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I. INTRODUCTION

For heavy atoms, it is necessary to take relativistic effects
into account. However, there is no equivalent of the well-
known N-body �nonrelativistic� Schrödinger theory involv-
ing the Dirac operator, because of its negative spectrum. The
correct theory is quantum electrodynamics �QED�. This
theory has a remarkable predictive power but its description
in terms of perturbation theory restricts its range of applica-
bility. In fact a mathematically consistent formulation of the
nonperturbative theory is still unknown. On the other hand,
effective models deduced from nonrelativistic theories �such
as the Dirac-Hartree-Fock model �1�� suffer from inconsis-
tencies: for instance, a ground state never minimizes the
physical energy which is always unbounded from below.

Here we study a variational model based on a physical
energy which can be minimized to obtain the ground state in
a chosen charge sector. Our model describes the behavior of
a finite number of particles �electrons�, coupled to that of the
Dirac sea which can become polarized. Although it plays a
minor role in the calculation of the Lamb shift for the ordi-
nary hydrogen atom �comparing to other electrodynamic
phenomena�, vacuum polarization is important for high-Z at-
oms �2,3� and even plays a crucial role for muonic atoms
�4,5�. We show that the introduction of the vacuum in the
model is the solution to deal with the negative energies of the
Dirac operator and obtain a well-defined ground state. This
was predicted by Chaix and Iracane in Ref. �6�, p. 3813.

Our results are fully nonperturbative and mathematically
rigorous. The corresponding proofs are lengthy and therefore

published elsewhere �7–10�. Unfortunately, we have not yet
been able to include the photon field in the model for math-
ematical reasons, but a model with photons can be formally
written following our ideas. We emphasize that our goal is
not to obtain all the QED effects accurately but rather to
show how the introduction of the self-consistent vacuum
changes dramatically the general properties of the model,
leading to a well-defined variational theory. The fact that
optimal states are found by a minimization principle is im-
portant for computational purposes and is essential for a jus-
tification of relativistic density functional theory �11,12�.

Our methodology is as follows. We consider a Hartree-
Fock–type model in which particles interact through the
Coulomb potential and with a kinetic energy given by the
Dirac operator. Since we do not normal order the underlying
Hamiltonian, the kinetic energy is unbounded from below.
However, we can as a first step construct the free Dirac sea
by means of a thermodynamic limit. It is formally the mini-
mizer of the Hartree-Fock energy. This state is not the usual
sea of negative electrons of the free Dirac operator because
all interactions between particles are taken into account, but
it corresponds to filling negative energies of an effective
mean-field translation-invariant operator. As a second step
we introduce an external field potential and obtain a
bounded-below energy by subtracting the �infinite� energy of
the free self-consistent Dirac sea. In other words, we use the
translation-invariant free vacuum as a reference and describe
variations compared to it. We emphasize that this methodol-
ogy is general and can be applied to other infinite quantum
systems. It was used for the modeling of defects in crystals in
Ref. �13�.

II. FORMAL DERIVATION OF THE MODEL

We start with the formal QED Hamiltonian written in
Coulomb gauge, in the presence of an external electromag-
netic potential �V ,a�, see Refs. �14–18�,
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HV,a =� �*�x��� · �− i � − A�x� − a�x�� + m����x�dx

+� V�x���x�dx +
�

2
� � ��x���y�

�x − y�
dxdy + Hf . �1�

In this formula, ��x� is the second quantized field operator
which annihilates an electron at x and satisfies the anticom-
mutation relation

�*�x����y�� + ��y���*�x�� = 2��,���x − y� . �2�

The operator ��x� is the density operator defined by

��x� = 	
�=1

4
���

*�x�,���x��
2

, �3�

where �a ,b�=ab−ba. The operator Hf describes the kinetic
energy of the photons

Hf =
1

8	�
� ��� 
 A�x��2 + �Et�x��2�dx

=
1

�
	

�=1,2
�

R3
dk�k�a�

*�k�a��k� + const

�const indicates an infinite constant�. The operators A�x� and
Et�x� are the electromagnetic field operators for the photons
and a�

*�k� is the creation operator of a photon with momen-
tum k and polarization �.

In Eq. �1�, �V ,a� is an external electromagnetic potential,
for instance created by a set of nuclei. We use the notation

D0 = − i� · � + m�

for the Dirac operator. The constants m and � appearing in
Eq. �1� are, respectively, the �bare� mass and �bare� Sommer-
feld fine-structure constant for the electron. The units are
chosen such that �=c=1. The Hamiltonian HV,a formally
acts on the Fock space,

F = Fe � Fph,

where Fe is the fermionic Fock space for the electrons and
Fph is the bosonic Fock space for the photons.

We emphasize that Eq. �1� does not contain any normal
ordering or notion of �bare� electrons and positrons: ��x�
can annihilate electrons of negative kinetic energy. The dis-
tinction between electrons and positrons should be a result of
the theory and not an input. The commutator used in the
formula �3� of ��x� is a kind of renormalization, independent
of any reference. It is due to Heisenberg �15� �see also Ref.
�19�, Eq. �96�� and it is necessary for a covariant formulation
of QED, see Ref. �18�, Eq. �1.14� and Ref. �20�, Eq. �38�.
More precisely, the Hamiltonian HV,a possesses the interest-
ing property of being invariant under charge conjugation
since the following relations hold formally:

C��x�C−1 = − ��x�, CHV,aC−1 = H−V,a,

where C is the charge conjugation operator acting on the
Fock space.

In our study of the QED Hamiltonian HV,a, we shall make
two approximations: �i� we neglect photons and assume there
is no external magnetic field, a
0; �ii� we work in a mean-
field theory, i.e., we restrict the Hamiltonian to Hartree-Fock
states. These approximations are of a different importance.
Neglecting photons is of course a very rough approximation
as it will forbid us to describe important physical effects
occurring in QED such as the self-energies of the electrons,
the biggest contribution to the Lamb shift. But we do that
only for mathematical reasons: we were not yet able to ex-
tend most of the results presented below when photons are
taken into account. Formally, a large part of our study is
exactly the same with photons �when they are treated by a
mean-field procedure�. We hope to come back to this point in
the near future.

The second approximation which we make by restricting
ourselves to Hartree-Fock �HF� states is more fundamental
and many of our results are specific to this case. Neverthe-
less, some of our general ideas may be applicable to the full
QED model.

Let us recall that the electronic one-body density matrix
�two point function� of any electronic state �
��Fe is de-
fined as

P�x,y��,�� = �
��*�x����y����
� .

In view of Eq. �3�, it is natural to introduce a renormalized
one-body density matrix

��x,y��,�� =

� ���x��
* ,��y����

2
�
� .

By Eq. �2�, we obtain the simple relation

� = P −
I

2
,

where I is the identity operator. Electronic Hartree-Fock
states form a subset ��
P���Fe of states which are com-
pletely determined by their density matrix P �or equivalently
by their renormalized density matrix �= P− I /2�. Recall that
if

�
� = ��1 ¯ �N�

is a Hartree-Fock states with N occupied orbitals �1 , . . . ,�N,
then the associated density matrix P is just the orthogonal
projector on Span��1 , . . . ,�N�,

P = 	
i=1

N

��i���i� .

For a formal Hartree-Fock state with infinitely many occu-
pied orbitals

�
� = ��1 ¯ �N ¯ � ,

we also obtain

P = 	
occ

��i���i� .

Hence
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� = P −
I

2
=

P − P�

2
=

1

2�	occ
��i���i� − 	

unocc
��i���i�� .

The associated density of charge is formally given by

���x� = �
���x��
� =
1

2�	occ
��i�x��2 − 	

unocc
��i�x��2� . �4�

Now we can compute the energy of any state �
P� � �0�
where �
P� is a Hartree-Fock state in Fe and �0��Fph is the
photonic vacuum. We obtain

�0� � �
P�HV,0�
P� � �0� = EHF
V �P − I/2� + const

where const is an infinite constant and

EHF
V ��� = tr�D0�� +� V�x����x�dx

+
�

2
� � ���x����y�

�x − y�
dxdy −

�

2
� � ���x,y��2

�x − y�
dxdy .

�5�

The reader can recognize the well-known Hartree-Fock en-
ergy, but applied to the renormalized density matrix �= P
− I /2 instead of the usual density matrix P. The last two
terms of the first line are, respectively, the kinetic energy and
the interaction energy of the electrons with the external po-
tential V. In the second line appear, respectively, the so-
called direct and exchange terms. In relativistic density func-
tional theory �11,12�, the exchange term is approximated by
a function of �� and its derivatives only.

Any stationary point of the above energy satisfies the first
order equation �written in terms of the usual density matrix
P=�+ I /2�,

�P,FP−I/2� = 0,

where FP−I/2 is the Fock operator

FP−I/2 = D0 + V + ���P−I/2� �
1

�x�
− �

�P − I/2��x,y�
�x − y�

.

Recall the definition of the convolution f �g=�R3f�x
−y�g�y�dy. For a minimizer �in a chosen charge sector�, one
will have the more precise equation

P = ��−�,���FP−I/2� ,

where � is a Fermi level and ��−�,���A� is a mathematical
notation for the spectral projector of A corresponding to fill-
ing all energies ��. Saying this differently, one obtains a
Hartree-Fock state with infinitely many occupied orbitals, all
having an energy ��. We shall give a precise interpretation
of this equation later on.

It is time to be concerned about the mathematical mean-
ing of the formulas we have formally derived up to now, in
particular the definition of the energy �5�. Unfortunately, the
latter does not make any sense for the following reason:
when P is an orthogonal projector �as this is the case for HF
states�, �= P− I /2 is never a compact operator in an infinite

dimension space. Hence none of the terms appearing in Eq.
�5� has a clear mathematical meaning. Formally, one has
EHF

V �P− I /2�=−� for any density matrix P.
In Ref. �10�, we proposed to overcome this difficulty in

the following way: we restrict the whole system to a box of
size L with periodic boundary conditions and an ultraviolet
cutoff � in the Fourier domain. Then all the above formulas
make perfect sense because we are in a finite-dimensional
setting. In particular, one can define minimizers of the HF
energy with or without the external field V, with or without a
charge constraint. Then, we look at the limit of the minimizer
in the considered class when the size of the box grows, L
→�, but the cutoff � stays fixed. The limit �if it exists� is the
formal minimizer of the unbounded below energy EHF

V .
Actually we shall essentially use this method to define the

free vacuum �the global minimizer of EHF
0 when V=0�. Once

the free vacuum has been found, we formally subtract its
�infinite� energy to the expression �5� and obtain a well-
defined bounded below energy called Bogoliubov-Dirac-
Fock and which is related to a work of Chaix and Iracane �6�.

Notice the ultraviolet cutoff � is fixed during the whole
study. It is only at the very end that we can tackle the diffi-
cult task to remove it by renormalization. We shall also dis-
cuss the appearance of the Landau pole.

We explain all that in details in the next sections.

III. RESTRICTION OF THE SYSTEM TO A BOX
AND DEFINITION OF THE FREE VACUUM

Let us consider a box of size L, CLª �−L /2 ;L /2�3 and
limit the system to this box, with periodic boundary condi-
tions. For simplicity, we also periodize the Coulomb poten-
tial and introduce

GL�x� =
1

L3� 	
k�2	Z3/L\�0�

4	

�k�2
eikx + cL2� , �6�

where c is chosen such that G�0. Furthermore, we add an
ultraviolet cutoff �, i.e., we choose as one-body space the
finite-dimensional

H�
L
ª Span�eik·x�k � �2	Z3

L
, �k� � �� .

The periodic Hartree-Fock energy �without external field V�
is then defined as

EL
0��L� = tr�D0�L� +

�

2
� � ��L

�x�GL�x − y���L
�y�dxdy

−
�

2
� � ��L�x,y��2GL�x − y�dxdy . �7�

This expression is well defined for all renormalized density
matrices �L acting on the one-body space H�

L and satisfying
the condition that �L+ I /2 is an orthogonal projector. Indeed,
following a method of Lieb �21�, we can even relax this
condition and work under the assumption that
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− I/2 � �L � I/2. �8�

It is possible to define the QED Hamiltonian without photons
in the box in the same way, see �10�. Notice the fermionic
Fock space built on the one-body space H�

L is also finite
dimensional.

The minimizing problem defining the free HF vacuum in
the box reads

EL
0
ª inf

−I/2��L�I/2
EL

0��L� .

It was shown in Ref. �10�, theorem 2.7, that for L�1 and
0���4/	 this problem admits a unique minimizer �L

0,
which has several interesting properties. First it takes the
form �L

0 = PL
0 − I /2 where PL

0 is an orthogonal projector acting
on H�

L , hence the relaxation �8� does not change the mini-
mum. Then �L

0 is a translation-invariant operator, meaning
that it is a multiplication operator in the Fourier domain,
�L

0 =�L
0�k�. It can also be proved that the associated density of

charge vanishes, ��L
0 
0. This comes from the fact that �L

0

has a very special form which we do not detail as we are
more interested in the properties of the limit of �L

0 as L
→�.

Indeed, it was shown in Ref. �10�, theorem 2.7, that

�L
0 → �0

uniformly as functions of the Fourier variable and that

EL
0

L3 → ē �9�

as L→�. The operator �0 is the density matrix of the free
Hartree-Fock vacuum in the whole space �with the ultravio-
let cutoff ��, which formally minimizes the no-photon QED
Hartree-Fock energy EHF

0 in spite of the fact that its energy is
−�.

We now describe the interesting properties of �0, which
were proved in Ref. �10� theorem 2.2, and Ref. �22�. First
�0=�0�p� is a translation-invariant operator acting on the
one-body space

H� ª �f � L2�R3,C4�,Supp� f̂� � B�0,���

of functions whose Fourier transform is supported in the ball
of radius � �the natural “limit” of H�

L �. One has �0=P−
0

− I /2, where P−
0 is an orthogonal projector which satisfies the

following self-consistent field �SCF� equation:

�P−
0 = ��−�;0��D0� ,

D0 = D0 − �
�P−

0 − I/2��x − y�
�x − y�

. � �10�

The operator D0 is the self-consistent Fock operator of the
free vacuum P−

0. It was shown that it takes the special form

D0�p� = g1��p��� · p + g0��p���

with

1 � g1��p�� �
g0��p��

m
;

hence

�D0�p�� � �D0�p�� = �g1��p��2�p�2 + g0��p��2, �11�

i.e., the gap of D0 is bigger than the one of the original Dirac
operator D0. Notice Eq. �10� corresponds to the usual Dirac’s
picture that the free vacuum is a Hartree-Fock state occupy-
ing all the negative energies of a Dirac-type operator �see
Fig. 1�. If �=0 �no interaction�, then we obtain the original
picture P−

0 = P−
0
ª��−�;0��D0�, but in general P−

0 � P−
0.

Notice Eq. �10� can be rewritten in terms of �0 in the form

�0�p� = −
D0�p�

2�D0�p��
= −

g1��p��

2�g1��p��2�p�2 + g0��p��2
� · p

−
g0��p��

2�g1��p��2�p�2 + g0��p��2
� . �12�

In QED, the Feynman propagator at equal times

SF�x,y ;tx = ty� ª i��x,y��

is often expressed using the Källén-Lehmann representation
�14,23,24�, based on relativistic invariances. Although our
model is not fully relativistically invariant �we discard pho-
tons and use an ultraviolet cutoff �� and is only defined in
the mean-field approximation, our solution �12� has exactly
the form which may be derived from the Källén-Lehmann
representation for the equal time propagator. In four-
dimensional full QED, a self-consistent equation similar to
Eq. �10� is well known and used. These so-called Schwinger-
Dyson equations �25,26� have been approximately solved for
the free vacuum case first by Landau et al. in Refs. �27,28�,
and then by many authors �see, e.g., Refs. �29–31��. Equation
�10� has already been studied by Lieb and Siedentop in Ref.
�22� in a different setting.

We notice that

��0 
 0.

This is indeed a consequence of formula �12�: one has
C�0C−1=−�0, where C is the charge conjugation operator.
Hence any negative energy state of �0 can be associated to a
positive energy state obtained by charge conjugation. The
result follows from Eq. �4�. In mathematical terms, ��0�x�
=trC4�0�x ,x�=0, the Dirac matrices being traceless.

We want to mention a last interesting property of �0: it is
indeed the unique minimizer of the energy per unit volume
defined by

σ
(
D0

)

P0−

FIG. 1. The free vacuum P−
0 fills the negative energies of the

SCF Fock operator D0.
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T��� =
1

�2	�3�
�p���

trC4�D0�p���p��dp

−
�

�2	�5 � �
�p�,�q���

trC4���p���q��

�p − q�2
dpdq , �13�

where we recall that � is the ultraviolet cutoff. This property
can be used for the numerical computation of the free
vacuum �0. Lastly, we have that the energy per unit volume
of the free vacuum is

ē = inf
�=��p�,

−I/2���I/2

T��� ,

the limit appearing in Eq. �9� as proved in Ref. �10�, theorem
2.7.

IV. BOGOLIUBOV-DIRAC-FOCK THEORY

If we summarize, using a thermodynamic limit we have
been able to define the free vacuum which is the unique
minimizer of EHF

0 and despite the fact that its energy is −�.
The free vacuum is the negative Dirac sea of an SCF
translation-invariant Dirac Fock operator D0. Now we use
this vacuum as a reference and subtract its �infinite� energy
to the original HF energy, in order to obtain a bounded-
below function. Formally, this gives for any state �= P
− I /2 the so-called Bogoliubov-Dirac-Fock (BDF) energy
�6,32�,

EBDF
V �P − P−

0� ª �0� � �
P�HV,0�
P� � �0� − �
0�H0,0�
0�

= EHF
0 �P − I/2� − EHF

0 �P−
0 − I/2�

= tr D0�P − P−
0� +� V�x��P−P−

0�x�dx

+
�

2
� � �P−P−

0�x��P−P−
0�y�

�x − y�
dxdy

−
�

2
� � ��P − P−

0��x,y��2

�x − y�
dxdy , �14�

where �
0�= �
P−
0� � �0� is the no-photon HF free vacuum in

Fock space found in the previous section. In Eq. �14� we
have used that �P−

0−I/2
0 and recognized the formula �10� of
D0.

The BDF energy measures the energy of any state � com-
pared to the �infinite� energy of the free vacuum �0. Also
Q= P−P−

0 describes the variations counted with respect to
the free Dirac sea. The BDF energy was first introduced by
Chaix and Iracane �6� but with P−

0 and D0 replaced by P−
0

and D0. It was first mathematically studied in Ref. �33�.
Chaix and Iracane obtained their energy by imposing from
the beginning a normal ordering on the QED Hamiltonian,
taking as definition of positrons and electrons the ones given
by the decomposition induced by P−

0. If �=0 our model is
equivalent to the one of Chaix-Iracane, but it is not when
��0. It seems that normal ordering is only fully relevant for
the description of noninteracting systems.

Once again the above formal computation �14� can be
justified by a thermodynamic limit. We will show that the
last expression of EBDF

V is well-defined mathematically and
we will be able to find minimizers of this energy. We can
prove that any sequence of minimizers in boxes will con-
verge to these states in the thermodynamic limit L→�, but
we do not give more details and refer to Ref. �10�, theorem
2.9.

We now explain how it is possible to give a mathematical
meaning to the last expression of Eq. �14�. Some details
which may appear as mathematical technicalities will later
reveal to be crucial for renormalization, hence related to im-
portant physical properties. We recall that an operator Q is
said to be trace class when 	i��i��Q*Q��i��� in some or-
thonormal basis ��i� of the one-body space. Then tr�Q�
=	i��i�Q��i� is well defined and does not depend on the
chosen basis. In principle it is possible that the series
	i��i�Q��i� converges for one specific basis even if the op-
erator is not trace class. This will be the case for our operator
P−P−

0.
Given an operator Q, we define Q���

ªP�
0QP��

0 , where
� ,��� �±� and P+

0
ª1−P−

0. We say that an operator is
P−

0-trace class if Q++ and Q−− are trace class and we define

tr0�Q� ª tr�Q++� + tr�Q−−� = 	
i

��i
+�Q��i

+� + 	
i

��i
−�Q��i

−�

for any chosen basis ��i
+�� ��i

−� adapted to the decomposi-
tion induced by P−

0. Of course, if Q is trace class then it is
also P−

0-trace class but the converse is not true.
Now we remark that when tr�P−P−

0�2�� for a projector
P, the operator Q= P−P−

0 is automatically P−
0-trace class.

The reason is that

�P − P−
0�2 = �P − P−

0�++ − �P − P−
0�−−.

Additionally tr0�P−P−
0� is always an integer as proved in

Ref. �7�, lemma 2 and Ref. �34�. We interpret etr0�P−P−
0� as

the charge of the state P �measured with respect to the free
vacuum�. Notice the condition tr�P−P−

0�2�� is a classical
requirement of the Shale-Stinespring theorem �51� which
guarantees equivalence of Fock space representations.

Now we notice that when P−P−
0 is P−

0-trace class,

tr0�D0�P − P−
0�� = tr��D0���P − P−

0�++ − �P − P−
0�−−��

= tr�D0��P − P−
0�2 � 0,

i.e., the kinetic energy is non-negative and well defined when
tr�P−P−

0�2��. Using Kato’s inequality �x�−1� �	 /2��p� and
Eq. �11� we infer, following Ref. �33�,

�

2
� � ��P − P−

0��x,y��2

�x − y�
dxdy �

	�

4
tr��p��P − P−

0�2�

�
	�

4
tr0�D0�P − P−

0�� ,

�15�

i.e., the last term of Eq. �14� is also well defined.
Now we assume that
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V = − �� �
1

�x�

is the electrostatic potential created by a set of extended
nuclei with �rapidly decaying and smooth� total density �,
��=Z. We define the BDF energy of Q= P−P−

0 by

EBDF
V �Q� ª tr0�D0Q� − �D��Q,�� +

�

2
D��Q,�Q�

−
�

2
� � �Q�x,y��2

�x − y�
dxdy ,

where

D��,��� ª� � ��x����y�
�x − y�

dxdy = 4	� �̂�k��̂��k�
�k�2

dk

is the so-called Coulomb scalar product.
It was proved in Ref. �9� lemma 1 that when tr Q2�� and

Q is P−
0-trace class, then �Q is a well-defined function which

is squared integrable and satisfies D��Q ,�Q���, hence
EBDF

V �Q� is well defined by Eq. �15�. Additionally, we have
when 0���4/	 by Eq. �15� and using that D�· , · � is a
scalar product,

EBDF
V �P − P−

0� � −
�

2
D��,�� � − � ,

hence the BDF energy is bounded from below.
After these mathematical details, we are now able to mini-

mize the BDF energy. We can either look for a global mini-
mizer which will be interpreted as the polarized vacuum in
the presence of the external potential V, or for a minimizer
with a charge constraint

tr0�P − P−
0� = N ,

which will usually represent the state of N electrons coupled
to the self-consistent polarized vacuum. We detail the two
situations in the next sections. In both cases, the obtained
minimizer will be P−

0-trace class but not trace class �except
when V=0�, which will be related to renormalization as we
will explain later.

V. THE POLARIZED VACUUM

The polarized vacuum is by definition the state of lowest
QED energy in the Hartree-Fock no-photon class. By Eq.
�14�, it is also the state of lowest BDF energy. Hence we
consider the following minimization problem:

EV
ª inf EBDF

V �P − P−
0� ,

where the minimization is done over all orthogonal projec-
tors P acting on H� such that P−P−

0 is P−
0-trace class. As

before, the constraint on P can be relaxed following Lieb
�21� and replaced by the convex constraint 0� P� I, but we
do not detail this here.

It was proved in Refs. �7,8� that a minimizer Pvac exists
and that it solves the self-consistent equation

�Pvac = ��−�;0��FPvac−I/2� ,

FPvac−I/2 = D0 + ����Pvac−I/2� − �� �
1

�x�
− �

�Pvac − I/2��x,y�
�x − y�

. �
�16�

Hence one more time the vacuum Pvac corresponds to filling
negative energies of a self-consistent Fock operator �see Fig.
2�. Notice

FPvac−I/2 = F0 + O��2� �17�

where F0=D0+V.
In general, one could have to create electron-positron

pairs if one wants to deform P−
0 into the polarized vacuum

Pvac. But when V is not too strong it was proved in Ref. �8�
that Pvac is unique and neutral:

tr0�Pvac − P−
0� = 0.

In this case the vacuum Pvac only contains virtual electron-
positron pairs compared to P−

0, see the Appendix in Ref. �9�.
In the right-hand side of Eq. �17�, ��Pvac−I/2� represents the

vacuum polarization density, which is self-consistently cre-
ated by the external potential V. Notice that one of the high-
lights our procedure is that although the reference P−

0 appears
in the functional EBDF

V , Eq. �16� is independent of P−
0, show-

ing that the free vacuum energy serves just as a helpful de-
vice.

VI. ATOMS AND MOLECULES

For the study of common physical systems such as atoms
or molecules we have to consider the minimization of the
BDF energy in charge sectors, that is to say, imposing a
constraint of the type

tr0�P − P−
0� = N ,

where N�Z. Of course, we cannot impose the number of
particles, but if V is not too strong and N�0, this will pro-
vide a system of N electrons interacting with the vacuum.
Hence we introduce the following minimization problem:

EV�N� ª inf
tr0�P−P−

0�=N

EBDF
V �P − P−

0� , �18�

where as before P is assumed to be an orthogonal projector
such that P−P−

0 is P−
0-trace class. It is not expected that a

minimizer will always exist. If for instance N is too large
compared to the number Z of nuclei, the system will cer-
tainly be unstable. On the other hand, if Z is too large, pairs
could be created, which complicates the description of the
system. In Ref. �9�, it was proved that when the following
binding conditions hold true:

σ
(
FPvac−1/2

)

Pvac

FIG. 2. The polarized vacuum Pvac in the presence of V fills the
negative energies of the SCF Fock operator FPvac−I/2.

HAINZL et al. PHYSICAL REVIEW A 76, 052104 �2007�

052104-6



EV�N� � EV�N − k� + E0�k� ∀ k � Z \ �0� , �19�

then a minimizer exists for EV�N�. The binding condition
�19� was proved to hold true in Ref. �9� when for instance
0�N�Z and ��1 �nonrelativistic limit�.

Here we assume that there is a minimizer P and that V is
not too strong. Then it was proved in Ref. �9� that P solves
the SCF equation

�P = ��−�;���FP−I/2� ,

FP−I/2 = D0 + ����P−I/2� − �� �
1

�x�
− �

�P − I/2��x,y�
�x − y�

, �
�20�

where � is a Fermi level �a Lagrange multiplier due to the
charge constraint�. We can write

P = Pvac + Pel

where

Pvac = ��−�;0��FP−I/2� and Pel = ��0;���FP−I/2� = 	
i=1

N

��i���i�

with

FP−I/2�i = �i�i

for all eigenvalues �i��. The orbitals ��i�i=1
N describe the

Hartree-Fock state of the N electrons whereas Pvac describes
the SCF polarized vacuum in the presence of the external
field V and the N electrons �see Fig. 3�.

We notice that the decomposition of the state P into N
electrons and the polarized vacuum can be made unambigu-
ous because P satisfies the SCF equation �20�. For a general
state P satisfying tr0�P−P−

0�=N, there is no canonical de-
composition between real and virtual particles.

Now we remark that

FP−I/2 = Fel + ���Pvac−I/2� �
1

�x�
− �

�Pvac − I/2��x,y�
�x − y�

= Fel + O��2� , �21�

where

Fel = D0 + ���Pel
− �� �

1

�x�
− �

Pel�x,y�
�x − y�

is the usual Dirac-Fock operator for N relativistic electrons.
Hence we deduce that the �i’s solve the usual Dirac-Fock
equations �35,1�, perturbed by the SCF vacuum polarization
potentials. An essential feature is of course that these equa-
tions have been obtained by a minimization procedure, con-
trarily to the usual Dirac-Fock case.

Notice the Dirac-Fock model is not obtained as a varia-

tional approximation of the BDF model. But the Dirac-Fock
equations are an approximation of the BDF equations. This
was first noted by Chaix and Iracane in Ref. �6�.

VII. TIME-DEPENDENT EQUATION

The time-dependent equation corresponding to our model
could also be useful, in particular for the study of spontane-
ous pair creation which is usually formulated as an adiabatic
theory on the evolution equation �36,37�. It reads

iṖ�t� = �F�P�t�−I/2�,P�t�� ,

where we choose as initial condition an orthogonal projector
P�0� such that tr�P�0�−P−

0�2��. It was proved in Ref. �38�
that this equation admits a global-in-time solution P�t�, t
�R, which has a constant BDF energy and charge

EBDF
V �P�t� − P−

0� = EBDF
V �P�0� − P−

0� ,

tr0�P�t� − P−
0� = tr0�P�0� − P−

0�, ∀ t � R .

VIII. RENORMALIZATION

In regular QED, the divergences of the �appropriately de-
fined� physical measurable quantities are usually eliminated
by means of a mass and a charge renormalization. The main
idea is to assume that the parameters � and m appearing in
the theory are indeed bare parameters which are not physi-
cally observable. The physical parameters are assumed to be
functions of �, m and the cutoff �

�ph = �ph��,m,��, mph = mph��,m,��

and equal the physical values obtained in experiment. These
functions should be inverted in order to express the unknown
bare quantities in term of the physical quantities,

� = ���ph,mph,��, m = m��ph,mph,�� . �22�

Using these functions, one expects to remove �in some sense
that needs to be made precise� all divergences from physi-
cally measurable quantities.

Mass and charge renormalization however does not re-
move all divergences in the theory. Certain quantities, e.g.,
the bare Feynman propagator SF �either at equal times or at
general space time points�, are still divergent. The expecta-
tion is that all these divergences cancel in physically measur-
able quantities and that they are therefore of no real rel-
evance in formulating the theory.

Although there is no real need to do this, it is often con-
venient to introduce a renormalization of the bare Feynman
propagator SF. This is referred to as a wave-function renor-
malization. In full QED �25� it is claimed that the divergence
in the Feynman propagator may be removed by a multiplica-
tive renormalization and that the renormalized propagator
has the same pole near mass shell in four-momentum space
as a free propagator corresponding to a particle with the cor-
rect physical mass.

Note that in practice, this theoretical renormalization pro-
cedure is always used to justify the dropping of the divergent

σ
(
FP−1/2

)

Pvac ϕi’s

P µ

FIG. 3. Decomposition of the system “vacuum+N electrons” for
the solution P in the Nth charge sector.
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terms obtained at each order of the perturbation theory �25�.
For this fact to be true, it is particularly important that renor-
malization can be expressed by means of multiplicative pa-
rameters in front of the different propagators �25�.

In Hartree-Fock QED, it is not clear at all if the usual
renormalization program of QED can be applied, especially
when photons are not included. In Ref. �37�, pp. 194–195, it
is argued that mass and charge renormalization alone is not
enough to completely remove the divergences of the HF
theory by means of multiplicative parameters.

In any case, the physical mass and charge have to be
identified within the model. We propose the following defi-
nitions. The physical mass is just the lowest energy of a free
electron, hence

mph��,m,�� ª E0�1� , �23�

which was defined in Eq. �18�.
To define the physical coupling constant, we consider an

extended nucleus of density �, ��=Z, and put it in the
vacuum. Let Qvac= Pvac−P−

0 be the polarized vacuum solu-
tion of Eq. �16�. We assume that � is not too strong such that
the vacuum stays neutral, tr0�Qvac�=0. Of course in reality it
is impossible to distinguish the nucleus from the vacuum and
the charge which is observed far away from the nucleus is
just

e�Z − �
R3

�Qvac�
�provided �Qvac

is an L1 function�. Hence we may define

�phys��,m,�� ª ��1 − Z−1�
R3

�Qvac� . �24�

If the above formula still depends on Z, one can take the
limit as Z→0.

It is very important to realize that charge renormalization
is based on the fact that the operator Qvac is not trace class. If
it were trace class, one would of course have tr0�Qvac�=0
=��Qvac

, hence �ph=�. Therefore, the mathematical difficulty
that a minimizer of the BDF energy is never trace class �ex-
cept when �=0� is the origin of charge renormalization. Also
this shows that in a finite-dimensional space �for computa-
tional purpose for instance�, renormalization is certainly
more involved as all operators are trace class.

Both Eqs. �23� and �24� would define mph and �ph as
extremely complicated nonlinear functions of �, m, and �. A
challenging task is to study the finiteness of measurable
quantities such as for instance the energy of an electron in
the presence of an external field EV�1�, when �ph and mph are
fixed to be the observed physical quantities. We do not know

if this is possible when photons are not taken into account.
It is however possible to completely solve the above pro-

gram for a �further� simplified model called the reduced
Hartree-Fock, as was done in Ref. �8�. We explain that now.

The reduced HF �RHF� model is just obtained by neglect-
ing the exchange term in the HF energy �5�,

ERHF
V ��� = tr�D0�� +� V�x����x�dx

+
�

2
� � ���x����y�

�x − y�
dxdy . �25�

This is natural as the exchange term is usually treated to-
gether with a term describing the interaction with the photon
field to form the standard electron self-energy that is a sub-
ject of the mass renormalization.

The so-obtained model is much simpler than the HF
model as the energy is now a convex function of �. All what
we have said concerning the case with exchange term can be
extended to this simplified model. The free vacuum is even a
simpler object as in Eq. �10�, only the exchange term created
a self-consistent field. Hence we obtain

P−
0 = P−

0 and D0 = D0.

The reduced Bogoliubov-Dirac-Fock �RBDF� energy then
reads �8�

ERBDF
V �Q� = tr0�D0Q� − �D��Q,�� +

�

2
D��Q,�Q� . �26�

It can easily be shown that for a free electron in the vacuum
�9�, lemma 3,

inf
tr0�P−P−

0�=1

ERBDF
0 �P − P−

0� = m ,

i.e., mph=m and there is no mass renormalization for the
reduced BDF model.

Consider now a small external density �, ��=Z and let
Qvac be the associated polarized vacuum, with density �vac
ª�Qvac

. The SCF equation satisfied by Qvac reads

Qvac = ��−�;0��F� − P−
0 , �27�

where

F = D0 + ���vac − �� �
1

�x�
.

We expand Eq. �27� in powers of �, using that 0���F�
when � is small enough. We can use the resolvent represen-
tation ��39�, Sec. VI, lemma 5.6� to derive the self-consistent
equation for the density �vac,

�vac�x� = −
1

2	
�

−�

�

d� TrC4� 1

D0 + ���Q − �� �
1

�x�
+ i�

−
1

D0 + i���x,x� . �28�

Applying the resolvent equation
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1

A − �B
−

1

A
= �

1

A
B

1

A
+ �2 1

A
B

1

A
B

1

A
+ �3 1

A
B

1

A
B

1

A
B

1

A − �B

and using Furry’s theorem �40�, telling us that the corresponding �2 term with two potentials vanish, we obtain

�vac = �F1��vac − �� + F3����vac − ��� , �29�

F3����x� =
1

2	
�

−�

�

d� TrC4� 1

D0 + i�
� �

1

�x�
1

D0 + i�
� �

1

�x�
1

D0 + i�
� �

1

�x�
1

D0 + � �
1

�x�
+ i���x,x� .

As realized first by Dirac �41,42� and Heisenberg �15�, cf.
also Ref. �43�, the term F1��� plays a particular role since it
is logarithmically ultraviolet divergent. Following, e.g.,
Pauli-Rose �44�, one evaluates in Fourier representation

F̂1����k� = − �̂�k�B��k� ,

where �Ref. �44�, Eqs. �5�–�9�� B��k�=B�−C��k�, with

B� = B��0� =
1

	
�

0

�/�1+�2 z2 − z4/3

1 − z2 dz

=
2

3	
ln��� −

5

9	
+

2

3	
ln 2 + O�1/�2�

�30�

and

lim
�→�

C��k� = C�k� = −
1

2	
�

0

1

dx�1 − x2�


ln�1 + k2�1 − x2�/4� , �31�

which was first calculated by Serber and Uehling �17,45�.
We can now compute the physical coupling constant. First

we rewrite Eq. �29� in Fourier space as

�1 + �B���̂vac�k� = �B��̂�k� + �C��k���̂vac − �̂��k�

+ F̂3����vac − ����k� . �32�

Assuming that �vac�L1�R3� and taking k=0, we find

� �vac =
�B�Z

1 + �B�

� 0,

where we have used that C��0�= F̂3����vac−����0�=0.
Hence by Eq. �24� we find

�ph =
�

1 + �B�

. �33�

It follows that necessarily �phB��1. We emphasize that al-
though in the literature the expression of �ph is sometimes
expanded to obtain �ph���1−�B�� leading to the condition
�B��1, the real constraint indeed applies to the physically
observed �ph and not the bare one.

We now show how to renormalize the SCF equation using
Eq. �33�. Denote �=�vac−� the total �observable� density,
then Eq. �29� can be rewritten in terms of �,

��̂ = − ��̂ − �2B��̂ + �2C��k��̂ + �F̂3���� �34�

and

��̂ = −
�

1 + �B�

�̂ +
�

1 + �B�

C��k���̂ +
�

1 + �B�

F̂3���� .

�35�

To perform our renormalization scheme we fix as physical
�renormalized� objects �ph�ph=��. Notice the renormaliza-
tion of the density � is similar to a wave-function renormal-
ization of the �equal time� Feynman propagator as explained
above. We can rewrite the self-consistent equation �34� as

�ph�̂ph = − �ph�̂ + �ph
2 C��k��̂ph + �phF̂3��ph�ph� , �36�

independently of the bare �. Notice that Eq. �36� satisfied by
�ph�ph is exactly the same as Eq. �34� satisfied by ��, but
with the logarithmically divergent term �2B��̂ dropped.
Therefore, as usual in QED �25�, the charge renormalization
allows to simply justify the dropping of the divergent terms
in the self-consistent equation. In practice �2�, one would
solve Eq. �36� with �ph�1/137 and with C��k� replaced by
its limit C�k�.

Returning to the effective Hamiltonian F=D0+���vac

−���1/ �x� and inserting Eq. �36�, i.e., expressing in terms of
the physical objects, we obtain

D0 + �ph�ph �
1

�x�
= D0 − �ph� �

1

�x�
+ Veff, �37�

with

Veff =
2

	3F
−1��ph

2 C��k��̂ph�k� + �phF̂3��ph�ph�
k2 ��x�

the effective self-consistent potential, where F−1 denotes the
inverse Fourier transform. Notice, this equation is valid for
any strength of the external potential. However, expanding
�ph in �ph, we obtain to lowest order in �ph,
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Veff � �ph
2 2

	3F
−1�C��k��̂�k�

k2 ��x�

�
�ph

2

3	
�

1

�

dt�t2 − 1�1/2� 2

t2 +
1

t4� � dx�e−2�x−x��t ��x��
�x − x��

,

the Uehling potential �46�.

IX. THE LANDAU POLE

We notice that Eq. �33� can be written as

� =
�ph

1 − �phB�

.

The fact that the denominator can go to zero is usually called
the Landau pole. Also we see that

�phB� � 1, �38�

which proves that �ph→0 when �→�, independently of �.
In Ref. �8�, theorem 2, it was proved that for a fixed �and

not too strong� external field V=−��
1
�x� , the unique polarized

vacuum P� of the reduced BDF model satisfies

lim
�→�

tr�P� − P−
0�2 = 0 and

lim
�→�

D��P�−P−
0 − �,�P�−P−

0 − �� = 0.

In words, when �→�, the vacuum polarization density
totally cancels the external density �, for �P�−P−

0 →�. But
since P�− P−

0 →0, this means that in the limit �→�, P�

− P−
0 and its associated density become independent. There-

fore, the minimization without cutoff makes no sense both
from a mathematical and physical point of view. Indeed all
this easily implies that when no cutoff is imposed and when
��0, the minimum of the reduced BDF functional is not
attained. In physics, this “nullification” of the theory as the
cutoff � diverges has been first suggested by Landau et al.
�28,47–49� and later studied by Pomeranchuk et al. �50�.

We notice that with the usual value �ph� 1
137 , Eq. �38�

leads to the physical bound ��10280 �in units of mc2�.

X. CONCLUSION

We have presented a model which is obtained as the
mean-field approximation of no-photon QED. We believe
that the Hartree-Fock approximation is an interesting model
as it possesses already many peculiarities of the full QED
and it is much simpler to handle. In particular, optimized
states always correspond to filling the spectrum of a one-
body operator up to some Fermi level �, which corresponds
to the original interpretation of Dirac.

The main advantage of this model is that it is variational:
states can be found by minimizing an energy, contrarily to
the usual relativistic effective models used for instance in
quantum chemistry. This provides a better interpretation of
the optimal states. Also the model provides a justification of
the Dirac-Fock equations, which are seen as a O��2� ap-
proximation of a set of equations obtained by minimization.

Another advantage of the model is that it is nonperturba-
tive: the only constraint to have a globally stable model is
that 0���4/	. The equations are quite simple and renor-
malization can be done nonperturbatively to all orders �at
least when the exchange term is neglected�.

The main idea in the derivation of our model was first to
define the SCF free vacuum by a thermodynamic limit, and
then to subtract its infinite energy in order to obtain a
bounded-below function. This method replaces the usual nor-
mal ordering which can only be used for noninteracting sys-
tems. In principle, the same method could be used for the full
QED. But probably it is not possible to express the differ-
ence between the energy of the considered state and the one
of the free vacuum in a simple way.

We have neglected photons but in principle one could take
the photon field into account. The mathematical study of
such a theory remains to be done.
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