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We investigated Berry’s phase for noncyclic evolution using the rotation of a polarization azimuth of linearly
polarized light in a partially wound optical fiber over the surface of a cylinder. Using a rotation gauge around
the rotation axis, the observed rotation of the polarization azimuth corresponds to the area of a spherical
rectangle over the surface enclosed by the contour C of actual evolution, a large circle on the equator, and a
longitudinal line connecting them, whereas the rotation of the polar gauge encloses a spherical triangle con-
necting the zenith of the sphere. The observed values were converted to Berry’s phase by transformation from
the rotation gauge to the geodesic gauge. Consequently, we could confirm that Berry’s phase for a noncyclic
evolution is given by the geodesic rule proposed by Samuel and Bhandari.
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I. INTRODUCTION

In 1984, Berry predicted that a quantum system acquires a
geometrical phase, in addition to a dynamical phase, if the
environment or the Hamiltonian returns to its initial state
adiabatically �1�. His idea was that if a spinning particle with
a spin eigenvalue s is in a magnetic field B, which is slowly
changed around a circuit on the sphere of direction, then at
the end of circuit, the wave function of the spin acquires a
geometric phase equal to s�, where � is the solid angle
subtended by the circuit. This cyclic Berry’s phase studied
and demonstrated in several physical systems such as polar-
ized light in an optical fiber �2�, neutron spins in a helically
wound magnetic field �3�, the nuclear quadrupole resonance
of a rotating crystal �4�, and so on �5�. Typically, most of
them are classified into two kinds of topological phases. The
one is a cycle of changes in the direction of a spinning par-
ticle or of propagation of a beam of light �the spin-
redirection phase�, such as Berry’s proposal. The other one is
a cycle of the SU�2� evolution of the two-state system on the
Bloch sphere or polarization of a light on the Poincare sphere
�Pancharatnam phase �6��.

Since the discovery of a geometric effect, Berry’s phase
has been intensively investigated and generalized to nonadia-
batic evolution �7�. In 1988, Wu and Li pointed out the ef-
fects of quantum adiabatic phase for noncyclic evolution and
proposed to test such an effect in muon spin resonance �8�.
At the same time, Samuel and Bhandari proposed that Ber-
ry’s phase appears in a more general context, such as a non-
cyclic or nonunitary evolution �9�. They pointed out that the
geometrical phase shift � between the initial state and the
final state can be expressed as a line integral where the con-
tour C is given by the actual evolution from the initial state
to the final state and back along any geodesic curve joining
the final state to the initial state. In 1990, Weinfurter and
Badurek reported the first measurement of Berry’s phase for
partial cycles with polarized neutrons and observed a linear
increase in Berry’s phase shift with rotation angle �10�. How-
ever, Wagh and Rakhecha indicated that this result was in-
correct and proposed correct methods of measuring for a

noncyclic SU�2� evolution with an interferometry �11� or
with a polarimetry �12�. In a noncyclic SU�2� evolution, am-
plitude and phase of interference signal must be determined
under an additive dynamical phase. Indeed, they demon-
strated noncyclic phases experimentally using neutron inter-
ferometer �13�, although it was followed by a comment and
reply �14,15�. Recently, Filipp et al. have succeeded to mea-
sure the noncyclic phase due to spatial evolution in a neutron
interferometer �16� and Klepp et al. have measured for
mixed state SU�2� evolution in neutron polarimetry �17�.
Like this, the noncyclic SU�2� evolution has been investi-
gated experimentally without ambiguity. However, the non-
cyclic evolution for the spin-redirection phase has not yet
been verified experimentally, except for the case of a half
cycle �18�.

II. NONCYCLIC SPIN-REDIRECTION PHASE IN OPTICS

A number of manifestations of the geometric phase occur
in optics and was summarized in review papers by Bhandari
�19�, Hariharan �20�, and so on. In optics, there are also two
types of Berry’s phase. The spin-redirection phase in photon
was first found by Chiao et al. skillfully by rotating the
propagation direction of the photon in 1986 �2,21�. They
examined a linearly polarized laser beam injected into a
single helically wound optical fiber on a cylinder with a uni-
form pitch angle � of the helix. The continuum trace of the
photon in the fiber is converted to a rotation of the propaga-
tion direction of the light over a cone of angle � about the
polar axis. The linearly polarized beam is composed of the
right-handed circularly polarized light and the left-handed
circularly polarized light. After the direction of the optical
beam is rotated by a whole turn, Berry’s phase for right-
handed circularly polarized light is given by

�+ = − 2��1 − cos �� = − ��C� , �1�

while that for left-handed circularly polarized light is given
by �−=−�+, whose size corresponds to the solid angle �
subtended by the direction on the sphere of direction of light.
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Therefore, the resultant polarization direction of light is ro-
tated by �+. The propagation directions of the input and
output of the fiber were kept identical and the polarization
direction was measured at the input and output points using
the same gauge, which was transported parallel from the ini-
tial point to the final point. They verified that the measured
angle of rotation of linearly polarized light is in a good
agreement with the solid angle in the momentum space.

Using a linearly polarized light system, it is well known
that Berry’s phase can be measured free from dynamical
phase shift �21,22�. Here, we shall treat Berry’s phase for
noncyclic rotation of the propagation direction of the photon.
Figure 1 shows a map of the propagation direction of light
rotating over a cone of polar angle � for the partial angle �
on a sphere of propagation direction. The phase shift � ob-
served between the initial and the final states differs depend-
ing on the gauge, i.e., �=�−�G, where �G is a parameter
depending on the gauge. However, Samuel and Bhandari
pointed out that the geometrical phase shift � between the
initial state and the final state can be expressed as a line
integral where the contour C is given by the actual evolution
from the initial state to the final state and back along any
geodesic curve joining the final state to the initial state �9�.

Then, � is clearly a gauge-invariant quantity and � is mea-
surable. Thus, the solid angle can be expressed by the area of
the foliage, which is enclosed by the locus of rotation and the
geodesic rule. Consequently, Berry’s phase is given by

���,�� = − m�2 sin−1� sin��/2�
�1 + tan2� cos2��/2�

� − � cos � , 0 	 � 	 �

2	� − sin−1� sin��/2�
�1 + tan2� cos2��/2�

�
 − � cos � , � 	 � 	 2� .� �2�

However, it will be difficult experimentally to define geode-
sic gauges on the cylinder at the initial and final points of the
fiber in order to measure the change in polarization direction.
Kwon et al. measured only Berry’s phase for a half-cycle by
use of a half-turn optical fiber �18�. They defined the solid
angle for a half-cycle path as an area subtended by connect-
ing the initial and the final points by a great circle passing
through the pole. They confirmed experimentally this phase
change, but there was no definite description on their gauge
used to measure the rotation of the polarization direction in
their paper.

Recently, we measured the spin-redirection phase for at-
oms with a magnetic quantum number of m using a polarized
atom interferometer, but the observed phase shift was in pro-
portion to the rotation angle of the magnetic field �23�. In the
present study, we aimed to confirm the geodesic rule for a
partial turn pointed out by Samuel and Bhandari �9�, using
polarized light in a single-mode fiber system similar to that
used by Chiao et al. �2�, except that the fiber was wound
with an angle � of the helix on a cylinder for a partial turn of
a rotation angle �. To measure the polarization azimuth of
linearly polarized light as a geodesic rule, our strategy is to
use a conventional rotating gauge about the rotation axis or a
polar gauge fixed on the point of pole of the rotation axis,

instead of using the geodesic gauge on a cylinder. The ob-
served changes in polarization direction, which are depen-
dent on the gauge, were converted to the phase shift mea-
sured using a geodesic gauge. Then, the noncyclic spin-
redirection phase was obtained indirectly.

III. DEFINITION OF GAUGE

In order to measure the rotation angle of linear polariza-
tion for a partial cycle, the frame of reference for each end of
the fiber has to be fixed beforehand. In Fig. 1, we assume
that a unit vector for the propagation direction of the light is
k. In general, for each k, we must define two basis vectors
e1�k� and e2�k�, which are orthogonal to each other and to k.
These basis vectors can be used to define the direction of
polarization at each end. We assume that the polarization of
the incident light beam kin is ein=e1�kin�. The polarization
vector of the output beam kout is represented as

eout = �cos ��e1�kout� + �sin ��e2�kout� , �3�

where the rotation angle between vectors eout and e1 �kout� is
�. Note that the rotation angle depends on the choice of the
frame of reference except in the case of a closed cycle, where
the input and output frames coincide.
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FIG. 1. Sphere of the propagation direction of the light k. k
rotates from kin�A� to kout�B� with a fixed angle � about polar axis
during a partial angle �. P is the zenith of the sphere. C and D are
cross points where longitude intersects the equator. e1 and e2 are
two basis vectors of the rotation gauge. e1� and e2� are those of the
polar gauge. eg1 and eg2 are those of the geodesic gauge.
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We assume �k � =1 and represent it using a polar coordi-
nate system such as k= �� ,��. A straight way of assigning
basis vectors is

e1�k� =
�

��
k, e2�k� =

1

sin �

�

��
k . �4�

We call this assignment the “rotating gauge.” We can also
define another gauge called the “polar gauge” as

e1��k� = �cos ��e1�k� − �sin ��e2�k� ,

e2��k� = �sin ��e1�k� − �cos ��e2�k� . �5�

IV. EXPERIMENT

The experimental setup is schematically shown in Fig. 2.
A conventional single-mode fiber was wound smoothly on
the cylinder with a uniform helix �, which is the angle be-
tween the axis of the local fiber and the axis of the helix. The
radius of the cylinder is 8.8 cm. Suppose that the cylinder is
placed vertically. The fiber enters the cylinder at the initial
point A from a tangential direction to the surface of the cyl-
inder, is wound for an angle � projected on a horizontal
cross section of the cylinder �corresponding to an equator
plane in the sphere of the propagation direction�, and exits
the cylinder in a tangential direction at the final point B, as
shown in Fig. 2. A He-Ne laser with linearly polarized light
was used to measure the rotation of the polarization in the
wound fiber. The inclinations of the fiber at the input and
output points, �0 were kept identical in their tangential
planes.

The following three cases were studied: �i� �0=� /2; per-
pendicular to the rotation axis �equator plane�, �ii� �0=0;
parallel to the rotation axis, and �iii� �0=�; a straight line.
Except for case �ii�, the coordinate used to measure the po-
larization azimuth cannot be transported in a straight line
from A to B without rotation around the rotation axis. There-
fore, a simple rotation gauge was used. The e3 axis of the
gauge used was defined to be the direction of the propagation

of the light, i.e., the direction of the fiber, at the initial or
final point, the e1 axis is in the tangential plane and the
e2-axis was defined to be the line connecting the initial or
final point to the center of the cylinder on the horizontal
plane. At the initial point, the polarization azimuth of the
linearly polarized light was set to be the e1 axis. The fiber
was wound in a right-handed ��
0� or left-handed ���0�
direction as it moved to the top of the cylinder. Then, the
rotation angle of the polarization azimuth � was assumed to
be positive when it rotated from the e1 axis to the e2 axis at
the final point and was measured with an uncertainty of
about ±0.05 rad. Before the measurement of the partial rota-
tion, we examined the cyclic evolution of a whole turn and
ascertained that the measured rotation angle of the polariza-
tion azimuth was consistent within 3% of the solid angle of
2��1−cos ��.

V. RESULTS AND DISCUSSION

Figure 3 shows the rotation angle of the polarization azi-
muths versus cos � measured for case �i�. Except for the
rotation on a large circle of the globe ��=� /2�, the polariza-
tion azimuth varies linearly with cos �, and its absolute slope
increases with the rotation angle �. These results could be
described accurately by straight lines of the form �
=� cos � �solid lines�. This fact can be explained by assum-
ing that the rotation gauge encloses a spherical rectangle
ABCD on the spherical surface in the propagation direction
�see Fig. 1�, whose solid angle equals � cos � if C and D are
the points where longitudes through A and B intersect the
equator of the direction sphere, respectively. These opera-
tions are carried out by smoothly bending the fiber from � to
� /2 at A or B. Finally, the coordinates form a closed loop.
Furthermore, the experimental results of cases �ii� and �iii�
were the same as those of case �i� when we used the same
gauge. These results mean that the rotation angle of the po-
larization azimuth obtained by the rotation gauge is the area
of a spherical rectangle ABCD whether or not the coordinates
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FIG. 2. Experimental setup. A single-mode fiber was wound on
the cylinder from A to B with a uniform helix � for angle of �.
Before the input and after the output, the direction of the fiber in the
tangential plane is �i� �0=� /2, �ii� �0=0, and �iii� �0=�. e1 and e2

are two basis vectors of the rotation gauge. e1� and e2� are those of
the polar gauge.
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FIG. 3. Rotation angle of the polarization azimuth of the fiber
with �0=� /2 measured by a rotation gauge as a function of cos �
for various �. Uncertainty of each data is almost the same as the
symbol size. Solid lines show �=� cos �.
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bend at A or B. Thus, we conclude that the rotation gauge
measures the area of the spherical rectangle enclosed by the
actual evolution from the initial state to the final state and
back along a large circle of the equator joining the final and
initial states.

In the case of �ii�, we measured the rotation of the polar-
ization azimuth using the polar gauge. The coordinates at the
initial point were defined as before, but the coordinates were
transported parallel to the final point, so that the directions of
the three axes were preserved in this case. The results mea-
sured using this gauge are shown in Fig. 4. The number of
observed rotations of the polarization azimuth for various
values of ��0 decreases with cos � and converges to zero at
cos �=1. This behavior is accurately well described by lines
�=−��1−cos ��, which are shown in Fig. 4 as solid lines.
This fact shows that this polar gauge encloses a spherical
triangle ABP on the sphere, where P denotes the zenith of the
sphere. We can easily understand that the present gauge is
the fixed gauge at P or at the center of the sphere. At the final
point, the e1 axis of the rotation gauge has rotated � from
that of the fixed gauge. Then, the observed rotation angle of
the polarization azimuth has to be converted from � cos � to
−��1−cos �� by subtracting �. The results in Figs. 3 and 4
verify this gauge transformation.

Finally, we try to transform the rotation gauge to the geo-
desic gauge. The coordinates of the rotation gauge defined on
the cylinder in case �iii� are given in the sphere of the light
direction, together with coordinates at the initial and final
positions of the geodesic gauge, as shown in Fig. 1. At the
initial point, the e3 axes of both gauges are in the same
direction, but the e1 and e2 axes of the rotation gauge are
different from the eg1 and eg2 axes of the geodesic gauge. We
assume that the eg1 axis rotates by � from the e1 axis. Simi-
larly, the e1 axis rotates by � from the eg1 axis of the geode-
sic gauge at the final point. The eg1 or eg2 axis of the geode-
sic gauge must be preserved in the plane formed by the
geodesic line and the center of the sphere. Here, we assumed
it was the eg2 axis. Then, the rotation of the polarization

azimuth on the geodesic gauge 
 is given by


 = � − � + � . �6�

If we measure the input and the final points from the center
of the rotation, then

� = arg� cos��/2�
cos �

+ i sin��/2�� , �7�

and �=−�. Finally, we obtain


 = � − 2 arg� cos��/2�
cos �

+ i sin��/2�� . �8�

The measured � can be converted to 
 using the above
formula. Figure 5�a� shows � in case �iii� as a function of �,
and in Fig. 5�b�, 
 converted from � in Fig. 5�a�, together
with the theoretical values of the geodesic rule. The con-
verted values are in good agreement with the theoretical
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values. Consequently, we could demonstrate that Berry’s
phase for a partial cycle for any angle of � is related to the
area of the foliage enclosed by the locus of rotation and the
geodesic rule, which was predicted by Samuel and Bhandari
�9�. For rotation angles larger than �, 2� is added to 
 for
�=� /2. As the geodesic line is not defined solitary at �
=� /2 for a half-cycle ��=��, Berry’s phase is not also
specified. The present results for a half-cycle except for �
=� /2 are coincident to the result −��1−cos ��, which was
observed by Kwon et al. �18�. It should be noted that the
phase shift for a half-cycle path is the same as that measured
by a polar gauge.

In the above experiment, the pole and the equator of the
direction sphere are defined uniquely related to the rotation
axis of the propagation direction of the light. However, gen-
erally, one can define a pole and an equator arbitrarily on the
sphere, so that the rotation angle of the polarization azimuth
measured by a polar gauge or a rotation gauge is different
depending on the defined pole and equator. Contradiction,
the rotation angle measured by the geodesic gauge is an in-
variable quantity, since there is only one geodesic line con-
necting the initial point and the final point.

VI. CONCLUSION

In summary, we investigated Berry’s phase for noncyclic
evolution using the rotation of a polarization azimuth of a
linearly polarized light in a partially wound optical fiber on a
cylinder. Using a rotation gauge around the rotation axis, the
observed rotation of the polarization azimuth corresponds to
the area of a spherical rectangle over the surface enclosed by
the contour C of actual evolution, a large circle on the equa-
tor, and a longitudinal line connecting them. The observed
values were converted to the Berry’s phase by a transforma-
tion from the used gauge to the geodesic gauge. Conse-
quently, we could demonstrate that Berry’s phase for a partial
evolution is given by the geodesic rule proposed by Samuel
and Bhandari �9�. Also, we could confirm that the observed
phase shift will be proportional to the rotation angle �, as
obtained in the experiment using an atom interferometer if a
polar gauge on the zenith is used �23�.
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