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The Gaussian continuous-variable quantum key distribution protocol based on coherent states and hetero-
dyne detection �Phys. Rev. Lett. 93, 170504 �2004�� has the advantage that no active random basis switching
is needed on the receiver’s side. Its security is, however, not very satisfyingly understood today because the
bounds on the secret key rate that have been derived from Heisenberg relations are not attained by any known
scheme. Here, we address the problem of the optimal Gaussian individual attack against this protocol, and
derive tight upper bounds on the information accessible to an eavesdropper. Interestingly, this protocol is
proven to be even more resistant to individual attacks than originally thought. Optical schemes achieving these
bounds are also exhibited, which concludes the security analysis of Gaussian protocols against individual
attacks.
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I. INTRODUCTION

Over the past few years, an important research effort has
been devoted to continuous-variable quantum-key-
distribution �QKD� protocols, motivated by the prospects of
realizing high-rate cryptosystems relying on homodyne de-
tection instead of photon counting. These systems also have
the advantage that they are based on standard �low-cost� tele-
com optical components, circumventing the need for single-
photon sources or single-photon detectors. In particular,
Gaussian QKD protocols have been extensively investigated
first because they are conceptually simpler, but also mainly
because their security can be rigorously assessed. The first
proposed Gaussian QKD protocol used squeezed states of
light, which are modulated in one or the other quadrature �x
or p� by the emitter �Alice�, and are measured via homodyne
detection by the receiver �Bob� �1�. Although this protocol is
a very natural continuous-variable counterpart of the famous
Bennett-Brassard 1984 �BB84� protocol, its main drawback
is the need for a source of squeezed light.

A second Gaussian QKD protocol was devised, in which
Alice generates coherent states �instead of squeezed states�
which are then modulated both in x and p, while Bob still
performs homodyne detection �2�. Dealing with coherent
states of light �simply produced with a laser� instead of
squeezed or single-photon states makes this protocol very
practical. This protocol, supplemented with the technique of
reverse reconciliation, was experimentally demonstrated in
Ref. �3�, where it was shown that its range can, in principle,
be arbitrarily large. Note that, in these two protocols, Bob
randomly chooses to homodyning one quadrature, either x or
p. In the squeezed-state protocol, Bob then needs to reject
the instances where he measured the other quadrature than
the one modulated by Alice �this operation is called sifting�,
which results in a decrease of the key rate by a factor of 2
�13�. In the coherent-state protocol, Alice simply forgets the
quadrature that is not measured by Bob, which may look like
a loss of efficiency. A third Gaussian protocol was therefore

proposed, in which Alice still transmits doubly-modulated
coherent states but Bob instead performs heterodyne mea-
surements, that is, he divides the incoming signal in two
beams using a balanced beamsplitter, measuring afterwards
quadrature x on the first beam and quadrature p on the sec-
ond one �4� �this possibility was also suggested for
postselection-based protocols in �5��. At first sight, this
seems to imply that the rate is doubled, since Bob then ac-
quires a pair of quadratures �x , p�. Actually, since heterodyne
measurement effects one additional unit of vacuum noise on
the measured quadratures, the two quadratures received by
Bob are noisier than the single quadrature in the homodyne-
based protocol. The net effect, however, is generally an in-
crease of the key rate when the two quadratures are measured
simultaneously �14�.

This third protocol thus exhibits two advantages, namely
that �i� the key rate is generally higher than for the
homodyne-based coherent-state protocol, and �ii� there is no
need to choose a random quadrature �i.e., no active basis
choice is needed� at Bob’s side. However, in order to make
any definite statement on the security of this protocol, it is
necessary to put precise limits on the maximum information
accessible to an eavesdropper �Eve�. Surprisingly, although
bounds on the optimal Gaussian individual attack against this
protocol had been derived in �4�, it has remained unknown
until now whether these bounds can be attained or not by an
explicit eavesdropping strategy. These bounds were derived
using similar techniques to those used for the other Gaussian
protocols, namely by writing Heisenberg uncertainty rela-
tions. Since for the protocols based on homodyne detection,
the corresponding Heisenberg bounds can be attained by use
of an explicit transformation �the entangling cloner�, it is
tempting to conclude that the same is true for the
heterodyne-based protocol. On the other hand, since no ex-
plicit scheme has been found to date that saturates these
bounds, another possibility is that these are loose, and tighter
bounds remain to be found.

In this paper, we revisit the security of this coherent-state
heterodyne-based Gaussian protocol, and prove that the sec-
ond above option is indeed true. We seek for the optimal
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Gaussian individual attack by expressing the most general
symplectic transformation characterizing Eve’s action and
maximizing the information acquired by her. Restricting to
symplectic transformations is actually sufficient given that
Gaussian attacks are provably optimal among individual at-
tacks �6�. We conclude that this optimal attack is less pow-
erful than expected, in the sense that we derive a tighter
bound than that based on the Heisenberg inequalities. We
also exhibit optical schemes that precisely attain this bound,
both in direct and reverse reconciliation. Hence, the resulting
lower bound on the secret key rate is higher than that based
on the Heisenberg uncertainty relations, making the
heterodyne-based protocol even more efficient than origi-
nally thought.

II. HEISENBERG-LIMITED EAVESDROPPING

The Gaussian protocol based on coherent states and het-
erodyne detection �4� can be shown to be equivalent to an
entanglement-based scheme �7�, where Alice prepares an
EPR state and applies a heterodyne measurement on mode A,
while Bob applies a heterodyne measurement on mode B.
This is shown in Fig. 1. We restrict ourselves to individual
attacks, where Eve completely controls the Alice-to-Bob
channel separately for each transmitted state. Since Gaussian
attacks are optimal among these attacks, we consider in what
follows that Eve effects a Gaussian channel �12,15�. Conse-
quently, the quantum state �AB before Alice and Bob’s mea-
surements can be assumed to be a Gaussian two-mode state
with a zero mean value and a covariance matrix �AB. Usual
Gaussian channels, such as optical fibers, effect a symmetric
and uncorrelated noise in both quadratures x and p �includ-
ing, of course, the loss-induced noise�, so that we will only
consider symmetric channels without x-p correlations in
what follows. Since the EPR state �two-mode squeezed state�
is also symmetric and exhibits no correlations between x and
p, we can write the resulting covariance matrix in a block-
diagonal form as

�AB = ��AB
x 0

0 �AB
p � , �1�

with

�AB
x�p� = � V ±�T�V2 − 1�

±�T�V2 − 1� T�V + ��
� , �2�

where the signs + and − correspond to �AB
x and �AB

p , respec-
tively. Here, V is the variance of Alice’s output thermal
state, while T and �= �1−T� /T+� are the transmittance and
noise referred to the input of the Gaussian channel �the term
�1−T� /T stands for the loss-induced vacuum noise, while �
is the excess noise referred to the input�.

In order to address the security of this protocol, we may,
without loss of generality, assume that Eve holds the purifi-
cation of the quantum state �AB. By measuring their systems,
Bob and Eve then project Alice’s share of the joint pure state
��ABE	 onto another pure state �16�. Applying the Heisenberg
uncertainty relation on the pure state held by Alice �condi-
tioning on Bob and Eve’s measurements�, we have

VXA�EVPA�B � 1, �3�

where XA and PA are the canonically conjugate quadratures
of Alice’s mode and VX�Y is the conditional variance measur-
ing the remaining uncertainty on X after the measurement
of Y,

VX�Y = 
x2	 −

xy	2


y2	
, �4�

expressed in shot-noise units. Equation �3� also has a sym-
metric counterpart that reads

VPA�EVXA�B � 1. �5�

Since we focus on a symmetric noise in x and p, Eqs. �3� and
�5� can be unified into a single uncertainty relation

VA�EVA�B � 1, �6�

where A stands for any quadrature �XA or PA� of Alice’s
mode. This inequality will be used to put a lower bound on
the uncertainty of Eve’s estimate of the key in direct recon-
ciliation �DR�, that is, when the key is made out of Alice’s
data while Bob and Eve compete to estimate it. Similarly, in
reverse reconciliation �RR�, that is, when the key is made out
of Bob’s data while Alice and Eve compete to estimate it,
one can derive a dual inequality

VB�EVB�A � 1, �7�

where B stands for any quadrature of Bob’s mode. This will
be used to put a lower bound on the uncertainty of Eve’s
estimate of the key in RR.

Now, we will derive lower bounds on the secret key rates
using the above uncertainty relations on the variances, simi-
larly as in Ref. �4�. Restricting to individual attacks and one-
way reconciliation, the DR and RR secret key rates for each
of the two quadratures read

Kx or p
DR = H�AM�E� − H�AM�BM� , �8�

Kx or p
RR = H�BM�E� − H�BM�AM� , �9�

where H�.� is the Shannon entropy, and E stands for Eve’s
optimal measurement maximizing her information �which is
not necessarily the same in DR and RR�. Note that we use
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FIG. 1. �Color online� Entanglement-based scheme of the pro-
tocol based on Alice sending coherent states and Bob applying het-
erodyne detection. Alice prepares an EPR state and applies hetero-
dyne detection on one half of it, resulting in �XA

M , PA
M�, while the

other half is sent to Bob. After transmission via the channel, Bob
performs a heterodyne measurement, resulting in �XB

M , PB
M�.
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the variables AM and BM here �not A and B�, since in this
protocol Alice and Bob do not measure one single quadrature
but a pair of conjugate quadratures �AM �BM� stands for the
measurement of one quadrature of mode A �B�, given that the
conjugate quadrature is simultaneously measured�. The total
key rates K�x,p�

DR or K�x,p�
RR derived later on are the sum of the

above expressions for x and p. If we assume that the channel
is Gaussian, we can express the conditional entropies in Eqs.
�8� and �9� in terms of conditional variances, so that the
above Heisenberg inequalities on conditional variances di-
rectly translate into bounds on the secret key rates.

A. Direct reconciliation

The problem of estimating Bob’s uncertainty on Alice’s
measurements AM �that is, XA

M or PA
M knowing that the other

one is also measured� can be reduced to estimating Bob’s
uncertainty on each of the quadratures of mode A �XA , PA�
since Alice’s measurements result from mixing mode A with
vacuum on a balanced beam splitter, see Fig. 1. Using Eqs.
�1� and �4�, one gets

VA�B =
V� + 1

V + �
, �10�

where B stands for the same quadrature of mode B �XB or
PB�. Similarly, using Eq. �4�, and the fact that 
�XB

M�2	
= �1+ 
�XB�2	� /2 and 
XAXB

M	= 
XAXB	 /�2, one gets

VA�BM =
T�V� + 1� + V

T�V + �� + 1
, �11�

which can then be converted into the variance of Bob’s esti-
mate of Alice’s key

VAM�BM =
1

2
�VA�BM + 1� =

1

2
� �V + 1��T�� + 1� + 1�

T�V + �� + 1
� .

�12�

Using VA�E=1/VA�B for the optimal eavesdropping �since Bob
may have performed homodyne detection and measured one
single quadrature�, one gets for Eve’s uncertainty on her es-
timate of Alice’s key

VAM�E =
1

2� 1

VA�B
+ 1� =

1

2
� �V + 1��� + 1�

V� + 1
� . �13�

The secret key rate then reads

K�x,p�
DR = log2� VAM�E

VAM�BM
� = log2� �� + 1��T�V + �� + 1�

�V� + 1��T�� + 1� + 1�� .

�14�

Note that we have a factor of 2 with respect to Eq. �8�
because the key is extracted from both quadratures XA

M

and PA
M.

B. Reverse reconciliation

Similarly, one can show that VB�A=T��+1/V� and VB�AM

=T��+1�, so that the variance of Alice’s estimate of Bob’s
data is

VBM�AM =
1

2
�VB�AM + 1� =

1

2
�T�� + 1� + 1� , �15�

while, using VB�E=1/VB�A �Alice may have performed homo-
dyne instead of heterodyne detection�, one gets for Eve’s
uncertainty

VBM�E =
1

2� 1

VB�A
+ 1� =

1

2
�T�V� + 1� + V

T�V� + 1� � . �16�

The secret key rate then reads

K�x,p�
RR = log2� VBM�E

VBM�AM
� = log2� T�V� + 1� + V

T�V� + 1��T�� + 1� + 1�� .

�17�

We have a factor of 2 with respect to Eq. �9� because the key
is extracted from both quadratures XB

M and PB
M.

III. OPTIMAL GAUSSIAN EAVESDROPPING

The entangling cloner, that is, the optimal attack against
the homodyne-based protocols �7�, is clearly not optimal
here as it allows to extract information about one single
quadrature. We may think of adapting it by applying a het-
erodyne detection on the mode that is entangled with the
mode injected in the line �as well as on the output mode of
Eve’s beamsplitter simulating the losses�. However, this is
equivalent to having a classical source of noise controlled by
Eve, so that the optimal VA�B��E that Eve can reach coincides
with the beamsplitter attack, which does not saturate Eq. �14�
nor Eq. �17� as the excess noise � only affects Alice and Bob
mutual information but does not help Eve to reduce any un-
certainty.

Since the time when the heterodyne-based protocol was
introduced �4�, no attack has been found saturating bounds
�14� and �17�. Logically, two possibilities remain open: �i�
These bounds are tight but the optimal attacks reaching them
remain to be found; �ii� these bounds are not tight and the
�unknown� optimal attacks cannot saturate them. In order to
answer this question, we need to search for the optimal at-
tack against this protocol with respect to all possible �indi-
vidual Gaussian� attacks that Eve can do. Although we are
dealing with an infinite-dimensional Hilbert space, this task
remains tractable because of the fact that Gaussian states and
operations have a simple characterization in terms of first-
and second-order moments of the quadratures. We thus need
to find among all possible linear canonical transformations
the one which optimizes Eve’s information either on Alice’s
data �DR� or on Bob’s data �RR�. Some symmetries also
simplify the solution of this problem. Before searching for
the optimal attack, let us consider these simplifications.
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1. Eve’s Gaussian attack and the number of ancillae

As we restrict Eve’s attacks to Gaussian operations, it is
trivial to see that Eve must apply a Gaussian unitarytransfor-
mation on the mode sent by Alice together with her ancillae,
as shown in Fig. 2. Indeed, applying a Gaussian completely
positive maps instead of a unitary operation �i.e., discarding
some ancillae� can only make Eve loose information on the
secret key. The number of ancillae that Eve needs is deter-
mined as follows. First, it is easy to see that Eve needs at
least two ancillary modes to estimate either Alice’s �DR� or
Bob’s �RR� quadratures, since one is needed to get x, the
other to get p. Let us give an argument why these two ancil-
lary modes are actually sufficient to implement the optimal
attack. In the entanglement-based description, Eve holds the
purification of �AB, and therefore can be restricted to occupy
the same number of modes as �AB, see �8�. One should then
be able to recover the entanglement-based scheme of Fig. 2
by applying a local unitary operation on Eve’s side, since all
purifications are equivalent up to a unitary operation on
Eve’s side.

Thus the optimal Gaussian attack we seek for corre-
sponds, in the Heisenberg picture, to a symplectic transfor-
mation S acting jointly on Alice’s mode B0 and Eve’s ancil-
lary modes E1 and E2, that is

�x̂B, x̂E1
, x̂E2

, p̂B, p̂E1
, p̂E2

�T

= S�x̂B0
, x̂E1

�0�, x̂E2

�0�, p̂B0
, p̂E1

�0�, p̂E2

�0��T, �18�

where the superscript �0� is used to indicate that the corre-
sponding state is the vacuum. Then, Eve’s optimal measure-
ment on her two modes E
E1E2 can be assumed to be a
homodyne measurement on these two modes in order to es-
timate either �xA , pA� in DR or �xB , pB� in RR.

2. Symmetric channel without x-p correlations

The symplectic transformation S can be written without
loss of generality in a block-diagonal form as

S = �Sx 0

0 Sp
� , �19�

where Sx and Sp are related by the relation

Sp = �Sx
T�−1 �20�

in order to preserve the canonical commutation relations. In-
deed, we start with an initial Gaussian state of covariance
matrix �AB0

� 1E1E2
, which is of the same form as Eq. �1�.

More precisely, it is symmetric in x and p and admits no
correlations between x and p. After Eve’s Gaussian opera-
tion, we have a Gaussian state for modes A and B, which, by
Schmidt decomposition, can be purified into a Gaussian
4-mode state by extending the system with modes E1 and E2
�8�. This can be understood by applying a symplectic decom-
position on modes A and B that converts their joint state into
a product of two thermal states. These thermal states can
then be written as the reduction of EPR states, shared with
Eve’s modes E1 and E2. Since this symplectic decomposition
does not mix the x and p quadratures, the covariance matrix
of the 4-mode pure state is again of the same form as Eq. �1�.
Hence the symplectic transformation S applied by the eaves-
dropper does not mix the x and p quadratures. We would like
to stress that this form, Eq. �19�, is not an assumption but
rather a simplification originating from the fact that the chan-
nels of interest effect symmetric uncorrelated noise in x and
p, as mentioned above.

The entry of the matrix �AB
x corresponding to 
x̂B

2	=T�V
+�� provides constraints on the first row of Sx, since we need
to have

x̂B = �T�x̂B0
+ �� cos 	 x̂E1

�0� + �� sin 	 x̂E2

�0�� , �21�

where 	� �0,2
� is a free parameter. Remember that 
x̂B0

2 	
= 
x̂A

2	=V. Thus we can write Sx in general as

Sx = �T�1 �� cos 	 �� sin 	

a b c

r s t
� , �22�

where �a ,b ,c ,r ,s , t��R are six other free parameters. Using
Eq. �20�, we can rewrite Sp as

Sp =
1

d�T �
bt − cs cr − at as − br

���s sin � − t cos �� t − r�� sin � r�� cos � − s

���c cos � − b sin �� a�� sin � − c b − a�� cos �

r� s� t�

� ,
�23�
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FIG. 2. �Color online� Eve’s attack against the protocol based on
Alice sending coherent states and Bob applying heterodyne detec-
tion. Eve performs a unitary operation on her two ancillae E1 and
E2 together with the mode B0 sent by Alice. She then measures x on
one ancilla and p on the other one, in order to estimate simulta-
neously the two conjugate quadratures of Alice �DR� or Bob �RR�.
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where d=det�Sx�. Given the symmetry of the channel, the
entry of �AB

p corresponding to 
p̂B
2	=T�V+�� provides a con-

straint on the first row of Sp, in a similar way as for Sx. This
yields the three conditions

bt − cs = dT ,

cr − at = dT�� cos � ,

as − br = dT�� sin � , �24�

where �� �0,2
� is a free parameter. Finally, due to the
symmetry of the channel in x and p, we consider that Eve’s
optimal attack gives her the same uncertainty in x and p.

A. Direct reconciliation

As before, Eve’s uncertainty on Alice’s measurements
AM 
�XA

M , PA
M� can be calculated from the uncertainty of Eve

on each of the two quadratures of mode A �XA , PA�. We have,
for example, VXA

M�XE1
= 1

2 �VXA�XE1
+1�, and similarly for the p

quadrature. The symmetry of Eve’s information on XA and
PA imposes that

VXA�XE1
= VPA�PE2


 VA�E. �25�

Writing the second-order moments of A and E1,


x̂A
2	 = V , �26�


x̂E1

2 	 = T�a2V + b2 + c2� , �27�


x̂Ax̂E1
	 = a�T
x̂Ax̂B0

	 = a�T�V2 − 1� �28�

and plugging them into Eq. �4�, we obtain

VXA�XE1
=

V +
a2

b2 + c2

V
a2

b2 + c2 + 1

. �29�

Similarly, one has for the p quadrature

VPA�PE2
=

V +
r�2

s�2 + t�2

V
r�2

s�2 + t�2 + 1

. �30�

Finally, as a consequence of Eq. �25�, we can write

VA�E =
V + �

V� + 1
, �31�

where

� 

a2

b2 + c2 =
r�2

s�2 + t�2 . �32�

Given Eq. �21�, we see that � is proportional to the signal-
to-noise ratio of the Alice-to-Eve channel �more precisely,

the latter signal-to-noise ratio equals �V�. Thus, by defini-
tion, ��0. Moreover, we can write in analogy with Eq. �3�
the Heisenberg uncertainty relation

VXA�XE1
VPA�PE2

� 1, �33�

which, together with Eq. �25�, implies that VA�E�1, or,
equivalently, ��1. Note that the Heisenberg-limited attack
in DR corresponds simply to choose �=�.

We will now prove that such a choice is not possible, that
is, it is not consistent with the constraints we have on the
matrices Sx and Sp. In order to further simplify Sx, we intro-
duce the following change of variables:

a = u�� ,

b = u sin 
 ,

c = u cos 
 . �34�

Using the variables r� ,s� , t� as defined in Eq. �23� and the
expression of � in terms of these variables, Eq. �32�, we then
obtain

�� − �

�
�cos2�
 + 	� = �sin�
 + 	� − ����2. �35�

Using the symmetry of the channel, Eq. �24�, and the explicit
expression of d=det Sx, we obtain a second similar equation

�� − �

�
�cos2�
 + 	� = �sin�
 + 	� +

1 − T

T���
�2

. �36�

Expressing the equality between Eqs. �35� and �36� yields
two solutions. The first one, namely ��=−�1−T� /T, is un-
physical since T�1, ��0, and ��0. The second one yields

sin�
 + 	� =
1

2

T�� − �1 − T�
T���

. �37�

Furthermore, injecting Eq. �37� into Eq. �36� gives

cos2�
 + 	� = �1

2

T�� + �1 − T�
T���� − ��

�2

. �38�

Finally, the relation cos2�
+	�+sin2�
+	�=1 provides us
with a second-order equation in �,

T�T�2 + 4��2 − 2�T�T + 1�� + �1 − T�2 = 0 �39�

which always admits two solutions for a given channel �i.e.,
given parameters T and ��,

�± =
�T�T + 1� ± 2�T��T��2 − �1 − T�2�

T�T�2 + 4�
. �40�

Looking at Eq. �31�, we see that minimizing VA�E is
equivalent to maximizing �, that is, choosing �+. Thus Eve’s
minimum uncertainty on Alice’s measurement reads

VAM�E
min =

1

2
�VA�E

min + 1� =
1

2

�V + 1���+ + 1�
V�+ + 1

�41�

and the lower bound on the DR secret key rate reads
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KDR = log2� VAM�E
min

VAM�BM
� = log2� ��+ + 1��T�V + �� + 1�

�V�+ + 1��T�� + 1� + 1�� .

�42�

Interestingly, Eq. �41� is similar to its counterpart for the
Heisenberg-limited attack, Eq. �13�, but with �+ replacing �.
It can easily be checked that �+��, so that the highest pos-
sible signal-to-noise ratio of the Alice-to-Eve channel is
strictly lower than the one deduced from Heisenberg uncer-
tainty relations. Hence Eve’s optimal attack is less powerful
than expected from Heisenberg relations.

This is illustrated in Fig. 3, where the secret key rates
have been plotted for experimental realistic values of V and
�. The lower bound deduced from the Heisenberg relations is

satisfied, but loose with respect to the actual key rate.

B. Reverse reconciliation

Combining Eqs. �18� and �22�, we obtain the second-order
moments of B and E1


x̂B
2	 = T�V + �� , �43�


x̂E1

2 	 = T�a2V + b2 + c2� , �44�


x̂Bx̂E1
	 = T�aV + b�� cos 	 + c�� sin 	� . �45�

This results in

VXB�XE1
= T

�b2 + c2

a2 + � −
2��

a
�b cos 	 + c sin 	��V +

�

a2 �b sin 	 − c cos 	�2

V +
b2 + c2

a2

, �46�

where we have used Eq. �4�. Similarly, using the symmetry of the channel, Eq. �24�, we can write

VPB�PE2
= T

� s�2 + t�2

r�2 + � −
2��

r�
�s� cos � + t� sin ���V +

�

r�2 �s� sin � − t� cos ��2

V +
s�2 + t�2

r�2

. �47�

Imposing the symmetry of Eve’s information on XB and
PB in analogy with Eq. �25�, that is,

VXB�XE1
= VPB�PE2


 VB�E, �48�

gives the three conditions

r�2

s�2 + t�2 =
a2

b2 + c2 = � , �49�

s� cos � + t� sin �

r�
=

b cos 	 + c sin 	

a
=

sin�
 + 	�
��

,

�50�

s� sin � − t� cos �

r�
=

b sin 	 − c cos 	

a
=

cos�
 + 	�
��

.

�51�

Note that condition �49� is exactly the same as in direct rec-
onciliation. Surprisingly, it so happens that this condition is
sufficient to find an expression for VB�E which is the same as
in direct reconciliation, making it unnecessary to use the
other two conditions. Indeed, Eve’s uncertainty on the
quadratures of mode B can be rewritten as

VB�E = T
�1 + �� − 2��� sin�
 + 	��V + � cos2�
 + 	�

V� + 1
.

�52�

Then, using the definition of sin�
+	� coming from Eq. �37�
as well as Eq. �39�, we obtain

cos2�
 + 	� =
�

T�
, �53�

1 + �� − 2��� sin�
 + 	� = 1/T , �54�

which gives VB�E=VA�E. Therefore, just like in direct recon-
ciliation, Eve’s uncertainty on the quadratures of mode B is
minimized by choosing �+,

VB�E
min =

V + �+

V�+ + 1
. �55�

Then, Eve’s uncertainty on Bob’s measured values becomes

VBM�E
min =

1

2
�VB�E

min + 1� =
1

2

�V + 1���+ + 1�
V�+ + 1

, �56�

so that the RR secret key rate reads
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KRR = log2� VBM�E
min

VBM�AM
� = log2� �V + 1���+ + 1�

�V�+ + 1��T�� + 1� + 1�� .

�57�

This rate is illustrated in Fig. 3, where it is compared with
the lower bound deduced from the Heisenberg relations in
RR. We conclude again that the Heisenberg-limited attack is
not reachable.

For illustration, we compare in Fig. 4 the secret key rate
of the coherent-state homodyne-based protocol to that of the
present coherent-state heterodyne-based protocol in direct
and reverse reconciliation �Eqs. �42� and �57��. For realistic
parameters V and �, we notice that the heterodyne-based pro-
tocol always yields higher rates than the homodyne-based
protocol in RR. This also means that the maximum tolerable
excess noise � in RR is higher with the heterodyne-based
protocol regardless the losses. In DR, the heterodyne-based
protocol gives an advantage over the homodyne-based pro-
tocol only for line losses below some threshold. This thresh-
old can be shown to decrease for increasing �, so that the
maximum tolerable noise is actually higher for the
homodyne-based protocol in DR.

IV. OPTICAL SETUP ACHIEVING THE BEST
GAUSSIAN ATTACK

In Sec. III, we have reduced the problem of maximizing
Eve’s information to that of optimizing a single parameter �,
the other parameters remaining free. This implies that the
optical implementation of the best Gaussian attack is not
unique. In this section, we present two particularly interest-
ing examples of such an optical implementation, namely the
teleportation attack and the “feedforward” attack. Note that
the latter attack was also considered in Ref. �4�, where it was
noticed that it curiously does not reach the Heisenberg limit.

A. Teleportation attack

The teleportation attack consists in Eve applying a
continuous-variable quantum teleportation where the input is
Alice’s outgoing mode and the output is given to Bob, as
shown in Fig. 5. Eve extracts information from the outcomes
�XE

M , PE
M� of her Bell measurement performed on Alice’s out-

going mode B0 together with one of the modes �E1�� of an

EPR state. It is easy to see that there are two limiting cases.
If the squeezing factor r of the EPR pair is zero, implying
that E1� is in a vacuum state, then the scheme becomes
equivalent to a heterodyne measurement of B0 by Eve fol-
lowed by the classical preparation of a coherent state �the
vacuum state in mode E2� which is displaced by some amount
depending on XE

M and PE
M�. This situation corresponds to an

entanglement-breaking channel giving no secret key. On the
contrary, if the squeezing factor r is infinite, the teleportation
succeeds perfectly and Eve gets no information at all due to
the infinite noise in the thermal state E1�. This situation cor-
responds to a perfect channel with no losses and no excess
noise �T=1,�=0�. We will now show that for any interme-
diate value of r, such a teleportation attack can be made
optimal.

Since all the involved canonical transformations are sym-
metric in x and p, we will detail the proof for the x quadra-
ture only. Eve starts by preparing two squeezed vacuum
states, mode E2 squeezed among x and mode E1 squeezed
among p �17�,

x̂1 = erx̂1
�0�, �58�
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FIG. 3. Secret key rate of the heterodyne-based protocol as a
function of the line losses for the optimal �solid line� and
Heisenberg-limited �dashed line� attack. The curves are plotted for
experimentally realistic values, V=12 and �=0.01, in direct recon-
ciliation �left panel� or reverse reconciliation �right panel�.
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FIG. 4. Secret key rate as a function of the line losses for the
heterodyne-based �solid line� and homodyne-based �dashed line�
protocols in direct reconciliation �left panel� or reverse reconcilia-
tion �right panel�. We use experimentally realistic values, V=12 and
�=0.01, and consider that Alice sends coherent states in both cases.
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FIG. 5. �Color online� Teleportation attack against the
�entanglement-based scheme of the� Gaussian protocol based on
Alice sending coherent states and Bob applying heterodyne detec-
tion. Eve first generates an EPR pair �E1� ,E2�� by mixing a
x-squeezed vacuum state �E2� with a p-squeezed vacuum state �E1�
at a balanced beamsplitter. Then, she performs a Bell measurement
on Alice’s outgoing mode B0 together with E1�. Depending on the
measurement outcomes �XE

M , PE
M� and the fixed gain gE, she then

displaces mode E2� in x �Dx� and p �Dp�. The resulting state is sent
to Bob. By tuning the squeezing parameter r and the gain gE, Eve
can simulate any Gaussian channel �T ,�� and extract the optimal
amount of information.
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x̂2 = e−rx̂2
�0�, �59�

and mixes them on a balanced beamsplitter, thereby generat-
ing an EPR state

x̂1� = �e−rx̂2
�0� − erx̂1

�0��/�2, �60�

x̂2� = �e−rx̂2
�0� + erx̂1

�0��/�2. �61�

Eve then applies a Bell measurement by mixing X1� and XB0
on a balanced beamsplitter, and measuring x on one output
and p on the other,

x̂E
M =

1
�2

�x̂B0
+ x̂1�� =

1
�2

x̂B0
+

1

2
�e−rx̂2

�0� − erx̂1
�0�� . �62�

Next, Eve displaces her mode E2� by an amount proportional
to the measurement outcome XE

M �multiplied by the classical
gain gE� and sends it to Bob, giving

x̂B = x̂2� + gEx̂E
M =

gE

�2
x̂B0

+
er

�2
�1 −

gE

�2
�x̂1

�0�

+
e−r

�2
�1 +

gE

�2
�x̂2

�0�. �63�

In order to comply with 
x̂B
2	=T�V+��, we need to fix gE and

r in such a way that

gE = �2T , �64�

T� = �1 + T�cosh 2r − 2�T sinh 2r . �65�

1. Direct reconciliation

Writing the second-order moments of x̂A and x̂E
M, namely


x̂A
2	 = V , �66�


�x̂E
M�2	 = �V + cosh 2r�/2, �67�


x̂Ax̂E
M	 = 
xÂx̂B0

	/�2 = ��V2 − 1�/2, �68�

one can show, using Eq. �4�, that Eve’s uncertainty on Alice’s
data is

VA�E =
V cosh 2r + 1

V + cosh 2r
. �69�

By choosing

� =
1

cosh 2r
�70�

this expression for VA�E coincides with Eq. �31�. Combining
Eq. �65� with the relation cosh2 2r−sinh2 2r=1, we see that
� must satisfy the second-order polynomial equation �39�,
whose solution gives the value of � that optimizes Eve’s
information. Equation �39� having two possible solutions �±
generating the same quantum channel �T ,��, we then have
two possible solutions for the squeezing parameter r. Look-
ing at Eq. �70�, we see that the squeezing parameter corre-

sponding to the optimal choice �+ is the lowest of the two
solutions since it corresponds to the minimum added noise
on Eve’s measurement.

2. Reverse reconciliation

Using Eqs. �4�, �65�, and �67�, and


x̂Bx̂E
M	 =

1
�2

�V�T − sinh 2r + �Tcosh 2r� , �71�

one can show that Eve’s uncertainty on each of Bob’s
quadratures reads

VB�E =
V cosh 2r + 1

V + cosh 2r
= VA�E, �72�

implying that the teleportation attack is also optimal �choos-
ing the lowest squeezing parameter� for the reverse reconcili-
ation protocol.

B. Feedforward attack

In the case of a noisy channel with no losses �T=1� and
direct reconciliation, Eve’s optimal teleportation attack is ex-
actly the same scheme as the one proposed in Ref. �9� to
reach an optimal tradeoff between disturbance and state es-
timation for coherent states �when the success of both pro-
cesses is measured using the fidelity�. This is not surprising
since optimally estimating the coherent state sent by Alice
while minimizing its disturbance is exactly what Eve at-
tempts to achieve in her optimal attack in direct reconcilia-
tion. In Ref. �9�, two alternative schemes to the teleportation
reaching the same optimal tradeoff were also presented, the
“feedforward” attack and the asymmetric cloning machine.
Those two schemes can very naturally be extended to our
case �T�1� if we allow for different mean values for the
input and output modes, which gives rise to new optical
schemes for the optimal attack.

For example, it can be checked that Eve can realize an
optimal attack �both in DR and RR� using the “feedforward”
scheme described in Fig. 6 by fixing the parameters of the
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FIG. 6. �Color online� Entanglement based scheme of Eve
“feedforward” attack over the protocol based on Alice sending co-
herent states and Bob applying heterodyne detection. Eve extracts
part of the signal sent by Alice using a beamsplitter �transmittance
G� and applies a heterodyne detection on it �over mode E1�. De-
pending on the measurement result �XE

M , PE
M� times a given fixed

gain gE Eve displaces mode E2 in x �Dx� and p �Dp�. The resulting
state is then sent to Bob. By tuning the transmittance of the beam-
splitter �G� and the gain �gE� Eve can simulate any Gaussian chan-
nel �T ,�� and extract the optimal amount of information.
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beamsplitter transmittance G and the feedforward gain gE as

G =
1 − �+

1 + �+
, �73�

gE = ��T − �G�� 2

1 − G
. �74�

V. CONCLUSION

We have revisited the security of the Gaussian quantum
cryptographic protocol with no basis switching �with Alice
sending coherent states and Bob performing heterodyne mea-
surements� introduced in Ref. �4�. We have considered the
most general Gaussian individual attack against this protocol
by characterizing an arbitrary symplectic transformation and
maximizing Eve’s information over all such transformations.
We have found that, in contrast with all other Gaussian pro-
tocols that had been studied so far, no attack exists that at-
tains the security bounds deduced from the Heisenberg un-
certainty relations, making these bounds unreachable in the
present case. A tight bound was derived, both in direct and
reverse reconciliation, and several explicit optical schemes
that attain this bound have been exhibited. Remarkably, this
makes the coherent-state heterodyne-based Gaussian proto-
col better than what was implicitly assumed in the original
analysis �4�.

We may wonder what is so special about this no-
switching protocol? As a matter of fact, in the two Gaussian

protocols based on homodyne detection, one of the two
quadratures plays a special role, namely the one that is mea-
sured by Bob �provided, in the squeezed-state protocol, that
it is also the one modulated by Alice; otherwise, the instance
is discarded�. The Heisenberg uncertainty relations then ex-
press that any action on this quadrature, which carries the
key, translates into some additional noise on the dual quadra-
ture. Monitoring the noise on this dual quadrature then puts
an upper limit on the information potentially acquired by Eve
on the key-carrying quadrature. This simple and very intui-
tive interpretation fails for the heterodyne-based protocol be-
cause then both quadratures must be treated together �Alice
modulates both quadratures and Bob measures both quadra-
tures�. The security can be viewed as resulting from kind of
an information conservation law through a “fan-out” channel
�leading to both Bob and Eve�, akin to what is observed in
the optimal estimation-vs-disturbance tradeoff for coherent
states �9� or in the asymmetric Gaussian cloning of coherent
states �10�.

Note added. The findings of this paper have also been
obtained simultaneously and independently in �11�.
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