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We show that nonlocal correlation experiments on the two spatially separated modes of a maximally path-
entangled number state may be performed. They lead to a violation of a Clauser-Horne Bell inequality for any
finite photon number N. We also present an analytical expression for the two-mode Wigner function of a
maximally path-entangled number state and investigate a Clauser-Horne-Shimony-Holt Bell inequality for such
a state. We test other Bell-type inequalities. Some are violated by a constant amount for any N.
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I. INTRODUCTION

Maximally path-entangled number states of the form

��� =
1
�2

��N�a�0�b + ei��0�a�N�b� �1�

�often referred as N00N states� have important applications
to quantum imaging �1�, metrology �2,3�, and sensing �4�.
Characterizing their quantum-mechanical properties is there-
fore a valuable task for improving upon the above applica-
tions. Entanglement is the most profound property of
quantum-mechanical systems. N00N states are nonseparable
states and hence are entangled. But do they also show non-
local behavior when we perform a correlation experiment on
their modes? The amount of nonlocality demonstrated by a
Bell-type experiment provides an operational definition of
entanglement �for a review of Bell inequalities and experi-
ments see, e.g., Ref. �5��. It distinguishes between the class
of states that are entangled but admit a local hidden variable
model and those which do not and so may be called nonlo-
cally correlated �6�.

Several publications �7� address the question of whether
the N00N states are nonlocally correlated for the case N=1.
Gisin and Peres have shown that it is possible to find pairs of
observables, whose correlations violate a Bell’s inequality
for any nonfactorable pure state of two quantum systems �8�.
This result was later extended to states of more than two
systems by Popescu and Rohrlich �9�. Recent experiments
�10,11� have reported strong evidence that N00N states vio-
late a Bell’s inequality for N=1, leaving open the question as
to what experiments might show nonlocally correlations for
N�1.

We propose a specific experiment that shows that N00N
states are nonlocally correlated for any finite N. We investi-
gate two measurement schemes using the unbalanced homo-
dyne detection scheme described in Ref. �12� and compare
the results. The correlation functions we calculate can be
related to two well-known phase space distributions: the
two-mode Q function and the two-mode Wigner function.

Banaszek and Wódkiewicz first pointed out the operational
definition of the Q and Wigner function �12�. We modify this
approach and calculate the distribution functions for the
N00N states entirely from these phase space distributions,
and thereby construct a Clauser-Horne and a Clauser-Horne-
Shimony-Holt Bell inequality. In Sec. IV we also test other
Bell-type inequalities not commonly used so far in quantum
optical experiments. The above Bell tests may be performed
in an unbalanced homodyne detection scheme as given, for
example, in Ref. �12� and shown in Fig. 1.

For simplicity we choose �=� for the states in Eq. �1�. It
is now understood that the introduction of a reference frame
is required in any Bell test �13� and one should consider the
field modes as entangled rather than the photons �14,15�. In
the number basis, a shared local oscillator acts as the re-
quired reference frame. The beam splitters in this approach
are assumed to operate in the limit where the transmittivity
T→1. We further assume that a strong coherent state ���,
where �� � →�, is incident on one of the two input ports. The
beam splitter then acts as the displacement operator

D̂���1−T� on the second input port �16–18�. We introduce

*wildfeuer@phys.lsu.edu

FIG. 1. Unbalanced homodyne detection scheme for a Bell ex-
periment with N00N states. Here ���= 1

�2
��N�a �0�b− �0�a �N�b� and a

and b label the modes.
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complex parameters �=�a
�1−T and �=�b

�1−T. The
phase-space parametrization with respect to these parameters
is then analogous to a correlation experiment with polarized
light and different relative polarizer settings where the non-
locality of polarization entangled states such as ���
= ��H�a �V�b− �V�a �H�b� /�2 is well established.

II. BELL EXPERIMENT WITH ON-OFF DETECTION
SCHEME

In the first experimental setup we consider a simple non-
number resolving photon-detection scheme. In the case of
the homodyne detection scheme under consideration, the lo-
cal positive operator valued measure �POVM� is defined by

Q̂���+ P̂���= 1̂ with

Q̂��� = D̂����0��0�D̂†��� , �2�

P̂��� = D̂���	
n=1

�

�n��n�D̂†��� . �3�

We assume lossless detectors for our investigation. The ex-

pectation value of Q̂��� tells us the probability that no pho-
tons are present, depending on the phase and amplitude of

the local oscillator. The expectation value of P̂��� gives the
probability of counting one or more photons, while not dis-
tinguishing between one or more photons. So we simply as-
sign a 1 to a detector click and a 0 otherwise, giving us a
binary result. We label the two modes of the N00N state by a
and b. The corresponding measurement operators for a cor-
related measurement of the displaced vacuum can be written

as Q̂a��� � Q̂b���. The expectation value for the state ��� is
given by

Qab��,�� = ���Q̂a��� � Q̂b������ = ���,�����2. �4�

The above expression is the two-mode Q function of the
N00N state up to a factor 1 /�2, and the result is given by

Qab��,�� =
1

2N!
e−����2+���2���N − �N�2. �5�

To obtain the probabilities for the individual measurements
we calculate

Qa��� = ���Q̂a��� � 1̂b��� =
1

2
e−���2
 ���2N

N!
+ 1� , �6�

Qb��� = ���1̂a � Q̂b������ =
1

2
e−���2
 ���2N

N!
+ 1� . �7�

Using the completeness relation P̂���= 1̂− Q̂���, we obtain
the probabilities for the correlated and single detector
counts—Pa���=1−Qa���, Pb���=1−Qb���, and Pab�� ,��
=1−Qa���−Qb���+Qab�� ,��—in terms of the Q functions.
We build from these the Clauser-Horne combination �CH�
�19�, which for a local hidden variable model admits the
inequality

− 1 	 Pab��,�� − Pab��,��� + Pab���,�� + Pab���,���

− Pa���� − Pb��� 	 0. �8�

If this inequality is violated it follows that N00N state
contain nonlocal correlations. In order to attain such a viola-
tion, we minimize the function CH= Pab�� ,��− Pab�� ,���
+ Pab��� ,��+ Pab��� ,���− Pa����− Pb��� for a given N over
the parameter space spanned by �, ��, �, and ��. The vio-
lation of the Clauser-Horne combination for the N00N states
with N=1, . . . ,4 is shown in Fig. 2.

The results show a decrease in the amount of violation
with N. The maximal violation is obtained for N=1. For
N
3 the violation is so reduced that it would be increas-
ingly hard to observe experimentally. If we increase the pre-
cision of our numerical method, we observe that for large N
the minimum of the CH combination, in fact, never hits the
classical bound of −1 exactly, i.e., there is a violation of the
inequality for any finite N, which can be shown as
follows. Let N be finite and odd. We choose ��=�=0 and
�=−��, then the CH combination reduces to CH
=1/N ! ���2Ne−���2�1−2e−���2�−1. For any 0� ���2� ln 2, we
obtain CH�−1. For even N the same proof holds except that
we need to choose �=�� instead.

The Bell measurement presented leads to a decrease of
the amount of violation with N. This decrease with N is due
to the specific way the reference frame is introduced in terms

of the local displacement operators D̂��� and D̂��� for the
correlation measurement. The scheme is based on measuring
the overlap of coherent states with the modes of the N00N
state. The elements contained in Eq. �4� are of the form
�N ,0 �� ,�� and �0,N �� ,��. In order to maximize those
products we would need � to take, at the same time, the
values ���2=N and ���2=0. Since the “distance” of N to the
vacuum becomes larger with N, the correlated overlap is re-
duced. This may explain the decrease in the amount of vio-
lation observed.

We can also display some correlations by plotting the
marginals of the Q function in Eq. �4�. We therefore decom-
pose the dimensionless complex local oscillator amplitudes
in the set of real variables x ,y ,u ,v, i.e., �=x+ iy, �=u+ iv
and obtain Qm�y ,v�=�−�

� �−�
� Qab�x ,y ,u ,v�dxdu. These prob-

ability densities are displayed in Figs. 3–5, for N=1,2 ,3. We
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FIG. 2. �Color online� Violation of the Clauser-Horne Bell in-
equality as a function of N.
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see that the distributions for N=2,3 have a higher symmetry
than for N=1.

The linear correlation coefficient r=cov�y ,v� / ��y�v�,
where cov�y ,v�=�−�

� �−�
� �y− ȳ��v− v̄�Qm�y ,v�dydv, vanishes

for all N�1, although we see from the pictures that the two
phase space variables are statistically dependent. This is an
indication of nonlinear correlations between the two phase
space variables. Note that the measurement described by the
operators in Eqs. �2� and Eq. �3� requires only non-number
resolving photon counters and may therefore be performed
with current detector technology. In the next section we con-
sider a correlated parity measurement on the modes and in-
vestigate the amount of violation in this scheme.

III. BELL TEST WITH PARITY MEASUREMENT

An operational definition of the two-mode Wigner func-
tion for the N00N state is given in terms of a correlated
parity measurement �12�. The measurements can be de-
scribed by the following POVM operators:


̂+��� = D̂���	
k=0

�

�2k��2k�D̂†��� , �9�


̂−��� = D̂���	
k=0

�

�2k + 1��2k + 1�D̂†��� . �10�

The corresponding operator for the correlated measurement
of the parity on mode a and b may be defined as


̂��,�� = �
̂a
�+���� − 
̂a

�−����� � �
̂b
�+���� − 
̂b

�−����� .

The outcome of the measurements is either +1 or −1. It may
be noted that this operator can be rewritten as


̂��,�� = D̂a���D̂b����− 1�n̂a+n̂bD̂a
†���D̂b

†��� , �11�

and is equivalent to the operator for the Wigner function in
Refs. �20,21� �up to a factor 4 /�2�. We note that the operator
in Eq. �11� is essentially a product of operators for mode a
and b:


̂��,�� = D̂a����− 1�n̂aD̂a
†���D̂b����− 1�n̂bD̂b

†��� . �12�

Using this property the expectation value of Eq. �12� for the
N00N state can be expressed as a function of two Laguerre
polynomials and an interference term


��,�� = ���
̂��,�����

=
1

2
e−2���2−2���2
�− 1�N�LN�4���2� + LN�4���2��

−
22N

N!
��*N�N + �N�*N�� , �13�

where LN�x� is the Laguerre polynomial �22�. The two-mode
Wigner function is obtained from W�� ,��=
�� ,��4/�2. By
building the CHSH �23� inequality defined by

− 2 	 
��,�� + 
���,�� + 
��,��� − 
���,��� 	 2,

�14�

we determine how this Bell inequality is violated as a func-
tion of N. A minimization procedure in the parameter space
�, ��, �, and �� as a function of N is carried out with a
numerical routine to investigate the amount of violation. We
see that the correlated parity measurement leads to a viola-
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FIG. 3. The marginal Q function Qm�y ,v� for N=1.
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FIG. 4. The marginal Q function Qm�y ,v� for N=2.
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FIG. 5. The marginal Q function Qm�y ,v� for N=3.
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tion of the CHSH Bell inequality for N=1, and that states
with larger N do not violate the inequality.

The Wigner function may also be used to understand this
behavior. We therefore calculate the marginals of the Wigner
function by integrating over two of the variables, where we
use the same decomposition of the dimensionless complex
local oscillator amplitudes �=x+ iy and �=u+ iv, and obtain
Wm�y ,v�=�−�

� �−�
� W�x ,y ,u ,v�dxdu. The function Wm�y ,v� is

positive definite and can be interpreted as the probability
density for the remaining variables.

From the density plots in Figs. 6–8 we see that the prob-
ability densities become more symmetric the larger N be-
comes, similar to the previous case for the marginals of the
Q function, but the interference structures are much more
pronounced than for the Q function. Here we also obtain a
vanishing correlation coefficient r for all N�1, from which
we can infer that a nonlinear correlation measure is neces-
sary to describe these correlations.

We conclude from the results of the first section that a set
of parameters can always be found which violate the CH
inequality in Eq. �8�. Therefore N00N states show nonlocal
correlations for any finite N. The presented setup is not yet
optimal but might be promising for demonstrating nonlocal
correlations of N00N states with low photon numbers N ex-

perimentally. Although the requirements for the overall de-
tection efficiency for a loophole-free test of the CHSH Bell
inequality would be very large, i.e., 96% for N=1 �11�. In the
following section we are going to show that the test of other
Bell-type inequalities leads to a different result.

IV. MORE BELL-TYPE INEQUALITIES

So far we have used the CH and the CHSH Bell inequali-
ties defined in Eqs. �8� and �14�. Other Bell inequalities
might be more suitable for a Bell test for a nonlocal experi-
ment with N00N states. The CH Bell inequality is a specific
inequality for four correlated events, where at most two are
intersected at the same time. Pitowsky �24� derived all the
Bell-type inequalities for three and four correlated events:

0 	 pi − pij − pik + pjk, �15�

pi + pj + pk − pij − pik − pjk 	 1, �16�

− 1 	 pik − pjl + pil + pjk − pi − pk 	 0, �17�

for any different i , j ,k , l. Equation �17� is the CH inequality.
Equations �15�, �16� are inequalities in the so-called Bell-
Wigner polytope of three correlated events, whereas Eq. �17�
belongs to the Clauser-Horne polytope �24�. Later on, Jans-
sens et al. �25� explicitly constructed inequalities for six cor-
related events where, as before, two are intersected at the
same time. We consider the following four:

pi + pj + pk + pl − pij − pik − pil − pjk − pjl − pkl 	 1,

�18�

2pi + 2pj + 2pk + 2pl − pij − pik − pil − pjk − pjl − pkl 	 3,

�19�

0 	 pi − pij − pik − pil + pjk + pjl + pkl, �20�

pi + pj + pk − 2pl − pij − pik + pil − pjk + pjl + pkl 	 1.

�21�

We investigate the amount of violation for the inequalities in
Eqs. �18�–�21� for the simple on-off detection scheme of Sec.
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FIG. 6. The marginal Wigner function Wm�y ,v� for N=1.
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FIG. 7. The marginal Wigner function Wm�y ,v� for N=2.
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FIG. 8. The marginal Wigner function Wm�y ,v� for N=3.
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I with the detection probabilities given by Eqs. �5�–�7�. The
probabilities in Eq. �18� are then replaced by

J1 = Q��� + Q��� + Q��� + Q��� − Q��,�� − Q��,��

− Q��,�� − Q��,�� − Q��,�� − Q��,�� , �22�

so that the inequality is given by J1	1. We make the fol-
lowing assignment i→�, j→�, k→�, and l→�. The single-
count probabilities Q��� can either be measured by Alice or
by Bob. The joint probabilities are always measured between
Alice and Bob.

A maximization procedure carried out in the parameter
space � ,� ,� ,� leads to a constant violation of the inequality
as shown in Fig. 9. This result will be interpreted in more
detail at the end of this section together with the results from
the remaining inequalities.

The probabilities in Eq. �19� can be rewritten in terms of
the local oscillator amplitudes as well

J2 = 2Q��� + 2Q��� + 2Q��� + 2Q��� − Q��,�� − Q��,��

− Q��,�� − Q��,�� − Q��,�� − Q��,�� , �23�

where the inequality is then given by J2	3. A maximization
procedure for the parameters in Eq. �23� shows a constant
violation of 4 for any N.

Finally the probabilities in Eqs. �20� and �21� appear to
be, in terms of the complex parameters � ,� ,� ,�

J3 = Q��� − Q��,�� − Q��,�� − Q��,�� + Q��,�� + Q��,��

+ Q��,�� , �24�

with the inequality 0	J3. Furthermore,

J4 = Q��� + Q��� + Q��� − 2Q��� − Q��,�� − Q��,��

+ Q��,�� − Q��,�� + Q��,�� + Q��,�� , �25�

with the inequality J4	1. Unlike the two previous cases we
do not obtain a constant violation for Eq. �24�. Instead we
attain a decreasing violation with the photon number N as
displayed in Fig. 10.

Thus not all inequalities in the polytope of six correlated
events can be violated by a constant amount. However, the
last inequality Eq. �25� is violated constantly again with a
value of 1.5 as displayed in Fig. 11.

The Bell-type inequalities with six correlated events all
show a stronger violation than the CH and CHSH inequali-
ties. We attain, except for one case, a constant violation for
any N.

We expect that Bell inequalities exist which show a con-
stant violation because of the following argument. Let us
assume Alice and Bob can perform locally, a unitary trans-
formation on her/his particle as given by

Uj = �1� j�N� + �N� j�1� + 	
n=0

n�1,N

�

�n� j�n� , �26�

where j=a ,b. The combined application of their local uni-
tary transformations transforms the one-photon entangled
state into an N-photon entangled N00N state

UaUb

�1,0� − �0,1�
�2

=
�N,0� − �0,N�

�2
�27�

�see also Fig. 12�.
The fact that this local unitary operation exists tells us that

there ought to be a nonlocal measurement which acknowl-
edges this fact. Therefore the same amount of nonlocality
should be obtained for the N-photon state as for the one-
photon entangled state. The fact that some of the Bell tests
do not show this result means that these Bell tests are not
optimal. However, the Bell tests of the inequalities in Eqs.
�22�, �23�, �25� seem to be optimal for the N00N state since
their outcome shows a constant violation for any N. We point
out that these Bell-type inequalities have two more joint
probabilities than the CH and CHSH Bell inequalities. The
class of inequalities with six joint probabilities seem to be
more sensitive to the nonlocality in N00N states. From our
results we also infer that, for some applications, types of Bell
inequalities other than the Clauser-Horne and the Clauser-
Horne-Shimony-Holt should be considered. It is, experimen-
tally, not more difficult to test these Bell inequalities, since
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FIG. 9. �Color online� Violation of the inequality �22� as a func-
tion of N.
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FIG. 10. �Color online� Violation of the inequality �24� as a
function of N.
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FIG. 11. �Color online� Violation of the inequality �25� as a
function of N.
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one only needs to measure the correlation functions for a few
more parameter settings. The experimental setup does not
need to be changed.

V. CONCLUSION

We presented several Bell tests for N00N states. In Sec. II
a simple on-off detection scheme together with the CH Bell
inequality shows a violation for any N although the violation

decreases as N increases. In Sec. III we consider a correlated
parity measurement together with the CHSH Bell inequality.
A violation is found only for N=1. In Sec. IV we consider
the simple on-off detection scheme but test Bell-type in-
equalities with six joint probabilities. We then attain a viola-
tion that stays constant for any N and we show by a simple
argument with local unitary operations that this is to be ex-
pected for an optimal Bell test with N00N states. If we use
the violation of a Bell-type inequality as a measure of non-
locality, then N00N states contain the same amount of non-
locality for any N. Despite this fact, using N00N states with
large N is advantageous for applications such as quantum
imaging, metrology, and sensing, although the improvement
in the performance of these applications does not seem to be
necessarily related to the nonlocal properties of N00N states.

Finally we point out that it might be advantageous in
many experiments to also test the Bell-type inequalities in
Sec. IV, in addition to the CH or CHSH Bell inequalities.
One gains more insight into the nonlocal properties of the
states under investigation, as shown by our example.
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FIG. 12. Alice and Bob apply a local unitary operation on her/
his mode a and b.
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