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We consider complementarity in a bipartite quantum system of arbitrary dimensions. Single-partite and
bipartite properties turn out as mutually exclusive quantities. The single-partite properties can be related to a
generalized predictability and visibility which compose two complementary realities for themselves. These
properties combined become mutually exclusive to the genuine quantum mechanical bipartite correlations of
the system which can be quantified with the generalized I concurrence that defines a proper entanglement
measure. Consequently, the complementary relation quantifies entanglement in the bipartite system. The con-
cept of complementarity determines entanglement as a property which mutually excludes any single-partite
reality. As an application, we provide a proper definition of distinguishability in an n-port interferometer.
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I. INTRODUCTION

The principle of complementarity of Bohr �1� was origi-
nally a qualitative statement about mutually exclusive but
equally real properties of a single quantum system. It took
until 1979 when a quantitative version of its best-known
representative, the wave-particle duality concept, was de-
rived �2�. By considering unbalanced two-beam interferom-
eters, where the intensities of the two beams are not equal, an
a priori predictability P, about which path an interfering
quantum object takes, is obtained. This predictability limits
the amount of visibility V that can be achieved in an inter-
ferometer according to the complementarity relation P2+V2

�1 �3�. This inequality is saturated if the quantum object is
described by a pure state. Thus, wave-particle duality be-
comes a quantitative statement. This relation has been gen-
eralized to which-way detection �4–6� and quantum erasing
schemes �7�. A topical review can be found in �8�. Although
which-way detection and quantum erasing schemes both
consider composite quantum systems, an explicit quantitative
relation between complementarity and entanglement mea-
sures has not been given in Refs. �4–7�. The existence of
such a relation was conjectured but still not found in Ref. �8�.

A systematic approach to quantitative complementarity
relations in composite quantum systems has recently been
developed in Refs. �9–15�. In these generalized complemen-
tarity relations multipartite realities mutually exclude single-
partite properties of the subsystems and can be quantified by
entanglement measures. Entanglement measures in form of
the concurrence and the 3-tangle, depending on the number
of subsystems in the composite quantum system under con-
sideration, become key entries in these complementarity re-
lations �9,10�. It is the entanglement which mutually ex-
cludes any single-partite, i.e., wavelike and particlelike
properties. Thus, quantum correlations between the sub-
systems explicitly enforce complementarity. Not quite unex-
pectedly, the concept of complementarity allows us to quan-
tify entanglement if we accept the existence of genuine
multipartite realities in composite quantum systems.

The obstacle so far was the restriction to multipartite qu-

bit systems. It was conjectured that the concept of an en-
tanglement measure cannot be extended to systems of arbi-
trary dimensions d�2. One of the reasons is, that the
complementary aspect of a single quantum particle exposed
to a d-port interferometer with which-path detection schemes
is not fully understood yet. In particular, the proposed rela-
tion is of the form of an inequality with unity on the right-
hand side and it might lead to conflicting statements since
the inequality is never saturated �16–18�. Therefore, a thor-
ough comprehension of such a relation is essential in order to
extend it to composite quantum systems and to explore its
connection to entanglement measures. This relation, of
course, must then be saturated for pure composite quantum
systems in order to avoid any inconsistencies.

In this paper we carry out a detailed quantitative study of
the complementarity in n � m-dimensional, bipartite quantum
systems. We define proper generalizations of the visibility V
and predictability P in n dimensions. The quadratic sum of
these expressions will form the single-partite properties, SA

2

=PA
2 +VA

2 and SB
2 =PB

2 +VB
2 , of the subsystems A and B. The

predictability, P, and visibility, V, coincide with the relevant
quantities that have been introduced by Dürr �16�, up to a
dimension-dependent factor. Their quadratic sum can be re-
lated to the purities of the relevant subsystems A and B of a
composite system AB, which, in turn, can be considered as a
measure of the information content of the subsystems. In
agreement with previous results in composite qubit systems
�9,10�, a genuine bipartite quantum property naturally
emerges in composite n � m-dimensional systems. This prop-
erty describes the phase relations between the two parties
which can be revealed in correlated measurements only. It
establishes thus a bipartite reality which exclusively exists
when the composed quantum system is considered as a
single quantum object in which the subsystems completely
lose their identity. As it turns out, this property can be quan-
titatively expressed by the I concurrence that has been intro-
duced by Rungta et al. �19� as a generalization of the con-
currence in bipartite qubits. This quantitative entanglement
measure will then be mutually exclusive but equally real to
the single-partite properties of the subsystems. If the system
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is fully entangled, single-partite properties must cease to ex-
ists and vice versa. Intermediate cases in which both proper-
ties coexist are quantitatively described by the generalized
complementarity relation.

The newly defined complementarity relation leads to a
proper definition of distinguishability in an n-port interfer-
ometer accompanied by which-path measurement schemes.
The relevant complementarity relation will then be saturated
for pure quantum states in contrast to the relation obtained
by Dürr �16�. Consequently, inconsistencies about the
complementary aspect between distinguishability and visibil-
ity are eliminated.

The paper is organized as follows: In Sec. II we derive the
proper definitions of predictability and visibility in
n-dimensional quantum systems from the generators of
SU�n�. We show that these definitions depend on a
dimension-dependent scaling factor which is of crucial im-
portance in Sec. III where we discuss composite quantum
systems. We will derive the main result in this section which
states that the generalized concurrence of the bipartite quan-
tum system of arbitrary dimension n � m is mutually exclu-
sive to the single-partite properties of the individual sub-
systems. In Sec. IV we show that the generalized
concurrence can be considered as an entanglement measure
on its own by relating it to the entropy of entanglement. In
addition, we will discuss effects of mixture of the composite
quantum system on the complementarity relation. In Sec. V
we consider n-port interferometers and define predictability
and visibility from the interferometric viewpoint adopted by
Dürr �16�. We show that these definitions differ from those of
Sec. II by a dimension-dependent scaling factor. As an appli-
cation, we derive a proper definition of a generalized distin-
guishability for an n-port interferometer with which-path de-
tection in Sec. VI. Again, the dimension-dependent scaling
of the generalized predictability and visibility plays an im-
portant role in the derivation of the complementarity relation.
We show that this definition leads to a saturated complemen-
tarity relation between distinguishability and visibility in the
case of pure composite quantum systems. We conclude with
a discussion of our results in Sec. VII.

II. DERIVATION OF PREDICTABILITY AND VISIBILITY
FROM SU„n…

The quantitative complementarity relation between vis-
ibility and predictability has been derived from the tradi-
tional concept of wave-particle duality �2,3�. It is commonly
studied in Young-type double-slit interferometers where pre-
dictability and visibility acquire obvious meanings. The pre-
dictability is related to the difference between the probabili-
ties of the quantum object to be in one of the two path
alternatives while the visibility is just given by the contrast
of the interference fringes. In multiport interferometers, how-
ever, the concepts of visibility and predictability are not as
clear �16,20� and may lead to conflicting statements �17,18�.
We will discuss these concepts from an interferometric point
of view in the next section. Here, however, we take a differ-
ent approach.

It is well known that the �n2−1�-dimensional Bloch vec-
tor is uniquely related to a complete determination of an

n-dimensional quantum state on the basis of actual measure-
ments �21–28�. The components of the Bloch vector repre-
sent expectations of observables that are tomographically
complete. In Ref. �22� a specific set of operators has been

derived that form three groups ��̂�= ��û� , �v̂� , �ŵ��, denoted
by the symbols u, v, and w, and are defined, in the compu-
tational basis, as

ûjk = �j�	k� + �k�	j� , �2.1�

v̂ jk = − i��j�	k� − �k�	j�� , �2.2�

ŵl =
 2

l�l + 1���
j=1

l

�j�	j� − l�l + 1�	l + 1�
 , �2.3�

where the relation between the �̂i, and the û’s, v̂’s, and ŵ’s, is
given by the ordered array

��̂1, . . . ,�̂n2−1� = �û12, . . . , v̂12, . . . ,ŵn−1� . �2.4�

Here, 1� j�k�n and 1� l�n−1. Consequently, there are

n2−1 operators �̂k. It is important to realize that these opera-
tors generate the algebra of SU�n�. Therefore, they obey cer-
tain commutation relations �22,27� given by

��̂ j,�̂k� = 2if jkl�̂l, �2.5�

where f jkl is the completely antisymmetric structure constant

of the SU�n� group. Moreover, the generators �̂k of SU�n�
satisfy the conditions �26,27�

�̂k = �̂k
†, �2.6�

Tr��̂k� = 0, �2.7�

Tr��̂ j�̂k� = 2� jk. �2.8�

Thus all of the generators are self-adjoint, traceless, and pair-
wise orthogonal. With this, we can express the density matrix
as �22,27�

� =
1

n
1̂n +

1

2 �
k=1

n2−1

	�̂k��̂k, �2.9�

where 	�̂k�=Tr���̂k�, and the associated Bloch vector is
given by

� = �	�̂1�, . . . ,	�̂n2−1�� . �2.10�

The length of the Bloch vector ���2 represents a measure of
the information content of the system

���2 = �
k=1

n2−1

	�̂k�2 = 2�Tr��2� −
1

n

 �

2�n − 1�
n

, �2.11�

since it is directly related to the purity P of the system
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P =
n

n − 1
�Tr��2� −

1

n

 =

n

2�n − 1�
���2. �2.12�

In Eq. �2.11� the equal sign is obtained in pure quantum
systems for which Tr��2�=1 is satisfied. Please note, that not
all Bloch vectors of maximum length on the n2−1 dimen-
sional hypersphere represent a quantum state. This follows
from the following condition which the coherences of the
density operator must obey: �� jk�2�� j j�kk, where j�k.

In order to proceed let us rewrite �2.11� explicitly as the
sum of the squared expectations of the operators �2.1�–�2.3�
which, of course, also gives the square length of the Bloch
vector,

�
l=1

n−1

�	ŵl��2 + �
j,k=1

n

��	ûjk��2 + �	v̂ jk��2�

= 2�Tr��2� −
1

n

 �

2�n − 1�
n

. �2.13�

As before, the coefficients satisfy 1� j�k�n and 	ŵl�
=Tr��ŵl�, 	ûjk�=Tr��ûjk�, and 	v̂ jk�=Tr��v̂ jk� are the expec-
tations of the generators.

We are interested in the question whether these generators
can be related to the conventional notion of wave-particle
duality. From Eqs. �2.1�–�2.3� it is obvious that the predict-
ability should be linked to the expectations of the group of
the w generators since they detect populations. In contrast,
the visibility should be associated with the expectations of
the group of generators �u� and �v� which measure correla-
tions. Therefore, we define the following measure of visibil-
ity V:

V2 = �
j,k;j�k

��	ûjk��2 + �	v̂ jk��2� = 2 �
j,k;j�k

�� jk�2. �2.14�

The predictability P is then expressed as

P2 = �
l=1

n−1

�	ŵl��2 = 2��
j=1

n

� j j
2 −

1

n

 , �2.15�

where the last equation follows from Eqs. �2.11� and �2.13�.
From this we obtain the following complementarity relation
between visibility and predictability:

P2 + V2 = 2�Tr��2� −
1

n

 �

2�n − 1�
n

. �2.16�

The equality holds if and only if � represents a pure state.
The predictability and visibility are both limited from above
by 2�n−1� /n and represent mutually exclusive properties. If
the predictability is large the coherence properties or, equiva-
lently, the visibility must be small and vice versa. The upper
bound depends on the dimensionality n of the system and it
is larger than unity whenever n�2. This follows from the
scaling of these properties to the length of the Bloch vector.
Consequently, the maximum possible visibility or predict-
ability coincide with the length of the Bloch vector which
explicitly depends on the dimensionality of the system under
consideration. Another advantage of this definition emerges

when we consider composite quantum systems. We will
come back to this in Sec. III.

The above definitions of the predictability and visibility
coincide with those of Greenberger and Yasin �3� introduced
for the case of the double-slit interferometer representing the
case of dimensionality n=2. In particular, for n=2 the vis-
ibility and predictability are given by

V = 2��12� , �2.17�

P =
2��11
2 + �22

2 � −
1

2
= ��11 − �22� , �2.18�

which describe the contrast of the interference fringes
�Imax− Imin� / �Imax+ Imin� and the difference between the prob-
abilities to be in one of the two path alternatives of the in-
terferometer �3�. Moreover, they are consistent with natural
requirements on these properties. In particular, the maximum
predictability is obtained if and only if one of the states in
the computational basis is occupied. In contrast, maximum
visibility can be achieved only if all the coherently super-
posed states in the computational basis are equally
populated.

The traditional wave-particle duality relation which has
been derived for the double-slit interferometer can be easily
extended to n-dimensional quantum systems. The generators
of the SU�n� group can be suitably arranged such that their
expectations determine the usual visibility and predictability
properties of the quantum system. In order to determine
these properties a tomographically complete set of measure-
ment operators is necessary. This is another equally impor-
tant feature of complementarity �29�. However, a large num-
ber of expectations of different operators contribute to
visibility or predictability. Thus a formal distinction within
the group of expectations that all contribute to visibility, for
instance, is not necessary. If we consider, for example, the
case n=2 the Pauli-spin operators �x, �y, and �z, together
with the identity operator 1, define the generators of SU�2�.
The expectation of the �z operator determines the predict-
ability properties completely while the expected values of
the �x and �y operators, suitably grouped together, determine
the visibility properties. Thus, a formal distinction between
the expectations of the �x and �y operators is not necessary
from the conventional wave-particle duality point of view. It
is the projection of the Bloch vector on the x-y plane which
contributes to the visibility properties, see Fig. 1.

It is an important new feature that the complementarity
relation �2.16� is bounded from above by the length of the
Bloch vector �2.11� in the case of qudits. The predictability
and the visibility completely determine the information con-
tent of the quantum system. These properties define the
single-partite property S of a quantum system

S2 = P2 + V2 = 2�Tr��2� −
1

n

 �

2�n − 1�
n

. �2.19�

The single-partite property S can be considered as a measure
of the information content of a quantum system since it is
bounded by the length of the Bloch vector which, in turn,
defines the intrinsic information content according to Eq.
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�2.12�. Consequently, it is invariant under unitary transfor-
mations. In contrast, its constituents, predictability and vis-
ibility, depend on the basis chosen and can be changed under
unitary transformations. The invariance of S under unitary
transformations indicates that the total information content of
a closed quantum system is conserved �30–33�.

III. COMPOSITE QUANTUM SYSTEMS

In the preceding sections we have considered single
n-dimensional quantum systems from the conventional view-
point of wave-particle duality. We have pointed out that the
generalized visibility and predictability form measures of
quantum information whose upper bounds depend on the di-
mensionality n of the quantum system under consideration.
In this section we study bipartite quantum systems AB of
arbitrary dimensionality nA � nB. In these systems a genuine
quantum property, viz. entanglement emerges naturally.
While predictability and visibility are concepts adopted from
classical theory, entanglement does not have a classical
counterpart.

From this point of view entanglement appears as a mea-
sure of that part of quantum information that is shared
among the two parties of a bipartite quantum system in such
a way that it cannot be accessed by addressing the individual
subsystems. In contrast to classical correlations, entangle-
ment enforces the individual systems to reduce their infor-
mation content. Thus, entanglement must be considered as a
property which mutually excludes the single-partite features
of the individuals. Based on this observation we have re-
cently derived a complementarity relation for composite qu-
bit systems �9,10�. We found that concurrence, which, in
two-dimensional systems, constitutes an entanglement mea-
sure related to the entanglement of formation �34,35�, be-
comes an essential element in this relation. It is the concur-

rence that mutually excludes the single-partite properties of
the individuals which are composed of visibility and predict-
ability �9–12�.

As in Secs. II and V, here, too, we characterize the amount
of single-partite information content Sk of the subsystems k
=A or k=B of the composite quantum system AB by the
length of the corresponding Bloch vector. The maximum
length of the Bloch vector, 2�nk−1� /nk, obviously depends
on the dimensionality nk of the subsystems under consider-
ation. Note that these dimensionalities might be different for
the different subsystems. From Eq. �2.19� we obtain the fol-
lowing expression for the single-partite properties of the in-
dividuals:

Sk
2 = Pk

2 + Vk
2 = 2�Tr��k

2� −
1

nk

 �

2�nk − 1�
nk

. �3.1�

Here, �k�Trl��AB�, for k , l=A ,B and k� l, defines the re-
duced density matrix of subsystem k and �AB is the density
matrix of the composite quantum system AB.

Let us propose the following complementarity relation in
the bipartite system, based on the assumption that entangle-
ment in the form of concurrence mutually excludes the
single-partite information of the individuals:

Pk
2 + Vk

2 + �CAB
�n��2 = Sk

2 + �CAB
�n��2 �

2�nk − 1�
nk

. �3.2�

Here, CAB
�n� defines a proper n-dimensional generalization of

the concurrence in 2 � 2 systems. The above inequality is
saturated if and only if the composite system AB is repre-
sented by a pure quantum state. Clearly, in mixed systems,
the amount of single-partite information and concurrence
which in pure systems, when taken together, generate the
total information content, are reduced due to dephasing or
decoherence. This explains qualitatively the inequality. We
can rewrite Eq. �3.2� equivalently as

PA
2 + VA

2 + PB
2 + VB

2 + 2�CAB
�n��2 = SA

2 + SB
2 + 2�CAB

�n��2

�
2�nA − 1�

nA
+

2�nB − 1�
nB

,

�3.3�

which explicitly states that the generalized concurrence CAB
�n�

mutually excludes the single-partite properties of the indi-
vidual systems. Clearly, the upper bound of �3.3� is propor-
tional to the total information content which is inherent in a
pure composite quantum system. This information content is
the sum of the maximum possible lengths of the Bloch vec-
tors of systems A and B. As already stated, this bound is
reached in case of pure composite quantum systems for
which the system is completely determined, i.e., all the in-
formation is inherent in the system. This information content
cannot be exceeded in a composite system since its entropy
is always bounded from above by the sum of the entropies of
the individuals. In other words, we cannot extract more in-
formation from the composite system than from both parts of
the system together and the maximum of this information
content is represented by the sum of the maximum possible
lengths of the Bloch vectors of the individuals.

σx

σy

σz

V
P

FIG. 1. Bloch vector in a two-dimensional system. The projec-
tion on the x-y plane represents the visibility while the projection on
the z plane represents the predictability. A formal distinction be-
tween the �x and �y expectation is not necessary from the wave-
particle duality point of view. Both contribute equally to the visibil-
ity. Thus expected values of the generators can be effectively
arranged in the orthodox wave and particle properties.
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Assume a pure composite quantum system AB in the fol-
lowing in which case the complementarity relation �3.2�, or
equivalently �3.3�, is saturated. In accordance with Eqs. �3.2�
and �3.3�, the generalized concurrence �CAB

�n��2 is then defined
as

�CAB
�n��2 =

2�nk − 1�
nk

− Sk
2 =

2�nk − 1�
nk

− 2�Tr��k
2� −

1

nk



= 2�1 − Tr��k
2�� . �3.4�

Thus, in pure systems, any reduction of the single-partite
properties must be accompanied by an increase of the bipar-
tite property concurrence. Here, the total information con-
tent, i.e., the sum of the two properties, remains invariant
and adds up to the squared length of the Bloch vector. Note,
that the following relation between the subsystems A and B
holds in pure composite quantum systems:

Tr��A
2� � Tr��B

2� . �3.5�

Consequently, the generalized concurrence covers the range

0 � �CAB
�n��2 �

2�n − 1�
n

, �3.6�

where n=min�nA ,nB�. Note also, that the upper limit of the
generalized concurrence depends on the dimensionality n of
the lower dimensional subsystem. This feature is important
for a bipartite property since the concurrence, when consid-
ered as a measure of information, should not exceed the
maximally possible information content of the subsystem of
lower dimensionality.

We, further, emphasize that the absolute value of the gen-
eralized concurrence cannot be changed by adding an unused
dimension to the subsystems A or B since it explicitly de-
pends on the degree of mixing of the subsystems, 1−Tr��k

2�.
Consequently, the concurrence depends on the properties of
the reduced density matrices only. Note, that the actual value
of the mixing or, equivalently, the purity of a quantum sys-
tem does not depend on its dimensionality. This is an impor-
tant feature of a genuine bipartite property and especially of
an entanglement measure. It must not change if one adds an
unused dimension to one of the subsystems. This is the main
reason why we have defined the single-partite properties
such, that they explicitly depend on the dimensionality of the
subsystems. It allows us to define the generalized concur-
rence independent from the dimensionality of the
subsystems.

So far we have taken for granted that the generalized con-
currence introduced in Eq. �3.4� defines a proper entangle-
ment measure. Next we show that this is indeed the case by
considering a proper generalization of the concurrence in 2
� 2 systems to arbitrary dimensional bipartite nA � nB sys-
tems. This has been accomplished by Rungta et al. �19�, who
introduced a universal inverter SD that acts on the density
operator � of a D-dimensional qudit state as

SD = 	D�1 − �� . �3.7�

Here 	D is a positive constant which is usually chosen to be
1, see later, and 1 is the identity operator in D-dimensional

systems. We note that the universal inverter SD has been
previously applied in studies of the separability of mixed
states by Horodecki and Horodecki �36�. In two dimensions
the universal inverter has a simple interpretation. In particu-
lar, the super-operator S2 acts on a qubit density operator �
= 1

2 �1+n�� �, where n is a unit vector in three dimensions and
�� = ��x ,�y ,�z� are the Pauli spin matrices, as

S2��� = �y�
��y =

1

2
�1 − n�� � = 	2�1 − �� , �3.8�

where 	2=1 and �� is the complex conjugate �or transpose�
of �. Consequently, S2 flips the spin of the qubit explaining
its notation as an inverter. Equation �3.7� is therefore just a
generalization of �3.8� to arbitrary dimensions.

Based on the observation that the concurrence of a pure
bipartite qubit state, �
AB�, can be defined as �34,35�

CAB
�2� = 
	
AB�S2 � S2��
AB�	
AB���
AB�

� �	
AB��y
A

� �y
B�
AB

� ��

= 
2�1 − Tr��A
2��

= 
2�1 − Tr��B
2�� , �3.9�

by setting 	2=1, Rungta et al. �19� defined the generalized
concurrence of a joint pure state ��AB� of a DA � DB system
as

CAB
�n� � 
	�AB�SDA

� SDB
���AB�	�AB����AB�

= 
2	DA
	DB

�1 − Tr��A
2��

= 
2	DA
	DB

�1 − Tr��B
2�� . �3.10�

in analogy with Eq. �3.9�. Here, as before, �k=Trl��
AB�
�	
AB�� in the case of the 2 � 2 system and �k=Trl���AB�
�	�AB�� in the case of the DA � DB system �k , l=A ,B and
k� l� describe the reduced density matrices of the sub-
systems k=A ,B, respectively. The last equations in �3.9� and
�3.10� follow from the action of SDA

SDB
��AB� on a pure den-

sity operator �AB which is defined as �19�

SDA
SDB

��AB� = 	DA
	DB

�1 − Tr��A
2� − Tr��B

2� + Tr��AB
2 ��

= 2	DA
	DB

�1 − Tr��A
2�� . �3.11�

Here, the last equation follows from Tr��AB
2 �=1 and Tr��A

2�
=Tr��B

2� which is valid in the case of pure density operators
�AB. A proper choice of the constants 	DA

and 	DB
that is

consistent with the concurrence for qubits, is 	DA
=	DB

=1.
This ensures that the concurrence cannot be changed simply
by adding extra, unused dimensions to one or both of the
subsystems. Consequently, for pure states, the concurrence
defined this way depends only on the purity of the marginal
density operators. Since the generalized concurrence �3.10�
is defined from the universal inverter, Rungta et al. termed it
as the I concurrence.

We find that the generalized concurrence �3.4� that has
been derived from the complementarity relation �3.2� is com-
pletely analogous to the I concurrence �3.10� defined from
the universal inverter �3.7�. Consequently, the complementa-

COMPLEMENTARITY AND ENTANGLEMENT IN BIPARTITE … PHYSICAL REVIEW A 76, 052107 �2007�

052107-5



rity between single-partite and bipartite properties defines the
quantitative entanglement measure I concurrence. The genu-
ine bipartite quantum property I concurrence mutually ex-
cludes any single-partite properties that are composed of vis-
ibility and predictability. Bipartite quantum properties force
single-partite properties to cease to exist.

By considering the generators of SU�n� we can derive an
operational expression for the I concurrence of n � m bipar-
tite systems. It is directly related to the qubit version of con-
currence which can be expressed by means of the Pauli spin
matrices �y as shown in �3.9�. The n-dimensional generali-
zation of the �y operator is given by the group of v̂ jk opera-
tors introduced in Eq. �2.2�. Consequently, we express the I
concurrence of a pure composite quantum state �
AB� of di-
mensionality n � m as

�CAB
�n��2 = �

i�j
�
k�l

�	
AB�v̂ij
A

� v̂kl
B �
AB

� ��2. �3.12�

By direct calculation one finds that this quantity, indeed re-
sembles the previously defined concurrence

�CAB
�n��2 = 2�1 − Tr��A

2�� � 2�1 − Tr��B
2�� . �3.13�

Thus, the I concurrence derived from the generators of
SU�n� coincides with the I concurrence derived from the
universal inverter. Further, it is an evident generalization of
the concurrence formula for bipartite qubit states since the
Pauli spin operator �y is replaced by its n-dimensional ex-
tensions.

At this point, we mention that it is possible to derive a
lower bound for the entanglement of formation from the ex-
tension of the I concurrence to mixed bipartite quantum sys-
tems �AB of arbitrary dimensions nA � nB and from finding a
lower bound of this concurrence �37–41�. A particularly
simple lower bound of the concurrence C��AB� is given by

C2��AB� 
 �
j�i

�
l�k

�Cij
kl��AB��2, �3.14�

where

Cij
kl��AB� = max�0,�ijkl

1 − �
n

�ijkl
n 
 , �3.15�

and �ijkl
n are the square roots of the eigenvalues of the matrix

�AB��̃AB�ij
kl with

��̃AB�ij
kl = v̂ij

A
� v̂kl

B�AB
� v̂ij

A
� v̂kl

B , �3.16�

in descending order. Note, that the matrix �3.16� has a rank
not greater than 4, i.e., most of the eigenvalues are identical
zero. Thus, Eq. �3.15� is directly related to the standard defi-
nition of the concurrence in mixed qubit systems �34,35�.
The lower bound �3.14� can be derived utilizing the methods
of Ref. �37� extended to a nA � nB-dimensional bipartite qudit
system exercising the properties of the minimum value of a
function subject to constraints. It is, however, too stringent
and does not permit the detection of the entanglement of
formation in bound entangled states. In order to detect bound
entanglement more complicated formulas must be employed,
see Refs. �39,42�. These formulas, again, adopt the genera-
tors of SU�n�, see especially Ref. �42�. They require, how-

ever, an optimization procedure which depends on a continu-
ous parameter.

In summary, complementarity in n � m-dimensional bipar-
tite quantum systems properly quantifies entanglement by the
generalized concurrence. The mere existence of entangle-
ment mutually excludes any single-partite properties of the
subsystems that are composed of predictability and visibility.
If entanglement is present, the subsystems will lose their
information content and they do not qualify for objective
individual reality. It is the entanglement which enforces
complementarity. Both, entanglement and the single-partite
properties define quantities that are invariant under local uni-
tary transformations. On the one hand, this is important for
the generalized concurrence to define an entanglement
monotone �43�. On the other hand, this invariance is neces-
sary for the proper quantification of the complementarity be-
tween single-partite and genuine bipartite properties in the
form of entanglement.

IV. RELATION BETWEEN GENERALIZED
CONCURRENCE AND ENTROPY OF ENTANGLEMENT

In this section we will explore the relation between the
generalized concurrence and the entropy of entanglement in
pure composite quantum systems. In other words, we will
address the question, whether it is possible to express the
entropy of entanglement as a monotonically increasing func-
tional of the generalized concurrence. When this is answered
in the positive it will allow us to consider the generalized
concurrence as a measure of entanglement on its own. The
standard definition of the entropy of entanglement uses the
von Neumann entropy �44,45� of the subsystems. Here we
will apply the Fano entropy �46� which is a special class of
Rényi entropies �47,48�. The Fano entropy is defined from
the purity Tr��2� of the system

SF = − ln�Tr��2�� , �4.1�

and is much simpler to calculate than the von Neumann en-
tropy. Moreover, the Fano entropy of subsystems in compos-
ite continuous quantum systems has been applied as a mea-
sure of entanglement �49–55� since its dependence on the
purity of the subsystems is similar to that of the von Neu-
mann entropy. In addition, it plays an important role in quan-
tum thermodynamics. A proper modification of the Fano en-
tropy by introducing a metric operator into the scalar product
of density operators, i.e., the purity, provides a Lyapunov
functional that behaves strictly monotonically in time. This
functional can be considered as a generalized entropy defi-
nition �56–59� and it has important consequences to the
question of time reversal in open quantum systems �60,61�.

We define the entropy of entanglement E��
�� of a pure
composite quantum state �
AB� as the Fano entropy �4.1� of
either of the two subsystems A and B,

E��
�� = − ln�Tr��A
2�� � − ln�Tr��B

2�� . �4.2�

From Eq. �3.4� it follows that
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E��
�� � E�CAB
�n�� = − ln�1 −

�CAB
�n��2

2

 , �4.3�

which implies that

�E�CAB
�n��

�CAB
�n� =

2CAB
�n�

2 − �CAB
�n��2 
 0. �4.4�

Here, the inequality follows from the boundaries of the gen-
eralized concurrence given in Eq. �3.6� which states that for
arbitrary dimensions n, even in the limit n→�, the concur-
rence cannot exceed two. Thus, the entropy of entanglement
�4.2� of any nA � nB-dimensional pure state �
AB� is a mono-
tonically increasing functional of the generalized concur-
rence CAB

�n�. This, however, allows us to consider the general-
ized concurrence as an entanglement measure on its own. We
note that this is obvious when we recognize that the gener-
alized concurrence is just the linear entropy SL=1−Tr��k�2 of
subsystem k up to a scaling factor of 2.

Recently, Mintert et al. �39� derived a lower bound for the
generalized concurrence of mixed quantum systems of arbi-
trary dimensions. In general, the concurrence of mixed states
� is given as the convex roof,

CAB
�n���� = inf�

i

piCAB
�n��
i�, � = �

i

pi�
i�	
i�, pi 
 0,

CAB
�n��
i� = 
2�1 − Tr���A

�i��2�� , �4.5�

of all possible decompositions into pure states ��i�= �
i�	
i�.
The state � is separable if and only if the concurrence CAB

�n�

���� vanishes. In this case � exhibits only classical correla-
tions and can be represented as a convex sum over product
states �=�ipi�A

�i�
� �B

�i�. We mention, at this point, that it is
not generally accepted to call separable states as classically
correlated. In particular, Ollivier and Zurek introduced a
quantity termed quantum discord as a measure of quantum
correlations that differs from zero even for separable states
�62�. However, this quantity is connected with measurements
and the appearance of these quantum correlations does not
mean that the state is necessarily entangled. Also related with
this concept is the quantification of quantum correlations by
thermodynamical properties �63� which does not involve
measurements and the concept of local versus nonlocal in-
formation in quantum information theory �14�. Mintert et al.
succeeded in finding a lower bound of CAB

�n����
B. For de-
tails of the construction of this bound B we refer to the
literature �39�. Here, we point out only that this bound estab-
lishes a lower bound for the complementarity relations �3.2�
and �3.3� in mixed systems,

SA
2 + SB

2 + 2B2 � SA
2 + SB

2 + 2�CAB
�n�����2

�
2�nA − 1�

nA
+

2�nB − 1�
nB

. �4.6�

In pure composite quantum systems correlations that do not
follow trivially from the single-partite properties of the sub-
systems exist only in form of the genuine bipartite quantum
property concurrence, i.e., only in form of entanglement.

Thus, the total information content of the composite quantum
system is exhausted completely by the single-partite proper-
ties and the concurrence.

In mixed systems, however, classical correlations between
the subsystems might appear although the individual sub-
systems do not possess any single-partite information con-
tent. Consider, for instance, the mixed bipartite qubit state

�AB =
1

2
��0A�	0A� � �0B�	0B� + �1A�	1A� � �1B�	1B�� .

�4.7�

Clearly, the individuals do not have any single-partite infor-
mation content since they are completely mixed, i.e., their
entropy is maximized. However, there is information in form
of classical correlations present. Both qubits, if considered
as spins, are parallel. This information describes classical
correlations and is present since the entropy of the composite
system is not maximized. The von Neumann entropy SAB of
state �4.7� is unity, implying that one bit of information is
present in the system. It is equal to the entropy of either of
the subsystems and saturates the lower bound of the
inequality

max�SA,SB� � SAB � SA + SB, �4.8�

which must be satisfied in classical systems. This again ex-
presses the fact that the correlations in �4.7� are of classical
origin. Consequently, in mixed systems the total information
content is not exhausted completely by the single-partite and
bipartite properties, predictability, visibility, and concur-
rence. In addition to these properties, the information from
classical correlations might contribute.

This information, however, should not contribute to a
complementarity relation since classical correlations are
merely a consequence of single-partite and bipartite proper-
ties. Let us consider a simple example based on the pure
quantum state

�
� = �1A��1B� . �4.9�

From an information point of view the state is completely
described by the predictabilities of the individual sub-
systems. However, since the two spins are parallel, there is
seemingly an additional piece of information present in the
form of classical correlations. This information, however, is
not independent as it follows directly from the single-partite
information of the constituents. Thus, in pure states, classical
correlations are redundant information which is not indepen-
dent from the information content of the individuals. Conse-
quently, information on classical correlations does not con-
tribute to the complementarity relation. We will discuss the
complementarity relation in mixed quantum systems in more
detail elsewhere.

V. INTERFEROMETRIC DERIVATION OF
PREDICTABILITY AND VISIBILITY

In this section we derive predictability and visibility prop-
erties by considering an n-beam interferometer. This situa-
tion has been discussed by Dürr �16� who compiled a list of
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desirable properties of any multipath generalization of vis-
ibility and predictability of Young’s double-slit interferom-
eter. We note, however, that there are alternative proposals
which do not have all of these properties �20�. We demon-
strate that the generalized multipath visibility and predict-
ability, as derived by Dürr, coincide with the definitions pro-
posed in the preceding section up to a dimensional-
dependent scaling factor.

We want to consider in more detail the situation that has
been discussed previously by Dürr �16�. The n-dimensional
interferometer consists of two n-port beam splitters. The
beams are redirected with the help of mirrors in between
these beam splitters such that all beams impinge on the sec-
ond one, as illustrated in Fig. 2 for the case of a four-beam
interferometer. While the first beam splitter is assumed to
have arbitrary splitting ratios, the second one has a 1/n split-
ting ratio. Consequently, an output beam of the second beam
splitter has the generic form

�b� =
1

n
�ei�1,ei�2, . . . ,e�n �T, �5.1�

where T denotes the transpose. We have chosen the n beams
in front of the second beam splitter as an orthogonal basis of
quantum states for a matrix representation �16�. The phases
� j can be varied arbitrarily by modifying the second beam
splitter with variable phase shifters.

The intensity I or equivalently the probability that the
quantum object leaves the interferometer in output beam �b�
depends on the input density operator � in front of the second
beam splitter. It can be derived as �16�

I = 	b���b� =
1

n
�
j=1

n

�
k=1

n

� jke
−i��j−�k�

=
1

n�1 + �
j

�
k�j

�� jk�cos�� j − �k − arg � jk�
 , �5.2�

where �ij is the density matrix in the computational basis and
arg � jk denotes the phase of the complex matrix element � jk.
Based on a number of desirable properties on the generalized
n-dimensional visibility �16�, Dürr proposed a visibility mea-

sure Ṽ that is constructed from moments of the intensity
function I. These moments are obtained by phase averaging
the considered function f��1 , . . . ,�n� over all phases 	¯��,

	f�� =
1

�2��n�
0

2�

d�1 ¯ �
0

2�

d�nf��1, . . . ,�n� . �5.3�

From this we obtain for the first and second moment of the
intensity �5.2�,

	I�� =
1

n
, �5.4�


	��I�2�� =
1

n
�
j

�
k�j

�� jk�2, �5.5�

where �I= I− 	I�� is the standard deviation of I from its
mean value. It is obvious from Sec. II that the root-mean-
square �rms� spread 
	��I�2�� describes some measure of
visibility since it is directly proportional to the visibility de-
fined in Eq. �2.14� that was derived from the generalized

Bloch vector. The visibility Ṽ, defined by Dürr, is normalized
to unity and given as �16�

Ṽ = � n3

n − 1
	��I�2��
1/2

= � n

n − 1�
j

�
k�j

�� jk�1/2
1/2

,

�5.6�

where we applied Eq. �5.5�. Depending on the properties of
the quantum object and the interferometer the visibility cov-
ers the full range

0 � Ṽ � 1. �5.7�

The generalized n-beam visibility Ṽ is directly proportional
to the generalized visibility V that has been derived from the
Bloch vector in Sec. II,

Ṽ2 =
n

2�n − 1�
V2. �5.8�

Thus, up to a dimension-dependent factor the two definitions
coincide. However, the normalization of visibility to unity,

i.e., the definition Ṽ, has a number of drawbacks which
clearly emerged in Sec. III where we considered composite
quantum systems in which entanglement plays a crucial role.
The generalized visibility V, normalized to the length of the
Bloch vector, is much better suited for this case. In addition,
this definition allows us to consider the visibility as a mea-
sure of quantum information. It is thus conceptually more
appropriate to use this definition, which forms an invariant,
when considering the information content of a closed quan-
tum system �30–33�. This has also been realized in Ref. �16�.
Consequently, we will use V as the definition of the general-
ized visibility whose maximum possible value 
2�n−1� /n,
i.e., the length of the Bloch vector, explicitly depends on the
dimensionality n of the quantum object.

Similarly, a generalized predictability can be defined in
n-dimensional interferometers. Based on a number of desir-
able properties, Dürr proposed the generalized predictability

P̃ by considering moments of probability distributions, along
the same lines as in the case of the generalized visibility �16�.
Here, the average over a distribution f is defined as

FIG. 2. Scheme of a four-beam interferometer. The incoming
quantum object is split into four beams at the first four-port beam
splitter. The beams are redirected with the help of mirrors and re-
combined such that all beams impinge on the second four-port
beam splitter which produces four output beams.
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	f� j =
1

n
�
j=1

n

f j , �5.9�

where f j is a set of n numbers. From normalization of the
density operator, Tr���=1, it follows that the mean value of
the probabilities is given by

	� j j� j =
1

n
�
j=1

n

� j j =
1

n
. �5.10�

The generalized predictability P̃ is based on the rms spread

	�� j j −1/n�2� j and is obtained as �16�

P̃ = � n

n − 1�
j=1

n �� j j −
1

n

2�1/2

= � n

n − 1
�−

1

n
+ �

j=1

n

� j j
2
�1/2

,

�5.11�

where we employed Tr���=1 to obtain the last equation. As

before, the generalized predictability P̃ is normalized to
unity and covers the range

0 � P̃ � 1, �5.12�

depending on the properties of the interferometer.

The generalized predictability P̃, derived here from inter-
ferometric considerations, is directly proportional to the gen-
eralized predictability P, obtained from the Bloch vector in
the preceding section,

P̃2 =
n

2�n − 1�
P . �5.13�

The constant n / �2�n−1�� is the same factor that appears in
Eq. �5.8� and is just the inverse of the length of the Bloch
vector. However, as already discussed, it is of advantage to
normalize the predictability to the length of the Bloch vector.
Consequently, we use the generalized predictability P as the
properly defined predictability. It covers the range

0 � P2 �
2�n − 1�

n
. �5.14�

Again, the upper bound of the predictability depends on the
dimensionality n of the quantum object. Similar to the vis-
ibility, the predictability also represents a measure of the
quantum information content of the qudit state. The general-
ized predictability together with the generalized visibility
completely determine the total information content S2=P2

+V2 of the quantum system as discussed after Eq. �2.19�. The
properly defined visibility and predictability whose upper
possible bound of their information content depends on the
dimensionality will also play a central role in the next sec-
tion where we discuss the generalized distinguishability in a
n-port interferometer. Both properties are measures of the
information content of a qudit and, consequently, these mea-
sures must depend on the dimensionality of the qudit.

VI. GENERALIZED DISTINGUISHABILITY IN n-PORT
INTERFEROMETER

The complementarity relation derived in Sec. III is par-
ticularly useful for the clarification of some issues connected
with complementarity in n-port interferometers that are ac-
companied by which-path detection schemes. Complementa-
rity in those systems has been discussed by Dürr �16� and
Bimonte and Musto �17,18�. Dürr proposed a complementa-
rity relation for distinguishability and visibility that is, how-
ever, not saturated even in pure systems as it was demon-
strated by Bimonte and Musto. As a consequence, this
complementarity relation by Dürr does not convey the very
idea of complementarity according to which an increase of
fringe visibility is at the cost of a loss of which-path infor-
mation and vice versa. In particular, both quantities might
increase or decrease simultaneously �17,18�. Consequently,
they are not mutually exclusive. The intention of the follow-
ing section is, therefore, to find proper definitions of distin-
guishability and visibility such that a complementarity rela-
tion between them indeed conveys correctly the concept of
complementarity.

Let us first give a short summary about Dürr’s approach
to the complementarity between distinguishability and vis-
ibility and their definitions as proposed in Ref. �16�. In order
to understand the concept of distinguishability we must ana-
lyze interferometric schemes that involve which-path detec-
tors. Such detectors can be considered as a second quantum
system which interacts with the principal quantum object
exposed to the interferometer. This interaction changes the
state of the which-path detector depending on the path cho-
sen by the principal system. Consequently, it leads to an
entanglement between the principal quantum system and the
which-path detector and which-way information can be
gained by a suitable measurement of the states of the detec-
tor. The detector, thus, stores the information about the path
that the quantum object has chosen.

When the quantum object �quanton for short� is exposed
to the n-port interferometer it can be described by the arbi-
trary quantum state

�
�Q = �
j=1

n

cj�
 j�Q. �6.1�

Here, the �
 j�Q are orthonormalized states that describe the
situation when the quanton �Q� travels solely through the jth
slit. Note, that the coefficients cj depend on the properties of
the interferometer. The interaction with the which-path de-
tector can be designed such that it changes the state of the
total system �
total�, i.e., the quanton plus which-path detec-
tor, to

�
total� = �
j

cj�
 j�Q � �� j�D, �6.2�

where the final states of the which-path detector �D� �� j�D are
normalized but not necessarily orthogonal and depend on j.
The output state �
total� is consequently an entangled state in
general. These correlations between the quanton and the de-
tector make the storage of which-path information possible.
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In order to read out this information, a measurement of a

suitable observable ŴD on the detector must be performed.

We denote the eigenvalues of ŴD by wk and the correspond-
ing eigenstates by �wk�D, as in �16�, and take for granted that
the measurement performed is a standard von Neumann
measurement which ensures that the outcome is one of the

eigenvalues of ŴD and the detector state is projected onto the
corresponding eigenstates. Further, we assume the eigenval-
ues to be nondegenerate in order to simplify matters. The
projectors corresponding to the eigenvalues wk are denoted
as PD

�k�= �wk�D	wk�. They are, of course, mutually orthogonal
and complete,

PD
�k�PD

�l� = �klPD
�k�, �

k

PD
�k� = 1D, �6.3�

where 1D is the unit operator of the detector subspace. When
a measurement is performed the outcome wk is found with
the probability

pk = TrDQ�PD
�k��DQ� , �6.4�

where we have introduced the density operator of the total
system �DQ= �
total�	
total� which, of course, is pure. The
density operator of the quanton �Q

�k� that is conditioned on the

outcome wk of the ŴD measurement is given by

�Q
�k� =

TrD�PD
�k��DQ�

pk
. �6.5�

Note, that TrQ���Q
�k��2�=1, i.e., the conditioned density opera-

tor describes a pure state. Thus, after a measurement of the

detector observable ŴD �without reading out the measure-
ment outcome� the density operator of the quanton must be
described by the statistical ensemble

�Q = �
k

pk�Q
�k�, �6.6�

which is not describing a pure state. This ensemble is sorted
into subensembles �Q

�k� depending on the measurement out-
come of the detector observable and these subensembles are
weighted by the probability pk that this outcome appears.
The sorting into the subensembles, of course, depend on the
choice of the detector observable which has been described
in great detail in Ref. �8�.

Let us define now the conditioned which-way knowledge

Kk as the predictability P̃, as it is defined in Eq. �5.11�, of the
subensemble �6.5�

Kk = � n

n − 1�
j=1

n

���Q
k � j j − 1/n�2
1/2

. �6.7�

In the equation above, ��Q
k � j j = 	
 j��Q

k �
 j�, describes the di-
agonal elements of the density matrix ��Q

k � in the state rep-
resentation �
 j�Q which corresponds to the populations of �Q

k

to be in the state �
 j�Q. As it is pointed out in Ref. �16�, it is
important to catch the difference between the predictability
P and the conditional which-path knowledge Kk. In particu-
lar, the predictability describes a priori knowledge which
depends on the properties of the interferometer only. In con-

trast, the conditioned which-way knowledge Kk represents
a posteriori which-path knowledge which only emerges as a
result of the measurement of the which-path detector.

The complete which-way knowledge is now defined by
the statistical average over all possible outcomes wk depend-

ing on the measurement observable ŴD,

KW = �
k

pkKk. �6.8�

This quantity represents the amount of which-way informa-

tion obtained on average, given that the observable ŴD was
measured. It is not difficult to show that the following in-
equality is valid:

KW 
 P̃ , �6.9�

since the right-hand side, i.e., the predictability �5.11�, is
obtained without any measurement on the detector and just
describes the a priori which-path knowledge of the quanton.
It is obvious, that KW depends on the choice of the measure-

ment observable ŴD which crucially influences the sorting of
�Q into subensembles, see Eq. �6.6�. Therefore, there is a
largest possible KW and this is defined as the distinguishabil-

ity D̃ of the paths that the quanton has taken �5,6,64�,

D̃ = maxW�KW� , �6.10�

resulting from the best choice of the measurement observ-

able ŴD �8,16�. The proposed complementarity relation reads
then �16�

D̃2 + Ṽ2 � 1, �6.11�

where the visibility is given by Eq. �5.6� and the distinguish-

ability D̃ is defined in �6.10�. This inequality generalizes the
wave-particle duality to cases including which-path detectors
and to n�2-port interferometer, i.e., the double-slits con-
figuration where this inequality has been derived by Englert
�6�. For the proof of �6.10� we refer to Refs. �6,16�.

We stress that there is an important difference between the
inequality of Englert, derived for the double-slits configura-
tion, and that of Dürr, derived for the n-port interferometer in
the case when n�2. In particular, while in the double-slits
configuration accompanied by which-path detectors this in-
equality is always saturated when the combined quantum
state of the interfering object and the detector is pure, this
might not be the case in the n��2�-port interferometer
�17,18�. This can happen when the dimensionality of the Hil-
bert space of the detector states is smaller than that of the
interfering quanton as we will demonstrate by considering
the specific example of Bimonte and Musto �17,18�, below.

Unfortunately, this narrows the validity of the proposed

complementarity relation �6.10�. Note, further, that both D̃
and Ṽ cover the range

0 � Ṽ � 1, �6.12�
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0 � D̃ � 1. �6.13�

We have already discussed in Sec. V that such a normaliza-
tion is not appropriate in composite quantum systems of di-
mensionality n�2. We expect, therefore, the definition of
the distinguishability, Eq. �6.10�, to be inapplicable in some
cases. Indeed, if we consult the original papers about distin-
guishability in two-path interferometers �6,8�, the argumen-
tation there was that distinguishability is defined as the maxi-
mum possible which-way information nature can grant us. In
other words, it is to some extent independent from measur-
able observables and can exceed the distinguishability that
can be inferred from a measurement �7�. Thus, we should
define distinguishability as an intrinsic property which is in-
herent in the composite quantum state of the system and the
detector. In other words, distinguishability should rather de-
pend on the quantum correlations between the system and
the detector.

This motivated Englert and Bergou �8� to conjecture a
quantitative relation between some measure of the entangle-
ment and the distinguishability. That such a quantitative re-
lation actually exists was shown in Ref. �9� in the case of a
two-port interferometer with which-path detection scheme.
In its simplest form, this system can be considered as a bi-
partite entangled qubit system AB where qubit A represents
the two path alternatives of the interfering quantum object
and qubit B represents the two orthogonal states of the
which-path measurement device. From this it can be shown
that the distinguishability of qubit A can be defined as �9�

DA
2 = CAB

2 + PA
2 , �6.14�

where CAB is the concurrence of the bipartite qubits AB and
PA is the predictability of qubit A in the computational basis
defined in �2.18�. As a natural generalization, we propose the
following definition of the distinguishability DA

�n� for a quan-
tum object A exposed to an nA-port interferometer with a
which-path measurement scheme B of Hilbert space dimen-
sionality nB:

�DA
�nA��2 = �CAB

�n��2 + �PA
�nA��2, �6.15�

where CAB
�n� is the generalized concurrence defined in Eq.

�3.4�, n=min�nA ,nB�, and PA
�nA� is the predictability of the

quantum object A defined in Eq. �2.15� for the dimensional-
ity nA. Note, that we have assumed the quantum state of the
composite system AB to be pure. Taking into account the
generalized complementarity relation �3.2� in the case of
pure states, for which it is saturated, we obtain

�DA
�nA��2 + �VA

�nA��2 =
2�nA − 1�

nA
. �6.16�

This expression states that the complementarity relation is
saturated for pure composite quantum systems. Indeed, the
properly defined distinguishability is mutually exclusive to
the visibility and this remains true in interferometers of arbi-
trary dimensionality n accompanied by which-path detection
schemes of arbitrary dimensions m. Note, that the distin-
guishability �6.15� contains two contributions. One is a
single-partite property, i.e., the predictability, while the other

is a genuine bipartite quantum property, i.e., the concurrence.
It is the concurrence which makes the distinguishability dif-
ferent from the single-partite property predictability. Conse-
quently, the distinguishability is a combination of single-
partite and bipartite properties and cannot be considered as a
property of the interfering quantum object alone.

It is obvious from Eq. �6.16� that the distinguishability
can cover the full range

0 � �DA
�nA��2 �

2�nA − 1�
nA

, �6.17�

depending on the amount of visibility. The contribution of
the entanglement, i.e., the concurrence, to the distinguish-
ability, however, depends on the properties of both systems
and it can cover the range

0 � �CAB
�n��2 �

2�n − 1�
n

, �6.18�

where n=min�nA ,nB�. Consequently, if the dimensionality nB

of the Hilbert space of the which-path detector is smaller
than the Hilbert space dimensionality, nA, of the interfering
quantum object, the contribution of the concurrence to the
distinguishability cannot cover the full range. In other words,
if the distinguishability is at its maximum there is always a
contribution from predictability present. This has an impor-
tant consequence for quantum erasing schemes �65� which,
in general, can only affect the bipartite contribution. Thus, it
is the concurrence which is erased in a quantum eraser in
order to restore visibility �7,8,66�. There are, however, ex-
ceptions in case of a conditional quantum eraser which can
additionally erase a priori which-path information, i.e., the
predictability, as shown in Refs. �66,67�.

In the following, we discuss the test case of Bimonte and
Musto �17,18� who considered a simple three-beam interfer-
ometer with equally populated beams and a which-path de-
tector scheme of Hilbert space dimensionality two, for which
the original definition of the distinguishability �6.10� given
by Dürr �16� leads to unsatisfactory results. In particular,
they showed that even in some cases involving pure quantum
states the complementarity relation between distinguishabil-
ity and visibility is not saturated. Consequently, there are
cases when visibility and distinguishability both increase or
decrease at the same time, a result which is quite unsatisfac-
tory from the viewpoint of complementarity.

Let us consider the example of Bimonte and Musto by
adopting the proper definition of distinguishability �6.15�.
The pure state of the interfering quantum object is given by

���A =
1

3�
i

�
i� ⇔ �A =
1

3 �
i,j=1

3

�
i�	
 j� . �6.19�

The interaction of the quantum object with the which-path
detector leads to entanglement between the two systems and
their joint state �AB is described by

COMPLEMENTARITY AND ENTANGLEMENT IN BIPARTITE … PHYSICAL REVIEW A 76, 052107 �2007�

052107-11



���AB =
1

3�
i

�
i���i� ⇔ �AB =
1

3 �
i,j=1

3

�
i�	
 j� � ��i�	� j� ,

�6.20�

where ��i� are normalized, but not necessarily orthogonal,
detector states. Bimonte and Musto assumed for simplicity
that the Hilbert space of the detector state HD is two dimen-
sional and described the detector states by using the Bloch
parametrization

���	�� =
1 + n · ��

2
. �6.21�

Here, n are unit vectors in three dimensions and ��
= ��x ,�y ,�z� are the Pauli spin matrices in HD. They sug-
gested the following nonorthogonal detector states where the
phase � can be varied at will:

��1�	�1� =
1 + n1 · ��

2
, n1 = �0,0,1�, ��1� = �2� ,

�6.22�

��2�	�2� =
1 + n2 · ��

2
, n2 = �sin �,0,cos �� , �6.23�

��2� =
1

2

�
1 + cos ��2� + 
1 − cos ��1�� ,

��3�	�3� =
1 + n3 · ��

2
, n3 = �− sin �,0,cos �� , �6.24�

��3� =
1

2

�
1 + cos ��2� − 
1 − cos ��1�� .

The visibility and the distinguishability depend on the phase
� of the detector state. We obtain the following for the gen-
eralized visibility of system A from �2.14� or from �3.1�:

�VA
�3��2 =

4

9
�1 + cos � + cos2 �� . �6.25�

Note, that this result differs from the result of Ṽ in Bimonte
and Musto �Eq. �8� of Ref. �17�� by a factor of 4/3 which
follows from the different scaling of the generalized visibili-
ties, see Eq. �5.8�. For the generalized distinguishability we
obtain from �6.15�,

�DA
�3��2 =

4

9
�1 + sin2 � − cos �� , �6.26�

where we take into account that the generalized predictabil-
ity and the concurrence are given as

�PA
�3��2 = 0, �6.27�

�CAB
�2��2 =

4

9
�1 + sin2 � − cos �� , �6.28�

for the system under consideration. Note that the generalized
concurrence �6.28� covers the range

0 � �CAB
�n=2��2 �

2�n − 1�
n

= 1, �6.29�

which explains the superscript n=2. This follows from the
fact that the dimensionality of the detector’s Hilbert space is
two and, thus, smaller than the Hilbert space dimension of
the interfering quantum object, as discussed earlier. The
properly defined generalized distinguishability �6.26� is sig-

nificantly different from the distinguishability D̃ as derived
from the definition �6.10�. In the test case of Bimonte and

Musto the following expression for D̃ was found �see Eq.
�17� in �17��:

D̃2 = �
1

3
sin2 � for 0 � � �

2�

3
,

4

9
sin2��

2

 for

2�

3
� � � � .� �6.30�

In contrast to the visibility, this expression differs not only
by a scaling factor of 4/3 from the properly defined distin-
guishability �6.26�, but also in its analytical form. Moreover,
this function exhibits a discontinuity at �=2� /3, a property
which is highly unsatisfactory on physical grounds.

Although the state of the quantum system is pure the

complementarity between D̃ and Ṽ= 3
4VA

�3� is not saturated
over the complete range of �. In contrast, the complementa-
rity between the properly defined distinguishability �6.26�
and the generalized visibility �6.25� is saturated

�DA
�3��2 + �VA

�3��2 =
4

9
�2 + sin2 � + cos2 �� =

4

3
, �6.31�

for all �. Therefore, we claim that the properly defined dis-
tinguishability cannot always be related to a quantity that can
be measured by a detector observable that maximizes the
which-way knowledge K�W�. This happens whenever the di-
mensionality of the Hilbert space of the detector is smaller
than that of the Hilbert space of the interfering quantum par-
ticle, except for the case of a double-slits interferometer
where the trivial case of a one-dimensional Hilbert space of
the detector states corresponds to the situation with no
which-path measurement. Consequently, the composite
quantum system will contain nonorthogonal detector states
that cannot be resolved perfectly and one cannot extract the
total amount of the properly defined distinguishability by a
measurement at the detector.

We have emphasized throughout that the properly defined
distinguishability contains a genuine bipartite quantum prop-
erty in the form of the concurrence. It is the concurrence that
enforces complementarity in bipartite systems and mutually
excludes single-partite properties of the individuals. Conse-
quently, the interpretation of the distinguishability as the
maximum possible which-path information that one can ex-
tract by a proper measurement at the detector is not only
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misleading but wrong. The quantum correlations among the
detector and the interfering quantum object in form of the
entanglement measure concurrence, inherently present in the
distinguishability, are responsible for the decrease of single-
partite properties. These quantum correlations can be a re-
source for possible which-path information if one measures
suitable observables at the detector but they cannot necessar-
ily be extracted completely from such a measurement as
shown in the above example. We note again that this happens
whenever the Hilbert space dimensionality of the detector
states is smaller than that of the interfering quantum object.

With this in mind let us consider the case where we inter-
change the role of the interfering quantum object and the
detector. In other words, we assume subsystem B in �6.20� to
be the interfering particle and A to be the detector. In this
case the dimensionality of the detector’s Hilbert space is
larger than that of the interfering quantum object and we
expect that the distinguishability can be interpreted as the
maximum possible which-path information that one can ex-
tract from a suitable measurement at the detector. Conse-
quently, all of the genuine quantum correlations of the com-
posite system AB can be extracted from such a measurement
as it was declared above. We can rewrite the state �6.20� as

�
AB� =
1

3
���1A� +
1 + cos �

2
��2�A + �3�A�
�+�

� �2�B

+ �
1 − cos �

2
��2�A − �3�A�
�−�

� �1�B� . �6.32�

It is not difficult to recognize that the detector states �+� and
�−� which are correlated with the states �2�B and �1�B, respec-
tively, are orthogonal. In other words, by performing a pro-
jective measurement on the detector states �+� and �−� we
gain complete which-path information about the interfering

quantum object. Consequently, the distinguishability D̃, as
defined in �6.10�, is given by

D̃ = 1, �6.33�

independent from the angle � and the visibility Ṽ is zero.
This is completely equivalent to the generalized distinguish-
ability derived from Eq. �6.15� which gives

�DB
�2��2 = �CAB

�2��2 + �PB
�2��2 =

4�1 + sin2 � − cos ��
9

+
1 + 4 cos2 � + 4 cos �

9
= 1. �6.34�

Thus, in this case, the distinguishability can be interpreted as
the maximum possible which-path information that one can
extract from the system by a suitable measurement at the
detector. This is possible because the Hilbert space dimen-
sionality of the detector states is larger than that of the inter-
fering quantum object. Whenever this is not the case, we
cannot interpret the generalized distinguishability as the
maximum possible which-path information because we can-
not extract, in general, all the genuine quantum correlations
inherent in the generalized distinguishability. Thus, the opti-

mum detector should have the same dimensionality as the
qudit, i.e., the quanton exposed to the d-dimensional inter-
ferometer, it is aimed at measuring. Fewer dimensions are
insufficient and more will not lead to better results.

VII. CONCLUSIONS

In this paper we have derived a complementarity relation
for a composite bipartite quantum system of arbitrary dimen-
sions n � m. The complementarity relation contains single-
partite properties in the form of properly defined predictabil-
ity and visibility and a bipartite property in the form of the
generalized I concurrence �19�. This latter quantifies en-
tanglement, a genuine bipartite quantum property, that does
not have any classical counterpart. We have shown that the
single-partite properties can be derived from the generators
of SU�n� and their upper bound can be related to the length
of the Bloch vector which, in turn, represents the information
content present in the system. Accordingly, the upper bound
of the complementarity relation is dependent on the dimen-
sionality of the system and, in general, it can exceed unity.
The generalized predictability and visibility derived from the
generators of SU�n� can be related to the predictability and
visibility which have been suggested from interferometrical
considerations �16�. They are equivalent up to a dimension-
dependent scaling factor which is, however, crucially impor-
tant when composite systems are considered. This scaling
factor ensures that the definition of the generalized I concur-
rence is independent of the dimensions of the system. This
situation is very satisfactory since the amount of entangle-
ment should not change if one adds an unused dimension to
one of the subsystems �19�.

In the case when nonclassical correlations between the
subsystems emerge, i.e., entanglement is present, the amount
of entanglement quantified by the n-dimensional generaliza-
tion of the concurrence, i.e., the I concurrence, mutually ex-
cludes the single-partite properties of the subsystems. In
other words, the properties of the individual systems cease to
exist and the information is transferred to genuine bipartite
quantum correlations. Thus, complementarity is enforced by
quantum correlations which force the information of single-
partite properties to decrease. Genuine bipartite quantum
properties and single-partite properties can only coexist ac-
cording to a complementarity relation. If one of these prop-
erties increases the other necessarily must decrease. This also
sheds light on questions concerning nonlocality in quantum
mechanics. The complementarity relations clearly state that
there exist bipartite realities which mutually exclude local or
single-partite realities. In other words, the element of local
reality ceases to exist when genuine bipartite quantum corre-
lations are present. On the other hand, the complementarity
relation is equally important for the definition of entangle-
ment measures. In particular, the upper bound of the comple-
mentarity relation, for a pure composite quantum system,
reduced by the amount of single-partite information present
in the subsystems, defines and quantifies the proper entangle-
ment measure which has been shown here to be identical to
the I concurrence.

We have discussed the relation of the I concurrence to the
entropy of entanglement and have shown that the entropy of
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entanglement is a strictly monotonic function of the I con-
currence which ensures that the I concurrence forms a mea-
sure of entanglement on its own. We have further discussed
the effect of the mixing of bipartite quantum systems on the
complementarity relation. In this case the complementarity
relation becomes an inequality but, more importantly, based
on recent progress in the quantification of the generalized I
concurrence for mixed quantum systems �39�, a lower bound
for the complementarity relation has been found.

Finally, we have studied some implications of the comple-
mentarity relation on n-port interferometers with which-path
detection schemes and derived a proper definition of distin-
guishability. The concept of distinguishability in an n-port
interferometer has been a controversial subject �16–18� since
the complementarity relation between distinguishability and
visibility, in general, was not saturated even in pure quantum
systems �17,18�. This, however, makes the concept of
complementarity between distinguishability and visibility
useless since both quantities can increase or decrease at the
same time and are thus not mutually exclusive.

We have shown that this unsatisfactory behavior has its
origin in a misconception of distinguishability and derived a
proper definition of the squared distinguishability which is
the sum of the squared I concurrence and the squared pre-
dictability. Thus, distinguishability is a quantity which com-
bines two mutually exclusive properties in one and, conse-

quently, there are cases where a definition based on
measurements cannot give satisfactory results. This is the
case, in particular, when the Hilbert space dimension of the
detector is smaller than that of the interfering quantum object
for which the measurement-based definition of distinguish-
ability can be smaller than that of the properly defined dis-
tinguishability. With the properly defined distinguishability
the complementarity relation between distinguishability and
visibility is, of course, saturated for pure systems. In sum-
mary, the concept of complementarity goes far beyond wave-
particle duality and can be effectively applied for composite
systems of arbitrary dimensions.
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