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We formulate a description of Einstein-Podolsky-Rosen-type experiments with photons which is especially
convenient in the discussion of questions concerning Lorentz covariance. We classify all Lorentz-covariant
two-photon states with sharp momenta and define observables corresponding to measurements of the linear
polarization of photons. We also calculate explicitly the Einstein-Podolsky-Rosen correlation function and
coincidence rate in the scalar two-photon state.
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I. INTRODUCTION

In the last decade the relativistic aspects of quantum in-
formation theory and Einstein-Podolsky-Rosen �EPR� corre-
lations have been widely discussed �1–42�, mostly for mas-
sive particles. Photons have been discussed in such a context
only in a few papers �4–6,14,25,28–30,35,38�. In a recent
paper �8� the correlation function in the EPR type of experi-
ments with massive particles has been calculated in the co-
variant framework of the quantum field theory formalism.
However, a lot of subtle experiments testing the basics of
quantum mechanics �violation of Bell inequalities, teleporta-
tion, etc.� were performed with photons which are massless
particles �43–45�. Therefore it is very interesting to consider
EPR correlations and other aspects of quantum information
theory for photons in the proper Lorentz-covariant frame-
work. For a discussion of relativistic covariance the most
appropriate is the quantum field theory approach. Neverthe-
less, quantum information problems are usually formulated
in the language of spin degrees of freedom of nonrelativistic
particles. Therefore in this paper we adopt a description of
photon polarization which on the one hand is based on
quantum-electrodynamical Fock space and on the other re-
sembles the nonrelativistic spin. Then we classify all
Lorentz-covariant two-photon states with sharp momenta
and define, in the language of quantum electrodynamics, the
proper observable which can describe the linear polarization
measurements in EPR-type experiments. Next we use these
tools to calculate explicitly the EPR correlation function and
decay rates in the covariant two-photon states. We discuss
also the freedom of choice of the explicit form of Lorentz
group action on basis vectors of the carrier space of the irre-
ducible unitary representation of Poincaré group. This free-
dom corresponds to the freedom of choice of the vector ak
defining the basis states �3� via the rotation �5�. The form of
polarization vectors e��k� �Eq. �26�� and the explicit form of
the linearly polarized photon state �Eqs. �38� and �39�� de-
pend also on the choice of vector ak. Appendix A is devoted
to a detailed discussion of these questions, and we take them
into account throughout the paper. The well-defined behavior
of all the states and observables discussed here under Lor-
entz transformations is the main advantage of our approach.

In Sec. II we establish the notation and briefly recall basic
facts concerning massless representations of the Poincaré
group and free quantum electromagnetic field. In Sec. III we
adopt the description of linear polarization of light which is
especially convenient in the discussion of quantum informa-
tion issues. In Sec. IV we classify all two-photon states
which transform covariantly under the Lorentz group action.
The next section is devoted to a discussion of the proper
observables used by Alice and Bob in the description of
EPR-type experiments. In Sec. VI we calculate correlation
function in EPR experiment in the covariantly transforming
two-photon states. Section VII is devoted to a discussion of
coincidence rates which are usually measured in the EPR
experiments with photons. The last section contains conclud-
ing remarks.

II. PRELIMINARIES

A. Massless representations of the Poincaré group

Let us denote by H the carrier space of the irreducible
massless representation of the Poincaré group. This space is
spanned by the eigenvectors of the four-momentum opera-
tors �k ,��,

P̂��k,�� = k��k,�� , �1�

with k2=0 and � denoting helicity. We assume that vectors
�k ,�� span the space H. We use the following Lorentz-
covariant normalization:

�k�,���k,�� = 2k0�3�k� − k�����. �2�

The vectors �k ,�� can be generated from standard vector

�k̃ ,��, where k̃= �1,0 ,0 ,1�. We have

�k,�� = U�Lk��k̃,�� , �3�

where

k = Lkk̃ = Rnk
B�k0�k̃ . �4�

Here B�k0� denotes pure Lorentz boost along z axis taking

vector k̃ to k0k̃ and Rnk
denotes the rotation which acting on

the vector �1, 0, 0, 1� gives the vector �1,nk�, where nk
=k / �k�. The most general form of Rnk

fulfilling Eq. �4� and
with determinant equal to 1 is the following:*P.Caban@merlin.phys.uni.lodz.pl
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Rnk
= �1 0T

0 ak�nk � ak�nk
	 , �5�

where �ak�=1, ak�nk, and we treat the vectors in Eq. �5� as
column matrices. The explicit form of B�k0� reads

B�k0� =

k02 + 1

2k0 0 0
k02 − 1

2k0

0 1 0 0

0 0 1 0

k02 − 1

2k0 0 0
k02 + 1

2k0

� . �6�

It should be satisfied that

Rñ = I where ñ = �0,0,1� . �7�

Note that conditions �4� and �7� do not determine the rotation
Rnk

uniquely—for the details see Appendix A.
Now, by means of the Wigner procedure we get

U����k,�� = ei����,k���k,�� , �8�

where

ei����,k� = U„R��,k�… , �9�

with the Wigner rotation R�� ,k� given by

R��,k� = L�k
−1�Lk. �10�

In the next subsection we will focus on the representations
with �= ±1 corresponding to photons.

B. Electromagnetic field

The electromagnetic four-potential operator is defined as

Â��x� =
1

�2��3/2 � d3k

2k0 
�=±1

�eikxe���k�a�
†�k�

+ e−ikxe*���k�a��k�� , �11�

where the asterisk denotes complex conjugation and creation
and annihilation operators a�

†�k� and a���k�� fulfill the fol-
lowing commutation relations:

�a�
†�k�,a��

† �k��� = �a��k�,a���k��� = 0, �12�

�a��k�,a��
† �k��� = 2k0��k − k������. �13�

Furthermore, we introduce a Poincaré-invariant vacuum �0�
defined by

�0�0� = 1, a��k��0� = 0. �14�

Thus the one-particle states

a�
†�k��0� �15�

are the basis vectors �k ,�� defined by Eq. �3� of the space H
iff

U���a�
†�k�U†��� = ei����,k�a�

†��k� , �16�

U���a��k�U†��� = e−i����,k�a���k� . �17�

The electromagnetic field operator

F̂���x� = ��Â��x� − ��Â��x� �18�

transforms like a tensor

U���F̂���x�U†��� = �−1�

	�−1�


F̂	
��x� . �19�

We assume the Coulomb gauge

Â0�x� = 0 �20�

and the transversality condition

��Â��x� = 0. �21�

The first of these equations implies e0��k�=0 and the second
k�e���k�=0. As we know e���k� are not four-vectors �46� but
satisfy the following Weinberg condition:

e���k��e−i����,k� = ���
� −

k��

k�0 �0
�	e���k� , �22�

where k�=�k. Therefore of course also Â��x� is not a four-
vector. To find an explicit form of e���k� let us first deter-

mine e���k̃�. We arrive at �choosing arbitrarily the normal-
ization�

e���k̃� =
1
�2


0

1

− i�

0
� . �23�

Now, using Eqs. �3�, �4�, �8�, and �22� we find

e���k� = Rnk

�
�e���k̃� , �24�

which means that

e0��k� = 0, e��k� = Rnk
e��k̃� . �25�

Inserting the explicit form of Rnk
given by Eq. �5� we obtain

e��k� =
1
�2

�ak − i��nk � ak�� . �26�

Equations �4�, �23�, and �25� imply the following conditions:

e*���k�e��k� = ����, �27�


�

e*�i�k�e�j�k� = �ij −
kikj

�k�2
, �28�

k · e��k� = 0. �29�

Finally, the charge conjugation and parity act on the field
operator as follows:

CÂ�x�C−1 = − Â�x� , �30�
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PÂ�x�P−1 = − Â�x�� , �31�

where x�= �x0 ,−x�. These conditions lead to the following
transformation rule for creation operators:

Ca�
†�k�C−1 = − a�

†�k� , �32�

Pa�
†�k�P−1 = ���k�a−�

† �k�� . �33�

From Eq. �33� and the condition P2= ± I we get

���k��−��k�� = 1. �34�

Note that the explicit form of the phase factor ���k� depends
on the choice of the vector ak in Eq. �5�—a detailed discus-
sion of this point can be found in Appendix A after Eq. �A5�.

III. POLARIZATION

In this section we will remind the description of polariza-
tion of photons which is especially convenient in the discus-
sion of correlations in EPR experiments.

In the space of state vectors with definite momentum we
can introduce the following basis:


�

e��k��k,�� �35�

�there are only two independent vectors because k ·e��k�=0�.
Therefore the most general one-photon state with four-
momentum k can be written as

��,k� � 
�

� · e��k��k,�� , �36�

where � is an arbitrary complex vector fulfilling ���2=1. It
holds that

��,k���,p� = 2k0�3�k − p���* · � −
��* · k���� · k�

�k�2 	 .

�37�

The state of the linearly polarized photon with four-
momentum k reads �46�

���,k� =
1
�2

�ei��k, + 1� + e−i��k,− 1�� , �38�

where the real vector �� has the form

�� =
1
�2


�

�e�e−i��� = ak cos � − �nk � ak�sin � . �39�

Equation �37� implies

���,k����,p� = 2k0��k − p�cos�� − ��� . �40�

The angle of polarization, �, is measured with respect to the
vector

��=0 =
1
�2


�

e� = ak. �41�

There is one point which should be clarified here. As was
mentioned before, the choice of vector ak is a matter of

convention—see Appendix A for the details. It is obvious
that in an experiment the linear polarization can be measured
with respect to arbitrarily chosen axis—say, l. However, if l
is not parallel to ak, but an angle between these vectors is
equal to 	, then the photon polarized linearly under the angle

 with respect to l is described by the state vector ��	+
 ,k� or
��	−
 ,k�, depending on the space configuration of vectors l,
ak, and nk�ak. Of course the most comfortable situation we
have when in the experiment the angle of polarization is
measured with respect to ak. For example, we can choose the
convention denoted as convention I in Appendix A, in which
for every momentum vector k parallel to xy plane the vector
ak= �0,0 ,1�.

So instead of ��k ,����=±1 we can use basis consisting of
two vectors describing states polarized linearly in two or-
thogonal directions

���,k� and ����
,k� = ���+�/2,k� , �42�

where �� is given by Eq. �39� and the explicit form of e��

reads

���
=

− i
�2


�

��e�e−i��� = − ak sin � − �nk � ak�cos � .

�43�

Moreover, for arbitrary state vector � ,k� defined in Eq. �36�
we have

��,k� = ��� · �����,k� + ����
· ������

,k� , �44�

where we have used Eq. �37� and the condition k ·��

=k ·���
=0, which follows from Eq. �29�.

We can introduce creation operators a�
†�k� which acting on

the vacuum create photons with four-momentum k, polarized
linearly under the angle �. From Eq. �38� we get

a�
†�k� =

1
�2


�

ei��a�
†�k� = 

�

�� · e��k�a�
†�k� . �45�

Therefore

a�
†�k� =

e−i��

�2
�a�

†�k� − i�a��

† �k�� . �46�

IV. COVARIANT STATES

To discuss correlations of photons in the relativistic con-
text it is very convenient to introduce vectors which trans-
form covariantly under Lorentz transformations.

A. One-particle states

Now we want to define one-particle states with definite
transformation properties. To construct covariant states we
can use vectors k and e��k�. Unfortunately vector e��k� is not
space part of any four-vector. However, using the above vec-
tors we can construct, in analogy with the electromagnetic
field tensor, the following antisymmetric, gauge-indepen-
dent, and mutually dual quantities:
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f���k�� = k�e���k� − k�e���k� , �47�

f̃���k�� = ��	
�k	e

��k� − k
e	

��k�� . �48�

Note that it holds that

F̂���x��0� =
i

�2��3/2 � d3k

2k0 
�=−1,1

f���k��eikx�k,�� . �49�

Therefore, from Eqs. �8� and �19� we have

f���k��ei����,k� = �−1�

	�−1�


f	
��k��, �50�

which implies that the state �=±1f���k���k ,�� transforms
like a tensor,

U��� 
�=±1

f���k���k,�� = �−1�

	�−1�


 
�=±1

f	
��k����k,�� ,

�51�

while the state �=±1 f̃���k���k ,�� transforms like a tensor
dual to �=±1f���k���k ,��.

The most general one-photon state can be written as

��� =� 
�=±1

d3k

2k0 ���k��k,�� . �52�

The state �52� can be expressed as a combination of covari-
antly transforming one-particle states,

��� =� d3k

2k0 ����k�� 
�=±1

f���k���k,��	 , �53�

where

���k� = ����k�f���k��. �54�

Note that for the state �52� it holds that

����� =� 
�=±1

d3k

2k0 ���k����k� . �55�

Similar formulas can be obtained with the help of f̃���k��.

B. Two-particle states

The most general two-photon state has the form

��� =� d3k

2k0

d3p

2p0 
��

����k,p���k,��,�p,��� , �56�

where

��k,��,�p,��� = a�
†�k�a�

†�p��0� . �57�

From Eq. �12� we have

��k,��,�p,��� = ��p,��,�k,��� , �58�

which implies, taking into account that antisymmetric part of
��k , p��� vanishes in the integral �56�, that we can assume

����k,p� = ����p,k� . �59�

Equations �13� and �57� imply the following normaliza-
tion of the two-photon states:

��k,��,�p,����k�,���,�p�,����

= 4k0p0���k − k����p − p����������

+ ��k − p����p − k����������� . �60�

Note that it holds

����� = 2� d3k

2k0

d3p

2p0 
��

���
* �k,p�����k,p� . �61�

Now, we construct covariantly transforming, two-photon
states.

1. Scalar states

The only candidates which can be used to construct scalar
states are the following quantities �we are interested in con-
struction of two-particle covariant states, so we consider
quantities with two free indices � ,��:

f���k��f���p��, p�f�	�k��f	��p��k�, �62�

f���k�� f̃���p��, p�f�	�k�� f̃	��p��k�, �63�

f̃���k�� f̃���p��, p� f̃�	�k�� f̃	��p��k�. �64�

Let us introduce the following notation:

����k,p� � �kp��e��k� · e��p�� + �p · e��k���k · e��p�� ,

�65�

����k,p� � �k0p − p0k� · �e��k� � e��p�� . �66�

Note that it holds that


��

���
* �k,p�����k,p� = 

��

���
* �k,p�����k,p� = 2�kp�2.

�67�

Moreover, using Eq. �26� one can find that

����k,p� = − i
� + �

2
����k,p� . �68�

Using formulas �65� and �66� we find

f���k��f���p�� = −
2

�kp�
p�f�	�k��f	��p��k� = − 2����k,p� ,

�69�

f̃���k�� f̃���p�� = −
2

�kp�
p� f̃�	�k�� f̃	��p��k� = 8����k,p� ,

�70�

f���k�� f̃���p�� = −
2

�kp�
p�f�	�k�� f̃	��p��k� = 4����k,p� .

�71�

So finally we find only two states which are Lorentz scalars:

���k,p�� = 
��

����k,p���k,��,�p,��� , �72�
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���k,p�� = 
��

����k,p���k,��,�p,��� . �73�

In the center-of-mass frame �for example, when photons re-
sult from the decay of a massive particle� we have

���k,k��� = 2�k�2
��

e��k� · e��k����k,��,�k�,��� , �74�

���k,k��� = − 2�k�
��

k · �e��k� � e��k�����k,��,�k�,��� .

�75�

The action of the parity operator on the above vectors has the
form

P̂���k,k��� = + ���k,k��� , �76�

P̂���k,k��� = − ���k,k��� . �77�

So we conclude that the state �72� is a scalar state while the
state �73� is a pseudoscalar one.

2. Four-vector states

Similarly, to construct four-vector states we consider the
quantities

f���k��f�	�p��k	, f���k�� f̃�	�p��k	, �78�

f̃���k�� f̃�	�p��k	. �79�

Four-vectors similar to �79� can be obtained by exchange
k↔p, �↔�. After some calculations we get

f���k��f�	�p��k	 = −
1

4
f̃���k�� f̃�	�p��k	 = k�����k,p� ,

�80�

f���k�� f̃�	�p��k	 = − 2k�����k,p� . �81�

Therefore the case of four-vector states reduces to the case of
scalar states. Indeed, for example, the most general state con-
structed from Eq. �80� has the form

� d3k

2k0

d3p

2p0 
��

g��k,p�k�����k,p���k,��,�p,��� , �82�

which can be written as

� d3k

2k0

d3p

2p0 
��

g�k,p�����k,p���k,��,�p,��� , �83�

where g�k , p�=g��k , p�k�. But �83� can be constructed di-
rectly using the state �72�. We have a similar situation for the
state �81�.

3. Tensor states

Finally, second-rank tensor states can be constructed us-
ing the following quantities:

f�	�k��f	��p��, f�	�k�� f̃	��p��, f̃�	�k�� f̃	��p��.

�84�

Other covariant quantities vanish, because k�f���k��=0,
p�p�f���k��=0 �and similarly when we change p↔k�. After
some calculation we get

f�	�k��f	��p�� = − �e���k�e�
��p��kp� − k�p��e��k� · e��p��

+ e���k�p��k · e��p�� + k�e�
��p��p · e��k��� ,

�85�

f�	�k�� f̃	��p�� = 2�k�e	��k� − k	e���k��	�
jp

ej��p� ,

�86�

f̃�	�k�� f̃	��p�� = − 4��
�����k,p� + 4f�	�k��f	��p��.

�87�

We see that states constructed from Eq. �87� can be obtained
from Eqs. �85� and �72�. Therefore we have only two inde-
pendent two-particle tensor states


��

f�	�k��f	��p����k,��,�p,��� �88�

and


��

f�	�k�� f̃	��p����k,��,�p,��� . �89�

Summarizing, we found the following covariantly trans-
forming two-particle states: �72�, �73�, �88�, and �89�. Of
course, among the variety of states �88� and �89� correspond-
ing to fixed values of �, � only two are independent since for
fixed k and p two-particle states ��k ,�� , �p ,��� span the four-
dimensional subspace.

V. OBSERVABLES

In this section we will construct observables used by Al-
ice and Bob in EPR-type experiments with photons. In such
experiments Alice and Bob usually measure the linear polar-
ization of photons flying in a well-defined direction—say, nk
for Alice and np for Bob. Therefore we need an observable
which gives +1 when acting on photons with momentum k
= �k�nk, polarized linearly under the angle �, and −1 for the
similar photon polarized under the angle ��=�+� /2. Of
course, we cannot use the operator

���,k����,k� − ����
,k�����

,k� �90�

as our observable. The reason is that the above operator is
nonzero only in one-particle subspace of Fock space but Al-
ice and Bob perform measurements on two-photon states.
Thus we need an analog of the quantum mechanical observ-
ables ���� ,k���� ,k�− ����

,k�����
,k�� � I for Alice and I

� ���� ,k���� ,k�− ����
,k�����

,k�� for Bob.
Now we construct the proper observable. Recall that par-

ticle number operator has the form
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N̂ =� d3k

2k0 
�

a�
†�k�a��k� . �91�

With the help of Eqs. �45� and �46� we can write

N̂ =� d3k

2k0 �a�
†�k�a��k� + a��

† �k�a��
�k�� . �92�

It suggests that a�
†�k�a��k� can be interpreted as the density of

the number of photons with four-momentum k and polarized
linearly under the angle �. Therefore we can expect that in-
tegrating a�

†�k�a��k� with the Dirac delta ��n− k
�k�

� projecting
on the fixed direction n �see Appendix B� we will obtain a
projector on states with momentum parallel to n and polar-
ized linearly under the angle �. So we define the operator

�n
� =� d3k

2k0 ��n −
k

�k�	a�
†�k�a��k�

=� 1

2
�d�a�

†��,�n�a���,�n� , �93�

where a�
†�� ,�n�=a�

†�k� for k= �� ,�n� and properties of the
delta function ��n− k

�k�
� are summarized in Appendix B. It

holds

�n
����1

,k� = ��n − nk�cos�� − �1����,k� . �94�

Note that from Eq. �44� we have

���1
,k� = cos�� − �1����,k� + cos��� − �1�����

,k� . �95�

This formula corresponds to the classical Malus’s law stating
that the intensity of linearly polarized beam of light transmit-
ted through the polarizer is equal to I0 cos2 	, where I0 is the
intensity of the incident beam and 	 is an angle between the
transmission axis of the polarizer and the plane of polariza-
tion of the incident beam. The smeared operator

��
� = �

�

sin 
d	d
�n
� , �96�

where � is a solid angle and n= �cos 	 sin 
 ,
sin 	 sin 
 , cos 
�, is a proper projector, i.e.,

���
� �2 = ��

� . �97�

For two-particle states we have

�n
�����1

,k�,���2
,p�� = ��n − nk�cos�� − �1�����,k�,���2

,p��

+ ��n − np�cos�� − �2�����1
,k�,���,p�� ,

�98�

where ����1
,k� , ���2

, p��=a�1

† �k�a�2

† �p��0� describes the state
of two photons with four-momenta k and p and polarized
linearly under the angles �1 and �2, respectively. For two-
photon states produced in decays of elementary particles
conservation laws imply that nk�np. Therefore, when we
choose the solid angle � in such a way that nk�� and
np�� we get

��
� ����1

,k�,���2
,p�� = cos�� − �1�����,k�,���2

,p�� , �99�

and similarly in the case when nk�� and np��.
So finally we define the following observable:

Ŝ�
� = ��

� − ��
��, �100�

which describes measurements performed by Alice and Bob
in EPR experiments with photons.

VI. CORRELATION FUNCTION

In this section we will calculate correlation function in
EPR experiments with photons. Let Alice measure the ob-

servable Ŝ�A

� and Bob Ŝ�B

�̃ , and we assume that �A��B

=� �compare Eq. �100��. This assumption corresponds to the
experimental situation in which Alice’s and Bob’s detectors
catch photons coming from directions contained in the solid
angles �A and �B, respectively. The correlation function in
the arbitrary pure state ��� has the form

C�A,�B

� ��, �̃� =
���Ŝ�A

� Ŝ�B

�̃ ���

�����
. �101�

Now let us take as ��� an arbitrary state with sharp four-
momenta k and p,

���k,p�� = 
��

����k,p���k,��,�p,��� , �102�

and let us assume that nk��A and np��B ��A��B= � �.
Taking into account the explicit form of the observables

Ŝ�A

� , Ŝ�B

�̃ �Eqs. �100�, �96�, and �93�� we find in this case

C�A,�B

��k,p� ��, �̃�

=
4��3�0��2k0p0

���k,p����k,p��

���
��

���
* �k,p�����k� · e��k�����̃�p� · e��p���2

+ �
��

���
* �k,p�����

�k� · e��k�����̃�
�p� · e��p���2

− �
��

���
* �k,p�����

�k� · e��k�����̃�p�e� · �p���2

− �
��

���
* �k,p�����k� · e��k�����̃�

�p� · e��p���2�
�103�

and

���k,p����k,p�� = 4��3�0��2k0p0
��

�����k,p��2.

�104�

Of course, the factors ��3�0��2 in the above equations should
be understood as a result of the normalization procedure.
Moreover, it holds that
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���
�k� = − nk � ���k�, ��̃�

�p� = − np � ��̃�p� .

�105�

To calculate correlation function explicitly we have to
specify the two-photon state ���k , p��. We will choose as
���k , p�� some of the covariant transforming states discussed
in Sec. IV.

A. Correlations in the scalar states

Now let us take as ���k , p�� the scalar state ���k , p�� �Eq.
�72��. We have


��

���
* �k,p�����k� · e��k�����̃�p� · e��p��

= �kp�����k� · ��̃�p�� + �p · ���k���k · ��̃�p�� .

�106�

To proceed further we can assume �without loss of general-
ity� that the momentum vectors k and p are in one plane. We
can therefore choose the coordinate frame in such a way that
k and p lie in the xy plane. Now we choose the convention
mentioned earlier of choice of vector a, denoted as conven-
tion I in Appendix A. In this convention from Eq. �A1� we

have ak=ap= �0,0 ,1�; therefore, both angles � and �̃ are
measured from the same vector �0,0,1�. Under this choice we
have explicitly

nk � ak = �nk
2,− nk

1,0� , �107�

e��k� =
1
�2

�− i�nk
2,i�nk

1,1� , �108�

���k� = �− nk
2 sin �,nk

1 sin �,cos �� . �109�

Using these explicit formulas we have


��

���
* �k,p�����k� · e��k�����̃�p� · e��p�� = �kp�cos�� + �̃� .

�110�

And now, inserting Eqs. �110� and �67� into Eqs. �103� and
�104� we find

C�A,�B

��k,p� ��, �̃� = cos 2�� + �̃� . �111�

One can check that Eq. �68� implies that for the pseudoscalar
state �73� we receive the same correlation function

C�A,�B

��k,p� ��, �̃� = cos 2�� + �̃� . �112�

It should be noted that in the center-of-mass frame, due to
opposite direction of vectors nk and nk� =−nk, the angle �

+ �̃ corresponds to the angle between polarizers used by Al-
ice and Bob. It should be also noted that, assuming conven-
tion I, scalar and pseudoscalar states in the helicity basis
have the form

���k,p�� = 2�kp����k, + 1�,�p, + 1�� + ��k,− 1�,�p,− 1��� ,

�113�

���k,p�� = − 2i�kp����k, + 1�,�p, + 1�� − ��k,− 1�,�p,− 1��� .

�114�

VII. COINCIDENCE RATE

The observable �100� and the correlation function �101�
are defined in a way resembling the nonrelativistic case of
spin measurements. However, in many experiments with
photons what is really measured is the coincidence rate—the
number of photons registered by Alice and Bob divided by
the number of emitted photons �47,48�. To calculate the co-
incidence rate we need observables which give 1 when the
photon passes the analyzer �is registered� and 0 when the
photon is not registered. Such an observable is simply the
projector ��

� �Eq. �96��. Therefore, in the configuration con-
sidered in the previous section, the coincidence rate in the
arbitrary pure state ��� has the form

R�A�B

� ��, �̃� =
�����A

� ��B

�̃ ���

�����
. �115�

For the state with sharp momenta �102� we get

���k,p����A

� ��B

�̃ ���k,p��

= 4��3�0��2k0p0

� �
��

���
* �k,p�����k� · e��k�����̃�p� · e��p���2

.

�116�

Now, for the scalar state �72� in convention I, taking into
account Eqs. �104�, �110�, and �67� we get

R�A�B

��k,p���, �̃� =
1

4
�1 + cos 2�� + �̃�� . �117�

It should be noted here that the two-photon state obtained in
the calcium-cascade experiments can be described by scalar
state �113� with appropriately chosen momenta k and p
�47,49�. Our result �117� coincides with the coincidence rates
obtained for the calcium-cascade experiments �see, e.g.,
�47��. Of course, coincidence rates for other two-photon
states ���, like states of photons produced in the decays of
positronium or �0, can be also easily calculated with the help
of Eqs. �115� and �116�. However, in these decays there are
produced high-energy photons for which it is difficult to
measure the linear polarization �48�.

VIII. CONCLUSIONS

We have described the formalism appropriate for the dis-
cussion of Lorentz covariance of quantum information pro-
tocols with photons. It is based on the description of photon
polarization resembling the nonrelativistic spin degrees of
freedom. We have also found all two-photon states with
sharp momenta transforming covariantly under Lorentz
group action. Using the language of quantum electrodynam-
ics we have also constructed observables corresponding to
the linear polarization measurements in EPR experiments.
Finally, we have calculated a correlation function in the ar-
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bitrary two-photon state with sharp momenta. As an example
we have given an explicit form of the correlation function for
the scalar state.

We have shown also that in our framework one can easily
calculate the coincidence rates measured usually in EPR ex-
periments with photons. As an example we have calculated
the coincidence rate in the scalar state corresponding to the
two-photon state obtained in the calcium-cascade experi-
ments.

The main advantage of the present approach lies in the
fact that the behavior of all of the states and observables
discussed here under the Lorentz transformations is well de-
fined. Also the classification of all two-photon states which
are covariant under Lorentz group action is given explicitly.
Using these results we plan to discuss the Lorentz covariance
of the quantum information protocols in a forthcoming paper.
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APPENDIX A: CONVENTIONS

In this appendix we will discuss briefly the freedom of
choice of explicit form of Poincaré group action on basis
vectors and in the resulting freedom of choice of polarization
vectors which is left even after the gauge is explicitly fixed.
All of the facts discussed here are well known but scattered
in the literature.

As we have noted before, conditions �4� and �7� do not
determine the rotation Rnk

uniquely. Indeed, we can write
Rnk

� =Rnk
R3�n�, where R3�n� denotes arbitrary rotation

around z axis satisfying R3�ñ�= I. Rotation Rnk
� defined in

such a way fulfills conditions �4� and �7�. Now we give ex-
plicitly few possible forms of Rnk

fulfilling Eqs. �4� and �7�.
Convention I. One of the possible forms of Rnk

is the
following:

Rnk
=


1 0 0 0

0 − nk
3� nk

2

�1 − �nk
3�2

+ nk
1� −

nk
1�nk

3�2

�1 − �nk
3�2

+ nk
2 nk

1

0 nk
3� nk

1

�1 − �nk
3�2

− nk
2� −

nk
2�nk

3�2

�1 − �nk
3�2

− nk
1 nk

2

0 1 − �nk
3�2 nk

3�1 − �nk
3�2 nk

3

� .

�A1�

This form corresponds to the choice

ak
T = �− nk

3� nk
2

�1 − �nk
3�2

+ nk
1	,

nk
3� nk

1

�1 − �nk
3�2

− nk
2	,1 − �nk

3�2� . �A2�

Convention II. Another possible form of Rnk
can be ob-

tained taking

ak
T = � nk

1�nk
3�2

�1 − �nk
3�2

− nk
2,

nk
2�nk

3�2

�1 − �nk
3�2

+ nk
1,− nk

3�1 − �nk
3�2	 .

�A3�

Convention III. Yet another form of Rnk
can be received

from

ak
T = �1 −

�nk
1�2

nk
3 + 1

,−
nk

1nk
2

nk
3 + 1

,− nk
1	 . �A4�

It should be noted that the explicit form of the phase
factor ���k� in Eq. �33� depends on the explicit form of ak.
Indeed, Eq. �33� is fulfilled provided that

e��k� = − �−��k��e−��k�� . �A5�

But e��k� depends on the choice of the rotation Rnk
.

One can show that when we choose ak in Eq. �5� such that
a−k=ak, then ���k�=−1. Therefore for the Rnk

given in Eq.
�A1� �convention I� we have ���k�=−1.

One can show that when we choose ak in Eq. �5� such that
a−k=−ak, then ���k�=1. Therefore for the Rnk

given in Eq.
�A3� �convention II� we have ���k�=1.

On the other hand, for the explicit form of Rnk
given in

Eq. �A4� �convention III� we have

���k� =
k1 + i�k2

k1 − i�k2 . �A6�

The four-potential Â��x� should not depend on the con-
ventional choice of Rnk

. Let us discuss this point now. Ac-
cording to Eq. �11�,

Â��x� =
1

�2��3/2 � d3k

2k0 
�=−1,1

�eikxe0
���k�a0�

† �k�

+ e−ikxe0
*���k�a0��k�� , �A7�

where we have added subscript 0 for the convenience of the

further discussion. We have, from Eq. �25�, e0
��k�=Rnk

0 e��k̃�.
But we can write Rnk

=Rnk

0 R3�n�, where R3�n� denotes rota-
tion around z axis, so

e��k� = Rnk
e��k̃�=Rnk

0 R3�n�e��k̃�

= Rnk

0 e��k̃��*��k� = e0
��k��*��k� , �A8�

where �*��k� denotes the phase factor �using the explicit

form of e��k̃� and rotation R3 we have R3�n�e��k̃�=�*�e��k̃��.
Now, to leave the left-hand side of Eq. �A7� unchanged we
have to redefine creation and annihilation operators in the
following way:

a� = ���k�a0��k� . �A9�

But if according to Eq. �16� we have

U���a0�
† �k�U†��� = ei��0��,k�a0�

† ��k� , �A10�

then from Eq. �A9�
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U���a�
†�k�U†��� =

���k�
����k�

ei��0��,k�a�
†��k� . �A11�

Therefore we can write

ei����,k� =
���k�

����k�
ei��0��,k�. �A12�

Analogously for the action of the parity operator we have
�compare Eq. �33��

Pa0�
† �k�P−1 = �0��k�a0−�

† �k�� , �A13�

which implies

Pa�
†�k�P−1 =

���k�
�−��k��

�0��k�a−�
† �k�� . �A14�

Therefore we can write

���k� =
���k�

�−��k��
�0��k� . �A15�

APPENDIX B: DIRAC DELTA IN SPHERICAL
COORDINATES

We have by definition

f�p� =� d3k�3�k − p�f�k� . �B1�

When we change variables to spherical coordinates we have

d3k → �k�2d�k�d� , �B2�

�3�k − p� →
���k� − �p��

�k�2
��nk − np� , �B3�

nk =
k

�k�
, np =

p

�p�
, �B4�

where

� d���nk − n�g�nk� = g�n� , �B5�

and d� denotes a differential solid angle.
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