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Measurements transfer information about a system to the apparatus and then, further on, to observers and
�often inadvertently� to the environment. I show that even imperfect copying essential in such situations
restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus
breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred
outcome states emerge as a result. They provide a framework for “wave-packet collapse,” designating terminal
points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum
Darwinism, they are the progenitors of multiple copies spread throughout the environment—the fittest quantum
states that not only survive decoherence, but subvert the environment into carrying information about them—
into becoming a witness.
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I. INTRODUCTION: QUANTUM AXIOMS

The quantum principle of superposition applies to isolated
systems, but is famously violated in the course of measure-
ments: A quantum system can exist in any superposition, but
a measurement forces it to choose from a limited set of out-
comes represented by an orthogonal set of states �1�. In text-
book discussions of quantum theory these states are preas-
signed as “the eigenstates of the measured observable.” They
are the only possible states that can ever be detected �and
therefore prepared� by that measuring device. As Dirac puts
it �2�, “…a measurement always causes the system to jump
into an eigenstate of the dynamical variable that is being
measured….”

I show, using ideas that parallel the no-cloning theorem,
that this restriction �usually imposed “by decree,” by the col-
lapse postulate� can be derived when a transfer of informa-
tion essential for both measurement and decoherence is mod-
eled as a unitary quantum process that leads to records with
predictive significance. This sheds new light on quantum
measurements, on the quantum-classical transition and on
the selection of preferred pointer states by the environment-
induced decoherence �3–6�: It shows that a restriction to a
limited set of orthogonal states �but, of course, not the non-
unitary collapse per se� can be deduced in a setting that does
not assume a priori existence of macroscopic apparatus usu-
ally invoked to define the measured observable �1,2,7�. This
connection between the transfer of information and the se-
lection of preferred states is also of crucial importance for
quantum Darwinism �5�, where the capacity of the environ-
ment to acquire multiple records of selected states of the
system is essential. Resilient states that can withstand moni-
toring by the environment without getting disturbed become
endowed with objective reality: They are simultaneously ac-
cessible to many observers through the imprints they leave in
the environment.

Quantum theory is founded on several simple postulates
�2,5–10�. The first two encapsulate the quantum principle of
superposition and decree unitarity of evolutions. Thus the
axioms �i� The quantum state of a system is represented by

a vector in its Hilbert space and �ii� quantum evolutions are
unitary (e.g., generated by the Schrödinger equation) de-
scribe the mathematical formalism of the theory. To make
contact with the real world one needs to relate abstract uni-
tarily evolving quantum states to experiments. The next pos-
tulate, �iii� immediate repetition of a measurement yields the
same outcome, is the first of the “measurement postulates.” It
is uncontroversial—states of classical systems satisfy it. It
establishes a predictive utility of quantum states that have
already entered through postulate �i�. One can rephrase the
predictability postulate by noting that when a state is known
�for example, because of an earlier measurement�, then one
can choose a measurement that will confirm it but leave it
intact.

These first three postulates indicate no bias—they treat
every state in the Hilbert space of the system on equal foot-
ing. In particular, postulates �i� and �ii� emphasize linearity:
Any superposition of quantum states is a legal quantum state,
and any evolution of such a superposition leads to a super-
position of evolved “ingredients.” By contrast, the last two
postulates, �iv� measurement outcomes are restricted to an
orthonormal set ��sk�� of eigenstates of the measured observ-
able �i.e., measurement does not reveal the state of the sys-
tem because it limits possible outcomes to the preassigned
outcome states� and �v� the probability of finding a given
outcome is pk= �	sk�����2, where ��� is the preexisting state of
the system, are at the heart of the long-standing disputes on
the interpretation of quantum theory �1–10�.

As a consequence of �iv� �the “collapse postulate”� it is
impossible to find out an unknown state of a quantum sys-
tem: In contrast to the egalitarian postulates �i�–�iii�, explicit
symmetry breaking implied by �iv� defies the superposition
principle by allowing only certain states as outcomes. The
aim of this paper is to point out that already the �symmetric
and uncontroversial� postulates �i�–�iii� necessarily imply se-
lection of some preferred set of orthogonal states—that they
impose the broken symmetry that is at the heart of the col-
lapse postulate �iv�—although they stop short of specifying
what this set of outcome states is, and obviously cannot
result in anything explicitly nonunitary �e.g., the actual
“collapse”�.
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II. PREDICTABILITY AND SYMMETRY BREAKING

To see how the symmetry-breaking restriction to a set of
orthonormal outcome states arises from symmetric and un-
controversial assumptions �i�–�iii� consider a system S, to be
measured by an apparatus A. For simplicity, we start with
the smallest possible S with a two-dimensional Hilbert space
HS �although our derivation will be extended to arbitrarily
large systems�. In a two-dimensional HS any state of the
system can be written as a superposition of a pair of linearly
independent states, ��S�=��v�+��w�. This freedom to
choose any two linearly independent �v� and �w� that need
not be orthogonal is guaranteed by the principle of superpo-
sition implicit in postulate �i�. A measurement of S by an
apparatus A that starts in a “ready-to-measure” state �A0�,

��S��A0� = ���v� + ��w���A0� ⇒ ��v��Av� + ��w��Aw� = ��SA� ,

�1�

yields the desired information transfer from S to A:
The state of A now contains a record of S. Above we
assumed postulate �iii� �there are states that are left intact,
�v��A0�→ �v��Av�, �w��A0�→ �w��Aw�� and linearity that fol-
lows from postulate �ii�. We have also recognized that the
state of a composite quantum system �here SA� is a vector in
the tensor product of constituent Hilbert spaces �i.e., has a
form of Eq. �1��, an observation often regarded as an addi-
tional “complexity postulate �o�.”

The norm of the state of the composite system must be
preserved: Postulate �i� demands it �Hilbert space is a
normed linear space�, and postulate �ii� ensures that this de-
mand is met. Thus, simple algebra and the recognition that
	A0��A0�= 	Av��Av�= 	Aw��Aw�=1 yields

	�S���S� − 	�SA���SA� = 2 Re �*�	v��w��1 − 	Av��Aw�� = 0.

�2a�

Equation �2a� involves the real part only, but must hold for
arbitrary relative phase between � and �. This leads to

	v��w��1 − 	Av��Aw�� = 0. �2b�

This equality is the basis for our further discussion.
Depending on the overlap 	v��w� there are two possibili-

ties. Let us first suppose that 	v��w��0 �but is otherwise
arbitrary�. In this case one is forced to conclude that the state
of A cannot be affected by the process above. That is, the
transfer of information from S to A must have failed com-
pletely, since 	Av��Aw�=1 must hold: The apparatus can bear
no imprint that distinguishes between the components of the
superposition ��S�—the prospective outcome states of the
system.

The second possibility is that 	v��w�=0. This allows for an
arbitrary 	Av��Aw�, including a perfect record, 	Av��Aw�=0.
Thus, outcome states �v� and �w� must be orthogonal if—in
accordance with postulate �iii�—they are to survive intact a
successful information transfer in general or a quantum mea-
surement in particular, so that the immediate remeasurement
can yield the same result. The same derivation can be carried
out for S with a Hilbert space of dimension N starting with
a system state vector ��S�=
k=1

N �k�sk�. As before, a priori

the set of basis states ��sk�� need not be orthogonal, but only
linearly independent.

The simple derivation above leads to a very decisive con-
clusion: Orthogonality of outcome states of the system is
absolutely essential for them to exert distinct influences—to
imprint even a minute difference—on the state of any other
system while retaining their identity: The overlap 	v��w�
must be 0 exactly for 	Av��Aw� to differ from unity. Thus, also
sloppy and accidental information transfers �e.g., to the en-
vironment during decoherence �3–6�� will define preferred
sets of mutually orthogonal states provided that the crucial
predictability demand of postulate �iii� is met. This “had to
be so:” When an imperfect measurement can be repeated
many times without affecting the original, collective records
will come arbitrarily close to orthogonality.

Selection of an orthonormal basis induced by information
transfer—the need for a spontaneous symmetry breaking that
arises from the otherwise symmetric axioms �i�—�iii�—is a
general and intriguing result. Our derivation parallels the
proof of the no-cloning theorem �11–13�: We have employed
the assumption of linearity and started with Eq. �1�, as does
the proof of no-cloning in Refs. �11,12�. Moreover, linearity
and preservation of the norm follow from the unitarity pos-
tulate �ii� used in the alternative proof of no-cloning �see
Ref. �13�; the only difference is that when copies are
“clones” 	v��w�= 	Av��Aw� in Eq. �2b��.

Similar reasoning appears in a proof of the security of
cryptographic protocols �14�. There, however, the focus is on
the ability to detect eavesdropper through perturbations her
measurements inflict on the transmitted nonorthogonal states,
which is rather different from the questions considered here.
Nevertheless, connections between quantum prohibition on
cloning, information gain and disturbance trade-off �exem-
plified by Ref. �14��, and our proof of orthogonality of out-
come states are hard to miss. However, the implications we
are led to are quite different.

The scope of our result is closer to the study of measure-
ments due to Wigner �7�. He argued that record states of a
classical apparatus must be orthogonal. He inferred this or-
thogonality from the “Copenhagen assumption”—that an ap-
paratus must be classical �1�—and translated classical distin-
guishability of pointer positions into their orthogonality—
into �	Av��Aw��=0. With the additional assumption of real
eigenvalues, Wigner concluded that observables must corre-
spond to self-adjoint operators. We did not use such a strong
“Copenhagen-motivated” assumption—�	Av��Aw���1 suf-
fices to establish our result. Therefore, when we assume that
eigenvalues should be real, the Hermitian nature of observ-
ables immediately follows from axioms �i�–�iii�, without any
need to appeal to the classicality of measuring devices.

The reader may be concerned about idealizations we have
made to represent information transfer by Eq. �1�. We now
briefly explore these assumptions, see how they can be re-
laxed, and consider what this implies about terminal states
for “quantum jumps.”

Let us start from the most obvious: The apparatus �or the
environment monitoring the system in course of decoher-
ence� is usually not in a pure state at the beginning, so one
should represent it with a density matrix, �0

A=
kpk�ak�	ak�.
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To deal with this we note that such a mixed state can be
always “purified” by allowing A to have a “ghost partner”
A�, so that the combined initial state of the two is given by
�A0�=
k�k�a0,k��a0,k� � in the obvious notation, and with ��k�2
= pk. Orthogonality of the outcome states can be now estab-
lished starting with the equation

	v��w��1 − 	Av��Aw�� = 0. �2c�

As before, this leads to the conclusion that �v� and �w� �or
any two outcome states that satisfy postulates �i�–�iii�� must
be orthogonal if the information transfer is to succeed.
Therefore, relaxing this assumption does not change our con-
clusions. This is also the case when the environment E is
influenced directly by S.

In particular, we did not invoke postulate �v�—Born’s
rule—which is necessary to attribute physical significance to
reduced density matrices employed in the study of decoher-
ence �3–6�. This is obvious when A is pure. Still, one might
worry that “purification” relating a mixed state of A to a
pure state of enlarged AA� uses Born’s rule “in the reverse
direction.” This is “only mathematics” �pk need not be re-
garded as probabilities�, and it is not essential: It is easy to
see that any prescription relating pure states of AA� to
mixed states of A will do, as long as it is based on a one-to-
one correspondence between eigenvalues of the density op-
erator of A and absolute values of amplitudes in the en-
tangled state of AA�, and as long as it is used in both
directions. So even ��k�2= pk �probability interpretation not-
withstanding� is not needed.

This independence of unitary symmetry breaking respon-
sible for quantum jumps from Born’s rule is especially im-
portant when one aims to establish the extent to which “con-
troversial” postulates �iv� and �v� follow from the generally
accepted axioms �o�–�iii�. In this context it is reassuring that
the proof can be carried out without “purification.” To this
end, we note that unitary evolution preserves scalar product
of operators defined as Tr ��̃. Therefore, in the obvious no-
tation, Tr �v�	v��A0

�w�	w��A0
=Tr �v�	v��Av

�w�	w��Aw
. Thus,

�	v��w��2�Tr �A0

2 − Tr �Av
�Aw

� = 0. �2d�

So either 	v �w�=0 �we recover orthogonality of outcomes�
or Tr �A0

2 =Tr �Av
�Aw

. This last equality holds if and only if
�Av

=�Aw
. This is because �A0

=
kpk�ak0�	ak0�, as well as
�Av

=
kpk�akv�	akv�, and �Aw
=
kpk�akw�	akw� have the same

eigenvalues �pk�—they are related to one another by a uni-
tary evolution. Therefore, only their eigenvectors can differ.
But then Tr��A0

2 –�Av
�Aw

�= 1
2Tr��Av

–�Aw
�2, which is non-

negative and vanishes iff �Av
=�Aw

—only when there is no
record left in A.

This establishes that only orthogonal states can leave im-
prints on other systems without getting disrupted also in the
case when the state of that apparatus or the environment is
mixed and represented by a Hermitian operator. Born’s rule
is not invoked: We make no claim that pk’s are probabilities
or even relate them to amplitudes. We only recognize
that—in addition to pure states given by state vectors—there
are mixed states given by Hermitian operators. There is no
appeal to the physical significance of reduced density matri-

ces. The whole proof parallels our original pure state case
step by step. And, as before, it leads to the special set of
orthogonal stable states, reminiscent of pointer states. It is
good to derive them without any appeal to probabilities: One
can then use them—without any danger of circularity—as
“events” while deriving Born’s rule.

On the other hand, we cannot really drop any of the first
three postulates. This is obvious for the superposition prin-
ciple of postulate �i� and for the unitarity postulate �ii�—they
define quantum theory �although �ii� could be weakened,
e.g., by allowing antilinear and antiunitary evolutions�. One
can, however, relax the demands of postulate �iii�. It is one of
the standard axioms, and, in principle, its demands can be
always met. Moreover, the ability to reconfirm outcomes of
measurements encapsulates predictability that is essential to
introduce the very concept of a “state” to describe S. So it is
appropriate to rely on �iii� in a discussion of quantum foun-
dations. However, its central demand—that measurements
should not perturb the measured system—is only rarely met
in laboratory experiments. It is therefore interesting to con-
sider more general measurement schemes—e.g.,

���v� + ��w���A0� ⇒ ��ṽ��Av� + ��w̃��Aw� = ��̃SA� . �3�

When �ṽ� and �w̃� are related with their progenitors by a
transformation that preserves scalar product �e.g., by a dy-
namical evolution in a closed system� proof of orthogonality
goes through unimpeded. Both unitary and antiunitary trans-
formations are in this class. We can also imagine situations
when this is not the case, and 	v �w�� 	ṽ � w̃�. An extreme
example of this arises when the state of the measured system
retains no memory of what it was beforehand �e.g., �v�⇒ �0�,
�w�⇒ �0��. Then the apparatus can �and, indeed, by unitarity,
has to� “inherit” the information that was contained in the
state of the system. Clearly, the need for orthogonality of
outcomes disappears. Of course, such measurements do not
fulfill axiom �iii�—they are not repeatable. An example of
this situation is encountered in quantum optics. Photons are
usually absorbed by detectors, and coherent states �which are
not orthogonal� are the outcome states.

It is also interesting to consider sequences of information
transfers:

�v��A0��B0� ¯ �E0� ⇒ �ṽ��Av��B0� ¯ �E0�

⇒ ¯ ⇒ �ṽ��Ãv��B̃v� ¯ �Ev� , �4a�

�w��A0��B0� ¯ �E0� ⇒ �w̃��Aw��B0� ¯ �E0�

⇒ ¯ ⇒ �w̃��Ãw��B̃w� ¯ �Ew� . �4b�

Such “von Neumann chains” �10� appear in quantum mea-
surements, environment-induced decoherence, amplification,
and in quantum Darwinism. As information is passed along
this chain, links can be perturbed �as indicated by tilde�.
Unitarity implies that, at each stage, products of overlaps
must be the same,

	v��w� = 	ṽ��w̃�	Ãv��Ãw�	B̃v��B̃w� ¯ 	Ev��Ew� . �5�

When a logarithm of both side is taken,
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ln�	v��w��2 = ln�	ṽ��w̃��2 + ln�	Ãv��Ãw��2 + ln�	B̃v��B̃w��2 + ¯

+ ln�	Ev��Ew��2. �6�

Therefore, when 	v �w��0, as the information about the out-
come is passed along the two von Neumann chains, the qual-
ity of the records must suffer: The sum of logarithms above
must equal ln�	v �w��2, and the overlap of the two states is a
measure of their distinguishability. For orthogonal states
there is no need for such deterioration of the quality of
records, as ln�	v �w��2=−�, so arbitrarily many orthogonal
records can be made.

III. DISCUSSION

Selection of a preferred basis implied by postulates �i�–
�iii� brings to mind einselection—the choice of preferred
pointer states in decoherence �15�. Moreover, amplification is
precisely such a multiplication of records. Quantum Darwin-
ism �5,16,17� is based on the observation that decoherence
typically leads to amplification. The main difference between
the above discussion and einselection is the point of depar-
ture: Our results follow from very basic assumptions and
lead to very general conclusions. Moreover, we only estab-
lish that some orthonormal basis is needed to define measure-
ment outcomes, while einselection shows what specific
pointer basis will emerge given, e.g., the coupling with the
environment.

Note that such pointer states einselected for their resil-
ience �in accordance with the original definition �15� or with
its generalization in terms of the predictability sieve �5,19��
are not guaranteed to be the eigenstates of the reduced
density matrix �S=TrE��SE�	�SE� of the system, where
��SE�=��v��	v�+��w��	w� by analogy with Eqs. �1� and �3�.
This is easy to see: States that are left unperturbed by the
information transfer will coincide with the Schmidt states of
��SE� �which are on the diagonal of �S� only when their
copies in the environment are perfect—only when scalar
products 		v �	w� of the corresponding “record states”
vanish.

We take this to mean that only in that case can one safely
attribute the usual probability interpretation to events associ-
ated with pointer states �22,23�. This can be illustrated in a
setting where the system S is first entangled with the appa-
ratus and then A is decohered by its environment. Orthogo-
nality that is implied by the resilience of pointer states in
spite of the immersion of A in E is then imposed on the
pointer states of the apparatus �so that they can retain mea-
surement records�. Decoherence will suppress off-diagonal
terms representing quantum coherences between records
stored in pointer states �15�. This allows for the description
of, e.g., AS correlations in terms of classical probabilities, as
is indicated by the vanishing of quantum discord �18�—of
the difference between two classically equivalent definitions
of mutual information that arises in quantum setting.

Resilience of pointer states is especially important in the
“environment as a witness” paradigm �5,16,17� based on rec-
ognition of the indirect manner used by the real world ob-
servers �such as the reader of this text� to acquire informa-

tion. Such an observer does not perform direct
measurements—the reader is not directly interacting with
this text. Rather, he or she acquires information by intercept-
ing a small fraction of the photon environment that was emit-
ted by �or scattered from� the text appearing on the computer
screen �or printed on a sheet of paper�. Thus, von Neumann’s
model of direct measurement �10� involving a quantum sys-
tem and isolated quantum apparatus is a gross oversimplifi-
cation. Even inclusion of the environment to account for de-
coherence �clearly a step in the right direction� does not
capture the essential role of E for the transition from quan-
tum to classical: Environment is not just a “garbage dis-
posal” for the unwanted quantum coherence, but a commu-
nication channel and a witness to the state of the system.
Observers acquire their information about the universe by
intercepting fragments of E.

Quantum Darwinism—proliferation of selected informa-
tion about the system throughout the environment—is a fre-
quent byproduct of decoherence. Decoherence is caused by
monitoring of the system by its environment. Quantum Dar-
winism leads to a deposition of redundant records—multiple
“copies” of the selected states of the system. And only states
that survive this monitoring intact can lead to such redundant
imprinting in the environment. The existence of multiple
records accounts for the objective nature of pointer observ-
ables and explains �through arguments put forward else-
where �5,16,17,22�� why superpositions of pointer states are
inaccessible. Exploring these connections promises to be
fruitful and is especially relevant in the context of interpre-
tations of quantum mechanics that do not invoke explicit
“collapse” �20–22�.

In the presence of einselection the reduced density matrix
is locally equivalent to a probability distribution of events
defined by pointer states: Local observers cannot tell when
such a mixture represents a state that is already known to
someone else �and in that sense definite� or when it is a part
of a larger entangled whole �and, hence, unknown in prin-
ciple to anyone �22,23��. This “quantum principle of local
equivalence” can be compared to the famous equivalence of
the gravitational pull and bona fide acceleration: When it is
locally impossible to distinguish two globally distinct situa-
tions �e.g., speeding up in a rocket and being at rest near a
mass�, such local symmetry implies equivalence of all local
physical consequences.

There is a different setting in which symmetric assump-
tions lead to asymmetric outcomes: In symmetry breaking
phase transitions, a symmetric initial state and a symmetry-
preserving equation lead to a configuration that breaks that
symmetry. In thermodynamic transitions this choice can be
attributed to thermal fluctuations. In quantum phase transi-
tions spontaneous symmetry breaking is sometimes blamed
on “quantum fluctuations,” but this is a meaningless state-
ment. Classical �e.g., thermal� fluctuations can break the
symmetry of the problem, so in an ensemble of thermody-
namic systems average over all possible fluctuations can be
symmetric, but each member can be a subject to an “asym-
metric” fluctuation. By contrast, “quantum noise� is a sym-
metric superposition of all possibilities, so choice cannot be
explained any more than “collapse”—selection of a specific
outcome—can be explained by postulates �i�–�iii�.
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In quantum phase transitions—e.g., in quantum Ising
model �Ref. �24��, where the decrease of external bias leads
from a unique polarized state �→→→→→→…� aligned
with a bias field to two “ferromagnetic” alternatives selected
by the Ising coupling, �↑↑↑↑↑↑↑↑…� and �↓↓↓↓↓↓↓↓…�—the
true ground state is degenerate. Any superposition of these
two alternatives will do for an infinite system, although in a
finite case symmetric �↑↑↑↑↑↑↑↑…�
�↓↓↓↓↓↓↓↓…� is ener-
getically favored.

Our analysis of symmetry breaking—the essence of the
collapse postulate �iv�—fits a similar framework. Postulates
�i�–�iii�, when used to express information transfer, imply
symmetry breaking: They show that many copies can be
made, but only of a certain �orthogonal� subset of all possible
states in the Hilbert space. These alternatives provide a
“menu”—a set of choices—but �as a consequence of linear-
ity implied by postulate �ii�� quantum theory stops short of
selecting any one of them.

Observer who is local—who can access only a part of the
whole system—will only be able to distinguish between the
broken symmetry vacua: Starting from any ���
=��↑↑↑↑↑↑↑↑ . . . �+��↓↓↓↓↓↓↓↓ . . . �, measurements that ac-
cess less than all of the spins will only be able to correlate
his records to �↑↑↑↑↑↑↑↑…� or �↓↓↓↓↓↓↓↓…�, one of the two
broken symmetry states. The global state can be detected
only by a global observer—someone who foregoes all local
measurements, and makes the right measurement of the
whole—measurement of an observable with eigenstate ���.
Other measurements do not commute with ���	��. Therefore,
they “reprepare” the global state.

Similar conclusions hold in the less ordered but qualita-
tively similar case of branching states �17�, e.g., ���
=��v��	v

�1���	v
�2�� . . . �	v

�n��+��w��	w
�1���	w

�2�� . . . �	w
�n��. Such states

arise naturally �e.g., via Eq. �1�� in the course of unitary
evolutions that lead to decoherence �5,16,17,22�. Differences
between ��� and ��� are merely quantitative. For instance, in
���, the “copies” deposited in the subenvironments will be
generally imperfect, so it will take more measurements to
find out the branch. Moreover, information will often spread
beyond the primary environment—for instance, information
about text printed on a page may reside both in the photon
environment �in an easy to extract form� and in the scattered
air molecules �where it is scrambled by scattering�. This may
affect the ease with which one can extract information about
the “system of interest” from these two environments, but it
does not change our basic conclusion: The essence of the
controversial collapse postulate �iv�—symmetry breaking
that makes it impossible to detect an unknown preexisting
quantum state—arises from the uncontroversial and gener-
ally accepted quantum postulates �principle of superposition,
unitarity of evolutions, and predictability� in a manner that
settles much of the long-standing confusion about the role
and origin of “quantum jumps” and inevitability of “col-
lapse” in quantum measurements.
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