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We discuss the exact cloning of orthogonal but entangled qubits under local operations and classical com-
munication. The amount of entanglement necessary in a blank copy is obtained for various cases. Surprisingly,
this amount is more than 1 ebit for certain sets of two nonmaximal but equally entangled states of two qubits.
To clone any three Bell states, at least log2 3 ebit is necessary.
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I. INTRODUCTION

Classical states can always be cloned perfectly but the
quantum no cloning theorem �1� prohibits exact cloning of
nonorthogonal states. However, orthogonal quantum states
can always be cloned if one can perform a operation on the
entire system.

A common scenario in quantum information processing is
where a multipartite entangled state is distributed among a
number of spatially separated parties. Each of these parties
are able to perform only local operations on the subsystems
they possess and can send only classical information to each
other. This is known as local operation and classical commu-
nication �LOCC�. If we restrict ourselves only to LOCC,
further restrictions on cloning apply. For example, the very
obvious first restriction will be that an entangled blank state
is needed to clone an entangled state. Moreover, entangle-
ment of the blank state should at least be equal to the en-
tanglement of the state to be cloned or else entanglement of
the entire system will increase under LOCC which is impos-
sible. However, with a sufficient supply of entanglement;
entangled states can be cloned by LOCC. For example, any
arbitrary set of orthogonal states of two qubits can be cloned
with the help of three ebits, any set of two orthogonal states
needs only two ebits.

The concept of entanglement cloning under LOCC was
first considered by Ghosh et al. �2� where it was shown that
for LOCC cloning of two �four� orthogonal Bell states, one
ebit �two ebits� of entanglement is necessary and sufficient.
Since then much work has been done in this direction �3,4�
which involves maximally entangled states. In this paper, we
consider cloning of arbitrary but equally entangled orthogo-
nal states under LOCC and obtain the following interesting
results: �i� log2 3 ebit in the blank copy is necessary to clone
any three Bell states. �ii� Local exact cloning of any two
orthogonal entangled states is not possible with the help of
same entanglement unless the states are maximally en-
tangled. �iii� Even a maximally entangled state of two qubits
may not help as a blank copy for cloning certain sets of two
orthogonal nonmaximal equally entangled states if these
states lie in the same plane.

II. CLONING BELL STATES

The four Bell states are given as

�Bmn� =
1
�2

�
j=0

1

e2�ijn/2�j��j � m�, n,m = 0,1, �1�

where one qubit is held by Alice and the other is held
by Bob. Recently, Ghosh et al. �2� have shown that any two
Bell states can be cloned with the help of one �log2 2� ebit,
whereas to copy all four Bell states, one needs at least two
�log2 4� ebits of entanglement in the blank copy. Regarding
three Bell states, Owari and Hayashi �4� have shown that any
three Bell states cannot be cloned if only one ebit of en-
tanglement is supplied as a resource. In this section, consid-
ering a property of entanglement, we not only prove the
above but also provide the necessary amount of entangle-
ment for such a cloning. Interestingly, this amount comes out
as log2 3 ebits.

To obtain the necessary amount of entanglement needed
in the blank copy for local cloning �from here on by “local
cloning” or “cloning” we mean “exact cloning under
LOCC”� of three Bell states, we will make use of the fact
that the relative entropy of entanglement cannot be increased
by any LOCC operation. The relative entropy of entangle-
ment for a bipartite quantum state � is defined by �5�

ER��� = min
��D�H�

S��	�� .

Here D is the set of all separable states on the Hilbert space
H over which � is defined and S�� 	�� �the relative entropy
of � to �� is given by S�� 	��
 tr�� log2 ��−tr�� log2 ��.

Let �1�H1 and �2�H2 be two quantum states and let
ER��1�=S��1 	�1�, ER��2�=S��2 	�2�; i.e., �1��H1� and
�2��H2� are the two separable states which minimize the
relative entropies of �1 and �2, respectively. Let � be the
separable state belonging to the Hilbert space H1 � H2 which
minimizes the relative entropy of �1 � �2. Then the

ER��1 � �2� � S��1 � �2	�1 � �2� �2�

equality holds when �1 � �2=�.
It is known that �6�

S��1 � �2	�1 � �2� = S��1	�1� + S��2	�2� , �3�

hence
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ER��1 � �2� � S��1	�1� + S��2	�2� , �4�

i.e.,

ER��1 � �2� � ER��1� + ER��2� . �5�

If cloning of three Bell states �e.g., �B00� , �B01� , �B10�� is pos-
sible with a known entangled state �say �B�� as a blank copy
�resource�, then the state 1

3 ��B00
�2��B00

�2�+ �B01
�2��B01

�2�+ �B10
�2�

��B10
�2�� along with the blank state �B� given as the input to

the cloner will provide the output as

�in�=
1

3
��B00

�2��B00
�2� + �B01

�2��B01
�2� + �B10

�2��B10
�2�� � �B��B�

→ �out�=
1

3
��B00

�3��B00
�3� + �B01

�3��B01
�3� + �B10

�3��B10
�3�� .

We now compare the relative entropies of entanglement of
�in and �out.

From inequality �5�, we have

ER��in� � ER�1

3
��B00

�2��B00
�2� + �B01

�2��B01
�2� + �B10

�2��B10
�2��

+ ER��B��B��

as

ER� 1
3 ��B00

�2��B00
�2� + �B01

�2��B01
�2� + �B10

�2��B10
�2��� � 2 − log2 3,

hence ER��in��2−log2 3+ER��B��B�� �7�. At least two ebits
of entanglement can be distilled from �out �8,9� and the dis-
tillable entanglement is bounded above by ER, hence
ER��out��2. However, as relative entropy of entanglement
cannot increase under LOCC and, as in the output, we have
at least two ebits of relative entropy of entanglement, hence,
in order to make cloning possible, log2 3 ebits is necessary in
the blank state. Any two qubit state �even a two qubit maxi-
mally entangled state� cannot provide this necessary amount
of entanglement.

III. CLONING ARBITRARY ENTANGLED STATES

Any two equally entangled orthogonal states can lie either
in same plane �I�

��1� = a�00� + b�11� ,

��2� = b�00� − a�11�

or in different planes �II�

��1� = a�00� + b�11� ,

��3� = a�01� + b�10� ,

where a ,bare real and unequal and a2+b2=1.
In both cases, if one provides two entangled states, each

having the same amount of entanglement as in the original
one, cloning will become trivially possible. Here we investi-
gate the nontrivial case when a single entangled qubit state is
supplied as blank copy.

Case (I). Suppose there exists a cloning machine which
can clone ��1� and ��2� when a pure entangled qubit state
�	��=c�00�+d�11� ; c2+d2=1� is supplied to it as a blank
copy. Let us supply an equal mixture of ��1� and ��2� to-
gether with the blank state �	� to it, i.e., the state input to the
cloner is

�in = �1

2
P���1�� +

1

2
P���2��� � P��	�� . �6�

The output of the cloner

�out =
1

2
P���1� � ��1�� +

1

2
P���2� � ��2�� . �7�

For proving the impossibility of such a cloner, we make use
of the fact that the Negativity of a bipartite quantum state �,
N��� cannot increase under LOCC �10�. N��� is given by
�11�

N��� 
 	�TB	 − 1, �8�

where �TB is the partial transpose with respect to system B
and 	¯ 	 denotes the trace norm which is defined as

	�TB	 = tr���TB
†
�TB� . �9�

The negativity of the input state �in is

N��in� = 2cd � 1,

whereas, the negativity of the output is

N��out� = 4a2b2 + 4�a2b2�a2 − b2�2.

The above cloning is not possible as long as

cd 
 2a2b2 + 2�a2b2�a2 − b2�2. �10�

The above inequality has some interesting features, but the
most significant feature is that even a maximally entangled
state of two qubits cannot help as a blank copy for a large
number of pairs of nonmaximally entangled states belonging
to this class �see Fig. 1�. Simple calculations show �13� that
this is the case for �1

2 − 1
�5


a
�1
2 + 1

�5
�except for a= 1

�2
�.

This is surprising as recently Kay and Ericsson �12� gave a
protocol by which all the pairs of states lying in different
planes �II� can be cloned with the help of one free ebit. Other
important features are �a� for a=b=c=d= 1

�2
, the above in-

equality becomes an equality. This is consistent with an ear-
lier finding �2� that two maximally entangled bipartite states
can be cloned with the help of one free ebit. �b� Inequality
�10� holds even for c=a�d=b �see Fig. 1�. This in turn
implies that same amount of entanglement �as in the state to
be cloned� cannot help as blank copy, for any pair of non-
maximally entangled states.

Case (II). This time we suppose that our cloning machine
can clone ��1� and ��3� if a pure entangled state
�	��=c�00�+d�11� ; c2+d2=1� is used as a blank copy. Let
the state supplied to this machine be

�in =
1

2
�P���1�� + P���3��� � P��	�� .

We then have the output of the cloner
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�out =
1

2
P���1� � ��1�� +

1

2
P���3� � ��3�� .

Putting ��1�, ��3�, and ��� in the expression for �in and �out
and making use of Eqs. �8� and �9�, we get

N��in� = 2cd � 1,

N��out� = 2�2�a6b2 + a2b6� .

From the nonincrease of negativity under LOCC it follows
that as long as

cd 
 �2�a6b2 + a2b6� �11�

the above cloning is not possible. �a� a=b=c=d= 1
�2

turns
this inequality into an equality. This again is consistent with
�2�. �b� If we put c=a�d=b in the above inequality, i.e., if
we use same amount of entanglement �as in the original
states� then too cloning remains impossible as can be seen
from Fig. 2. �c� Here too the inequality �11� shows that the
necessary amount of entanglement in the blank copy is al-
ways greater than the entanglement of the original states un-

less they are maximally entangled. As an example, for
a=�0.3, �i.e., entanglement of the state to be cloned is
0.8813�, as long as c
�0.42, �i.e., entanglement of the blank
copy 
0.9815�, cloning is not possible.

IV. CONCLUSION

In this paper we addressed the problem of LOCC cloning
for entangled states. To clone three Bell states, one needs at
least log2 3 ebits in the blank state. So any two qubit state
�pure or mixed� cannot serve this purpose. We have also
shown that the blank state needed should be more entangled
than the original ones for cloning any pair of nonmaximal
but equally entangled orthogonal states. The necessary
amount of entanglement in the blank state for such cloning to
be possible is given by inequalities �10� and �11�. Interest-
ingly, this necessary amount is more than one ebit for certain
sets of nonmaximal but equally entangled states contrary to
certain other sets for which one ebit can serve as a blank
copy.
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FIG. 1. �Color online� Broken line: Plot of N��in� versus x,
where x=c2�=1−d2�. Solid line: Plot of N��out� versus x, where
x=a2�=1−b2�. Please note that the negativity of the output is more
than that of the input except for maximally �i.e., x= 1

2 � entangled
ones.
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FIG. 2. �Color online� Broken line: Plot of N��in� versus x,
where x=c2�=1−d2�. Solid line: Plot of N��out� versus x, where
x=a2�=1−b2�. Please note that the negativity of the output is more
than that of the input except for maximally �i.e., x= 1

2 � entangled
ones.
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� �j � i�A2�s � r�B2. Denote B�m ,n� as the BXOR operation
performed on the mth pair �source� and the nth pair �target�,
the following operation will give B�1,3�B�2,3��Bmn

�3�
= �Bm,0

��2���B�3m,n� �9�. If this operation is applied to �out, one
obtains 1

3 ��B00
�2��B00

�2� � ��B00��B00�+ �B01��B01��+ �B10
�2��B10

�2�
� �B10��B10��. If Alice and Bob do the measurement in the
�0� , �1� basis on the third copy and communicate, the results
will be either correlated or anticorrelated. When they are cor-
related the first two copies are in �B00� and in the other case
they are in state �B10�, therefore distilling two ebits in this
process.
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4
5 �here we have made use of the fact a2+b2=1�, or

� 1
2 − 1

�5

a
� 1

2 + 1
�5

.

CHOUDHARY et al. PHYSICAL REVIEW A 76, 052305 �2007�

052305-4


