step �2� and at T2 in step �4�. Spontaneous emissions from
excited atomic states may occur but the atoms are finally in
the desired state.

Event B. The atoms emit the first cavity photon at T1 in
step �2� and at T2 in step �4�. Spontaneous emissions from
excited atomic states occur and the final state of the system is
not the desired one.

If wX�T1 ,T2� denotes the probability density for having
event X, the fidelity of a successful odd parity check equals

F�T1,T2� =
wA�T1,T2�

wA�T1,T2� + wB�T1,T2�
. �25�

We now analyze this fidelity in terms of the probabilities of
Markovian processes.

To do so, we denote the probability density for the spon-
taneous emission of a photon from the atoms, which trans-
fers the atoms from the X subspace into the Y subspace, by
XY. Moreover, �X is the probability density for a cavity pho-
ton emission, when the atoms are in X. From Eq. �21� we see
that such an emission does not change the state of the atoms
within the respective subspace. Given an initial state, where
the coefficients of the �00�, �01�, �10� and �11� components of
the state of the atoms inside the cavity are initially all the
same �as in Eq. �4��, the probability density wA�T1 ,T2� can be
written as

wA�T1,T2� =
1

2	
n=0

	

�Le−�LT1Pn
�L��T1�

�	
m=0

	

�Le−�LT2Pm
�L��T2�F�n + m�

=
1

2	
n=0

	

�L
2e−�L�T1+T2�Pn

�L��T1 + T2�F�n� . �26�

Here the factor 1
2 is the initial population in the L subspace

and e−�LT is the probability for no cavity decay in �0,T�
given that the atoms are in L. Moreover, Pn

�L��T� is the prob-
ability of n atomic emissions from subspace L back into L
and no emissions from L into D in �0,T�. An expression for

this probability can be found in Eq. �A2�. The fidelity of the
final state after n such spontaneous emissions is denoted by
F�n�. Here F�0�=1 and F�n�0�= 1

2 due to the nature of
spontaneous emission from the atoms.

Similarly we now calculate the probability density for
event B to occur. Doing so we find that

wB�T1,T2� =
1

4
�

0

T1

dt	
m=0

	

HLe−�HtPm
�H��t�

� 	
n=0

	

�L
2e−�L�T1−t+T2�Pn

�L��T1 − t + T2�.

+
1

2	
n=0

	

�L
2e−�L�T1+T2�Pn

�L��T1 + T2��1 − F�n�� .

�27�

The factor 1
4 in the first line is the initial population in the H

subspace. Here t is the time at which a transition from H to
L occurs. To calculate wB�T1 ,T2�, we integrate over all pos-
sible values for t. Moreover, e−�HL+�H�t is the probability for
no atomic emission out of H and no cavity decay in �0, t�
given that the atoms are in H. In analogy to the above nota-
tion, Pn

�H��t� is the probability of n atomic emissions from
subspace H back into H and no emissions from H into L in
�0, t�. An expression for this probability can be found in Eq.
�A3�. The last line in Eq. �27� is analogous to Eq. �26� and
contains the probability density that the final state of the
atoms does not overlap with the desired state although the
atoms were initially in L in the absence of a transition from
the H into the L subspace.

Using Eqs. �A1� and �A3�, the probability densities
wA�T1 ,T2� and wB�T1 ,T2� can be calculated analytically. Do-
ing so, we obtain

wA�T1,T2� = 1
4�L

2�e−��L+LD+LL��T1+T2� + e−��L+LD��T1+T2��

�28�

and

wB�T1,T2� =
1

4
�L

2� HL

�H − �L + HL − LD
��e−��L+LD��T1+T2�

− e−��L+LD�T2e−��H+HL�T1�� − e−��L+LD+LL��T1+T2�

+ e−��L+LD��T1+T2�� . �29�

It is possible to optimize the corresponding fidelity F�T1 ,T2�
in Eq. �25� by postselecting events, where T1 and T2 are both
short. In such cases, the probability for a decrease of the
fidelity due to an atomic emission is low and wB�T1 ,T2� re-
mains negligible. However, this optimization comes at the
cost of a decrease of the success rate for an odd parity check.

To maximize the efficiency of the proposed cluster state
preparation scheme, let us accept all events independent of
the size T1 and T2 and assume that the interaction time Tmax
in Fig. 7 is very large. The average fidelity of the final state
in the case of a projection onto the L subspace is then given
by
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Fav =
PA

PA + PB
, �30�

in analogy to Eq. �25�, if PX is the probability for an event
X=A ,B to take place. Moreover,

Psuc = PA + PB �31�

is the probability for the observation of such a projection and
equals the denominator in Eq. �30�. Since

PX = lim
Tmax→	

�
0

Tmax

dT1�
0

Tmax

dT2wX�T1,T2� , �32�

we find, using Eqs. �28� and �29�,

PA =
1

4
�L

2� 1

��L + LD + LL�2 +
1

��L + LD�2� ,

PB =
1

4
�L

2 1

��L + LD�2�LL�LL + 2�L + 2LD�
��L + LD + LL�2 +

HL

�H + HL
� ,

�33�

with the transition rates �cf. Sec. II�

HL = 2LL = 2�eff;1,

HH = 2LD = 2�eff;0,

�H = 4�L = 4�eff. �34�

In the special case, where �0=�1, these equations simplify to

2LL = 2LD = HL = HH, �H = 4�L = 16CHH, �35�

and the average fidelity and the success rate depend only on
the single atom cooperativity parameter C,

Fav =
5/32 + 4C + 28C2 + 64C3

3/8 + 7C + 38C2 + 64C3 �36�

and

Psuc =
6C2 + 64C3

1/8 + 4C + 40C2 + 128C3 . �37�

In the limit of large C, the fidelity Fav of the entangling
operation �4� approaches unity, while the success rate Psuc

converges to 1
2 , as expected for an ideal projection. In the

presence of non-negligible atomic emission, i.e., for smaller
C’s, the fidelity and success rate are slightly smaller. Even
when C=1, we have Fav=0.88 and Psuc=0.41 in the presence
of ideal photon detectors with �=1. Average fidelities ex-
ceeding 0.99 become possible when C approaches 20.

B. Average fidelity for finite efficiency photon detectors

To calculate the average fidelity and success rate for an
odd-parity projection for finite photon detector efficiencies
��1, we consider the events.

Event A�. The first detection of a cavity photon at T1 in
step �2� and at T2 in step �4�. Spontaneous emissions from

excited atomic states may occur but the atoms are finally in
the desired state.

Event B�. The first detection of a cavity photon at T1 in
step �2� and at T2 in step �4�. Spontaneous emissions from
excited atomic states occur and the final state of the system is
not the desired one.

We then notice that � has no effect on the probability
densities for atomic emissions. It only extends the mean time
until the detection of a first cavity photons. To obtain the
probability densities wA��T1 ,T2� and wB��T1 ,T2�, we there-
fore only need to replace �X in Eqs. �26� and �27� by ��X and
e−�Xt by e−��Xt. Proceeding as above, we then find that the
average fidelity and success rate are now given by

Fav =
5/32 + 4�C + 28��C�2 + 64��C�3

3/8 + 7�C + 38��C�2 + 64��C�3 �38�

and

Psuc =
6��C�2 + 64��C�3

1/8 + 4�C + 40��C�2 + 128��C�3 . �39�

These are the same expressions as in Eqs. �36� and �37� but
with C now replaced by �C.

Figures 8 and 9 compare the average fidelity in Eq. �38�
and the success rate for an odd-parity projection in Eq. �39�
with the results obtained from a numerical solution of the
evolution of the system using Eqs. �7�, �17�, and �20� for the
entangling operation described in Eq. �3�. Operation �3� is
slightly different from operation �4�, which we considered in
the above calculations, since atomic emissions lead less fre-
quently to an error in the simpler pair entangling scheme, as
there is no initial entanglement that needs to be preserved.
Nevertheless, there is relatively good agreement between
both curves. Figures 8 and 9 indeed confirm that reducing �
has the same effect as replacing C by �C.

FIG. 8. �Color online� Logarithmic plot of the fidelity of the
output state against the detector efficiency � for several values of
the cooperativity parameter C. The lines show the analytical solu-
tion given in Eq. �38� for the four-atom GHZ state preparation
described in Eq. �4�, while the symbols have been obtained from a
quantum trajectory simulation of the simpler entangling operation
�3� assuming �=50� and g=�=�. The triangle, circle, square, and
diamond correspond to the C=5, 10, 20, and 40, respectively.
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C. Parameter dependence

Due to its postselective nature, the performance of the
proposed state preparation scheme is essentially independent
of the concrete system parameters. Figure 8 shows that fi-
delities well above 99% are inevitably when �C�20. When-
ever this condition is fulfilled, there are three distinct fluo-
rescence levels in the emission of cavity photons. The
scheme is constructed such that the medium level always
indicates that one atom is in �0� and one atom is in �1� with-
out revealing which one. Turning off the applied laser field
upon the detection of a photon in steps �2� and �4� is hence
sufficient to realize the parity operation �2� with very high
accuracy. The proposed state preparation scheme is therefore
robust against a parameter fluctuations, like moderate fluc-
tuations of cavity coupling constants and laser Rabi frequen-
cies.

In the following, we show that high fidelities are achieved
even when the atoms experience quite different coupling
constants. As an example, we consider the case where the
cavity-coupling constant of atom 1 is g1 and the cavity-
coupling constant of atoms 2 is given by g2. For simplicity
we neglect spontaneous emission from the atoms ��=0� in
the following. Proceeding as in Sec. II, we find that the con-
ditional Hamiltonian �15� is now given by

Heff = − �
�eff +
i

2
�eff;2��01��01� − �
�eff +

i

2
�eff;1��10��10�

− ��2�eff +
i

2
���eff;1 + ��eff;2�2��11��11� �40�

with

�eff;i �
�2gi

2

�2�
. �41�

At the same time, the reset operator in Eq. �21� becomes

Reff;C = ��eff;1��10��10� + �11��11�� + ��eff;2��01��01�

+ �11��11�� . �42�

These two equations can be used to simulate for example all
the possible trajectories for the two-qubit entangling opera-
tion �3�.

Let us first consider the case where the atoms perma-
nently see different coupling constants gi. Figure 10 shows
the average fidelity Fav of the prepared state in the case of an
odd parity projection as a function of �, where

�eff;1 � �1 + ���̄eff, �eff;2 � �1 − ���̄eff,

�̄eff � 1
2 ��eff;1 + �eff;2� . �43�

Fidelities above 0.9 are achievable, even when �eff;1 and
�eff;2 differ by their average value �̄eff. The reason for this is
the postselective nature of the proposed optimized protocol.

To illustrate this we now examine the dynamics of the
system in the absence of spontaneous emissions from the
atoms in more detail. The state of the atoms in case of a
detector click at T1 and one at T2 is given by

���T1,T2�� =
Reff;CUcond�T2,0�U�Reff;CUcond�T1,0���0�

 ¯ 
�44�

with U� being the operation that exchanges the states �0� and
�1�. Using Eqs. �40� and �42�, we find that the system is
finally in the state

���T1,T2�� =
1

 ¯ 
�e−��eff;2T1+�eff;1T2�/2�01�

+ e−��eff;1T1+�eff;2T2�/2�10�� . �45�

Calculating the overlap of this state with the Bell state in Eq.
�3�, we obtain the fidelity

FIG. 9. �Color online� Probability of a successful odd parity
check as a function of �, for several values of C and for the same
parameters as in Fig. 8. The circle, square, cross, and triangle cor-
respond to the C=5, 10, 20, and 40, respectively. The lines show
the analytical solution given in Eq. �39� for the four-atom GHZ
state preparation described in Eq. �4�.

FIG. 10. �Color online� Average fidelity, Fav, from Eq. �49� for
the entangling operation described in Eq. �3� as a function of �.
Fidelities above 0.9 are achievable, even when �eff;1 and �eff;2 differ
from each other by �̄eff.
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F�T1,T2� =
1

2
+

e−��eff;1+�eff;2��T1+T2�/2

e−��eff;1T1+�eff;2T2� + e−��eff;2T1+�eff;1T2� .

�46�

To calculate the average fidelity for the entangling operation
�4�, we notice that the probability density for a click at T1
and T2 is in this case given by

w�T1,T2� = 1
4�eff;1�eff;2�e−��eff;2T1+�eff;1T2� + e−��eff;1T1+�eff;2T2�� .

�47�

The average fidelity Fav is again obtained by integrating over
all possible click times T1 and T2,

Fav =

�
0

	

dT1�
0

	

dT2w�T1,T2�F�T1,T2�

�
0

	

dT1�
0

	

dT2w�T1,T2�
. �48�

Inserting Eqs. �43�, �46�, and �47� into this equation, we find
that

Fav = 1 − 1
2�2. �49�

This means that very large fidelities are possible even for
non-negligible � �cf. Fig. 10�.

The very high fidelities in Fig. 10 are due to the concrete
form of the state of the atoms after two photon emissions in
Eq. �45�. As one can see, the states �01� and �10� have ap-
proximately the same coefficients, when �eff;2T1+�eff;1T2 and
�eff;1T1+�eff;2T2 are of about the same size. This applies for
a very wide range of click times T1 and T2 and decay rates
�eff;1 and �eff;2. Proceeding analogously, one can show that
the proposed realization of the odd-parity check �2� is robust
against temporal fluctuations of the atom-cavity coupling
constant g and the laser Rabi frequency �.

V. CLUSTER STATE GROWTH

In this section, we describe how to use the probabilistic
parity check in Eq. �2� for the build up of two-dimensional
cluster states �2�. These highly entangled states constitute the
main resource for one-way quantum computing �1,2�. Once a
cluster state has been built, local operations and single-qubit
read out measurements are sufficient to realize any possible
quantum algorithm. That the projection �2� can be used to
build cluster states has already been noted by Browne and
Rudolph �13�. Below we proceed in a similar fashion.

A. Fusion of one-dimensional clusters

Let us first have a closer look at the build-up of a linear
cluster state, which consists of a chain of atoms with next
neighbor entanglement. Larger clusters can be obtained
through the fusion of two cluster states �13�. In the scheme
proposed here this requires placing one end atom from each
chain into the optical cavity and performing the parity mea-
surement �2�. Entanglement between these two atoms is ob-
tained and the original correlations with the atoms outside
the cavity are preserved in case of a projection with P01

+P10. In case of a projection with P00 or P11, the atoms in the
cavity decouple from the rest and a new attempt has to be
made to incorporate them into a larger cluster.

More concretely, we now consider the case of fusing two
cluster chains with n−m and m qubits, respectively, into one
linear cluster of size n−1. The initial state of the atoms can
then be written as �2�

��� =
1

2n/2 �
i=m+1

n

��0�i + �z
�i−1��1�i� �

j=1

m

��0� j + �z
�j−1��1� j� .

�50�

Here �z
�i� is the Pauli matrix

�z
�i� � �1��1� − �0��0� , �51�

with the exception of �z
�m� and �z

�0�. These are given by

�z
�m� = �z

�0� � �0��0� + �1��1� . �52�

By detecting odd parity for qubit m+1 and qubit m we
project these two qubits with P01+P10. The resulting state is

��� =
1

2�n−1�/2 �
i=m+2

n

��0�i + �z
�i−1��1�i� � ��z

�m−1��0�m+1�1�m

+ �1�m+1�0�m� �
i=1

m−1

��0�i + �z
�i−1��1�i� . �53�

The two originally independent chains are now linked via a
double-encoded qubit, as illustrated in Fig. 11. In order to
remove the superfluous qubit we perform the Hadamard gate

H =
1
�2

��0��0� + �0��1� + �1��0� − �1��1�� �54�

on atom m and measure its state. If qubit m is found in �0�,
we need to apply a �z operation to qubit m−1 to conclude
the fusion of the two states. If we find qubit m in �1�, we
instead perform the �z operation on qubit m−1 and qubit
m+1. In both cases we end up in the n−1 qubit cluster state

��� =
1

2�n−1�/2 �
i=1

n−1

��0�i + �z
�i−1��1�i� . �55�

Here we changed the indices of the atoms in order to close
the gap caused by the loss of atom m. If instead the parity-
check fails, and the projection P00 or P11 is performed, then
the qubits m+1 and m are both projected either on state �0�
or �1�. They are then decoupled from their respective cluster

FIG. 11. Fusion of two linear cluster states. A successful parity
check creates a double-encoded qubit which links the two chains. If
the parity check fails we project either on �00� or on �11�. In both
cases one qubit from each chain decouples.
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chains, which are now of length n−m−1 and m−1. In order
to increase the efficiency of the growth of multiqubit cluster
states, one can abandon the measurement of atom m, as
pointed out by Nielsen in Ref. �29�. Its presence can be used
later to increase the success rate for a later fusion of a cluster
to this part of the chain.

B. Fusion of two-dimensional clusters

Similarly, large two-dimensional cluster states are ob-
tained via the fusion of two smaller structures into one. As a
simple example, we now discuss the fusion of two one-
dimensional cluster chains of length m and n into a simple
two-dimensional structure, as illustrated in Fig. 12. The ini-
tial state of the two chains is given by

��� =
1

2N/2 �
i=1

n

��0�i + �z
�i−1��1�i� �

j=1

m

��0� j + �z
�j−1��1� j�

= ¯ ��0�k + �z
�k−1��1�k� ¯ ��0�l + �z

�l−1��1�l� ¯ , �56�

where N=n+m is the total number of qubits. For example, if
the parity projection P01+P10 is successfully applied to qubit
k and qubit l, then these two qubits become a double encoded
qubit which links the two chains. As a final step, one of the
two atoms in the link, i.e., atom k or atom l, may be re-
moved. In analogy to Sec. V A, this can be done using again
a Hadamard operation and a qubit read out measurement
followed by �z operations.

In the case of a P00 or a P11 projection, qubit k and qubit
l decouple from the rest of the cluster states, since their state
is now known. The original chains split and the fusion of the
two chains failed. The situation is now worse than before.
Instead of one large cluster we obtained four smaller ones
and two single qubits. Nevertheless, it is possible to grow
cluster states of any size with the help of probabilistic mea-
surements. This applies even when the probability for the
successful fusion of two clusters is below 1

2 �17�. More de-
tails about the scaling behavior of similar probabilistic clus-
ter state growth schemes can be found for example in Refs.
�17,19,29–31�.

VI. CONCLUSIONS

In this paper we describe a scheme for the sequential
build-up of atomic cluster states with the help of the proba-

bilistic parity measurement �2�. This measurement can be
implemented via the detection of a macroscopic fluorescence
signal. It requires placing two atoms simultaneously into an
optical cavity, where both experience comparable cavity-
coupling constants and constant laser driving with compa-
rable Rabi frequencies �cf. Fig. 1�. Fluorescence at a maxi-
mum level indicates that the atoms are in �11�, while
fluorescence at a relatively low level indicates that the atoms
are in �01� or �10�, without revealing which atom is in which
state. In the case of no cavity photon emissions, the atoms
project into �00�. In Sec. III, we showed that the origin of
these three distinct fluorescence levels is the existence of
approximately decoupled subspaces in the effective evolu-
tion of the atomic ground states.

One way to perform the parity measurement �2� is to turn
on the laser field for a fixed time T and to count the number
of cavity photon detections in �0,T�. However, higher fideli-
ties are achieved when minimizing the time T for which the
laser field is turned on. This minimizes the effect of sponta-
neous emission from the atoms, which might disrupt the co-
herence between �01� and �10� or transfer population from
�11� into a state with one atom in �0�. We therefore propose
an optimized protocol in Sec. III C, which makes use of the
double heralding technique of Barrett and Kok �17�. It re-
quires one to turn off the laser field upon the detection of the
first photon and to swap the states �0� and �1� in both atoms.
Afterwards, another laser pulse is applied for a maximum
time Tmax or until the detection of a second photon. In this
way it is possible to measure how many atoms are in �0� in a
much shorter time than in the first mentioned protocol.

A detailed performance analysis of the optimized protocol
can be found in Sec. IV. The main motivation for the pro-
posed state preparation scheme is to allow for relatively large
spontaneous decay rates and finite photon detector efficien-
cies �. Indeed, it is possible to achieve fidelities well above
0.99, when �C
20, while �C
1 is sufficient for fidelities
above 0.88 �cf. Fig. 8�. The success rate for an odd parity
check is close to 1

2 for most detector efficiencies � and val-
ues of the single atom cooperativity parameter C �cf. Fig. 9�.
This means that the performance of the proposed state prepa-
ration scheme is essentially independent of the concrete size
of the experimental parameters. Consequently, the scheme is
very robust against parameter fluctuations. To illustrate this,
we show that the fidelity reduces by only 0.1 even when the
effective atom-cavity coupling strengths both differ by ap-
proximately 30% from their mean value. Fidelities in excess
of 0.99 of the values calculated for equal coupling constants
require that the atom-cavity couplings differ by less than
10% �cf. Fig. 10�.

In Sec. V, we show how the parity measurement �2� can
be used to grow two-dimensional cluster states. It has
already been shown in the literature �cf. e.g., Refs.
�17,19,29–31�� that the build-up of large cluster states is pos-
sible even when the probability for the successful fusion of
two clusters is below 1

2 . Here we propose a scheme in which
the success rate for an odd parity check is close to 1

2 even in
the presence of finite efficiency photon detectors. Our cluster
state growth scheme with macroscopic heralding is therefore

FIG. 12. Fusion of two linear clusters into one two-dimensional
cluster state. In case of a failure of the parity check, both chains
split into shorter ones.
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expected to be much more practical than recent schemes
based on the detection of single photons �15–19�.
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APPENDIX: CALCULATION OF Pn
„L…

„t… AND Pn
„H…

„t…

We now calculate the probability for n atomic emissions
from the L to the L subspace, given that the system is in this
subspace at t=0 and remains there throughout. It is given by

Pn
�L��t� = �

0

t

dtnLLe−�LL+LD��t−tn��
0

tn

dtn−1LLe−�LL+LD��t−tn−1�
¯ �

0

t2

dt1LLe−�LL+LD�t1, �A1�

if the ti denote the corresponding jump times. The evaluation of the above integrals is straightforward and yields

Pn
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n!
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Similarly, the probability for n atomic emissions from the H to the H subspace, given that the system is in this subspace at t=0
and remains there throughout, is given by
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