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We investigate experimentally and theoretically plane-mirror Fabry-Perot resonators filled by photonic crys-
tals, i.e., with periodic intracavity refraction index modulation. We show that the diffraction properties of such
resonators can be manipulated, resulting in sub- and superdiffractive dynamics of light in the resonator, and in
hyperbolic angular transmission profiles.
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Photonic crystals �PCs�, the materials with periodic in
space refraction index, is an object of intensive study since
their proposal in 1987 �1–3�. The studies were focused ini-
tially on the temporal dispersion characteristics of the PCs.
The dispersion curves were found to modify substantially
due to the periodic modulation of the index, and to display a
band structure—a most celebrated feature of the PCs. More
recently it was found that the spatial dispersion �diffraction�
characteristics also modify substantially in periodic materi-
als: the diffraction can become negative �4,5�, or can vanish
to zero �6–10�, resulting in the so-called self-collimation ef-
fect in the latter case.

Diffraction manipulation affects primarily the linear
propagation of light beams in bulk PCs �4–10�. However,
diffraction manipulation can also create phenomena in more
complicated systems based on PCs. In particular, the periodic
index modulation in Kerr-nonlinear materials leads to the
nonlinear formations of light, such as band gap solitons �11�,
subdiffractive solitons �12�, and others. Periodic index
modulation in quadratic nonlinear materials leads to modifi-
cation of the spatial phase matching profile �13�. The present
work is based on the idea that the periodic modulation of the
index can also substantially alter the properties of the reso-
nator filled by such material. As the transverse and longitu-
dinal mode structure, and also the angular transmission pro-
file of the resonator is dependent on its diffraction, then these
characteristics can alter substantially due to the manipulation
of diffraction.

Figure 1 illustrates the basic idea. The mode structure of
the resonator follows from the resonance condition for the
longitudinal component of the wave vector, k�,m=2�m / �2l�
�m is the longitudinal mode number and l is the linear cavity
length�. The transverse wave numbers in resonance in the
plane mirror �Fabry-Perot� resonator are k�=��k�2−k�,m

2 , as
illustrated in Fig. 1�a�, resulting in a system of concentric
Fresnel rings in the resonator angular transmission profile.
As the diffraction in PCs is modified, then the angular trans-
mission profile changes too �see Fig. 1�b��. It can be ex-
pected, in particular, that the central part of the transmission
profile could be relatively homogeneous in the case shown in
Fig. 1�b�.

The aim of this paper is to explore the mode structure and
the angular transmission profile of the plane-mirror resonator
filled by two-dimensional �2D� PCs. We concentrate on the

parameters corresponding to the zero diffraction point, where
the spatial dispersion curves develop flat segments �10�. We
investigate two parameter regions. �1� When the flat segment
is relatively broad, this results in a relatively broad angular
spectrum supported by the resonator, corresponding to rela-
tively fine near-field spatial structures. We call this region
subdiffractive. �2� When the flat segment is relatively nar-
row, this results in a relatively narrow angular spectrum, cor-
responding to relatively clean near-field spatial structures.
We call this region superdiffractive. The limit between these
two regions is specified below.

For experiments the resonator was fabricated considering
that the nondiffractive propagation in the first propagation
band occurs along the diagonal direction of the square—or
the rhombic lattice of the PC �4–10�. The resonator used in
experiments is shown schematically in Fig. 2�a�. In order to
achieve the effect of 2D intracavity index modulation the
surfaces of the mirrors were first covered with a thin film of
Shipley photoresist �of �0.4 �m thickness, of n=1.58 index
of refraction� using spin coating technique. Next, using pho-
tolithography technology, the 1D periodic structure was
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FIG. 1. Longitudinal and transverse mode structure of homoge-
neous resonators �a�, and of the resonators with manipulated �elimi-
nated� diffraction �b�. The case �b� is calculated from Eq. �4� with
L=9.5, f =0.07. The dashed line �half circle in �a�� indicates the
spatial dispersion curve without paraxial approximation. The
dashed lines in �b� indicate the dispersion curves in the limit of
vanishing index modulation �f →0�.
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etched on the layers of the film of photoresist with the period
d=15 �m �the width of the etched groves was approximately
half of their period �d /2�, so the coatings on the mirror act
as the phase grating. The distance between the mirrors �the
linear length of the resonator� was varied in the range of
l=0.2–1.0 mm. The mirrors were shifted one with respect to
another by the half of the grating period in order to mimic
the 2D photonic crystal with the optical axis directed along
the diagonals of rhombs �see Fig. 2�b� for the unfolded struc-
ture of the resonator�. In this way the radiation in a round trip
along the resonator “sees” exactly one longitudinal period of
the unfolded PC. The resonator was illuminated by the cw
laser beam �wavelength 532 nm, beam width 2.5 mm, power
15 mW�. A diffuser was placed at a distance of 40 mm in
front of the front mirror of the resonator in order to generate
a broad spatial spectrum of the illuminating radiation. A lens
of 58 mm focal distance was used to collect the transmitted
radiation into charge-coupled device �CCD� camera for the
far field recording.

Theoretical analysis of the resonator is based on the un-
folded structure of the modulated resonator �Fig. 2�b��, with
the refraction index periodic in the x �transversal� and z �lon-
gitudinal� directions with the corresponding periods d and 2l.
We use a paraxial model of the PC,

�ZA�r� = i���
2 + V�r��A�r� , �1�

where ��
2 =�2 /�X2+�2 /�Y2 is the Laplace operator in the

transverse plane. The transverse coordinates X ,Y are normal-
ized to x0=d /2� in order to make the normalized transverse
wave number of the index grating equal to unity q�=1. The
longitudinal coordinate is normalized to z0=2�k�x0

2 in order
to make the coefficient of diffraction equal to one. The
longitudinal period of the index grating in the normal-
ized coordinates Z is then L= l�2��2 / ��k�d2� and the corre-
sponding modulation wave numbers is q� =2� /L=d2 / ��l�.
V�r�=2x0

2n�r�.
We expand the intracavity field into a set of plane waves,

A�r� = ei�kxX+kyY��
m,n

am,n�Z�ei�mX−nq�Z�. �2�

Substitution of Eq. �2� into Eq. �1� yields the equation sys-
tem

�zam,n = − i��m + kx�2 + ky
2 − nq��am,n + ifm,n �

p�m,q�n

ap,q

�3�

for the amplitudes of the plane waves am,n. Here fm,n is the
matrix of the coupling coefficients depending on the
character of the modulation of the index: fm,n
=c−1	V�r�e−i�mX−nq�Z�dr, as integrated over the unitary cell
of the PC, c being the area of the cell.

Only three central harmonics in the expansion �2� are rel-
evant for the sub- and superdiffractive propagation in the PC
�see, e.g., �10,12��, and consequently for the sub- and super-
diffractive dynamics of the resonator. We therefore rewrite
Eq. �3� in terms of the vector of the amplitudes of plane
waves, A= 
a−1,1 ,a0 ,a11�. In the limit of zero coupling �zero
index modulation� these are the waves propagating with the
wave vectors �k�−1,k� +q��, �k� ,k��, and �k�+1,k� +q��, as
shown by the dashed lines in Fig. 1�b�. The integration of Eq.
�3� over one longitudinal period of the PC �equivalently over
one resonator round trip� leads to the mapping

A�Z + L� = e�P+F�LA�Z� , �4�

where P is a diagonal propagation matrix with the elements
�−i�k�−1�2+ iq� ,−ik�

2 ,−i�k�+1�2+ iq��, and F is the
off-diagonal scattering matrix. We consider that only the
next-to-diagonal elements of F are nonzero �fm,n= f for
�m−n�=1, otherwise fm,n=0�, as obtained by calculating the
above integral, as well as guided by the experimental mea-
surements of the scattering from one modulated mirror. The
results, however, are qualitatively weakly dependent from
the exact form of the matrix F.

We calculate the diffractive propagation through the un-
folded PC by diagonalizing the propagation and the scatter-
ing matrix P+F. The imaginary part of the eigenvalues
yields the spatial dispersion relation k��kX ,kY�, which allows
us to calculate the angle-dependent phase shift of the Bloch
modes over the longitudinal PC period ���kX ,kY�
=Lk��kX ,kY�. Figure 1�b� shows the spatial dispersion rela-
tion on cross section ky =0 calculated at a zero diffraction
point. The initially parabolic segments of the individual dis-
persion curves �for each of the harmonics� interact due to the
modulation �coupling� and repel one another at their crossing
point. The dispersion curve disshapes, and at the zero diffrac-
tion point attains a flat segment. It is evident from Fig. 1 that
the zero diffraction occurs close to �but not exactly at� the
point of the triple intersection of the spatial dispersion curves
�parabolas in Fig. 1�b�� at L=2� �q�→1�. The parabolas
must be slightly separated from the triple intersection point
to form the flat segments, with the separation distance de-
pending on the scattering strength f .

Asymptotic analysis allows the estimation of the localiza-
tion of the zero diffraction point. In the limit of weak scat-
tering f �1, also near to the triple intersection point, the
spatial dispersion curve �the imaginary part of the eigenvalue
of Eq. �4�� can be obtained as the series expansion at the
point kx=ky =0,
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FIG. 2. The scheme of the resonator used in experiments �a�,
and the corresponding unfolded PC structure �b�. The dashed lines
indicate crystallographic axes of the unfolded PC structure, and the
arrows represent the vectors of the reciprocal lattice.
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k��kX,kY� = D0 − D2kX
2 − kY

2 − D4kX
4 + O�kX

6� �5�

�see, e.g., �10,12� for scalings�. Here D0=2f2 / �1−q�� is the
uniform shift of the wave number due to the modulation of
refractive index; D2=1−8f2 / �1−q��3 is the first �leading�
order diffraction coefficient, which is tuned to zero at
8f2= �1−q��3; D4=32f2 / �1−q��5 describes the second-order
diffraction, which becomes dominant at—or close to—the
zero diffraction point. The spatial dispersion surface �5�
has a single maximum in the normal diffraction regime
�8f2	 �1−q��3�; however, it is of saddle shape in the case of
negative or zero diffraction.

Next, in order to consider the resonator effects, the
mapping �4� is modified. The partial transmission of the
mirrors is accounted for by the diagonal matrix with the
elements t2 : t21, where 1 is the unit matrix, and t denotes the
transmission of a mirror �the resonator consisting of two
identical mirrors was considered�. The resonator phase shift
is accounted for by the term ei�1. The incident light is ac-
counted for by adding the vector A0= �0, t ,0� at every reso-
nator round trip. We consider for simplicity the near-to-
resonance limit, also a good finesse cavity limit, implying a
weak scattering in the PC structure, and highly reflecting
mirrors of the resonator. This allows us to simplify the
propagation operator in Eq. �4� by expanding it in series
e�P+F�L+i�1�1+ �P+F�L+ i�1+. . . . We calculate the resona-
tor transmission in an analogous way as the transmission of
the homogeneously filled plane-mirror Fabry-Perot resona-
tor; however, we manipulate with the vector A of the plane
wave components. We required that the radiation does not
alter in a one resonator round trip,

A�0� = A�L� = �1�1 − t2 + i�� + �P + F�L�A�0� + A0. �6�

Then the resonator transmission is given by

R = �1�t2 − i�� − �P + F�L�−1T . �7�

The element R22 of the resonator transmission matrix �7�
yields the transmission of the central component of the reso-
nator. We calculate the transmission of the resonator at the
zero diffraction point numerically, using Eq. �7�, both in the
sub- and superdiffraction regimes �see Fig. 3�. Figures 3�a�
and 3�b� represent the subdiffraction limit, where the angular
transmission function is broadened in the direction of index
modulation �X direction�, as compared to transmission in the
homogeneous �Y� direction. This case corresponds to the
relatively broad plateau of the manipulated spatial disper-
sion. Figures 3�c�–3�e� represent the opposite limit, when the
dispersion curve develop relatively narrow plateau, resulting
in superdiffraction or, equivalently, the resonator shows the
filtering function. In both cases the formation of strongly
anisotropic �of hyperbolic form� angular transmission distri-
butions is obtained. The parameters used for Figs. 3�c�–3�e�
were chosen to correspond to our experiment reported below.

We evaluate the boundary between the sub- and superdif-
fractive regimes of the resonator assuming that at the bound-
ary the angular width of the resonance is equal to that of a
homogeneously filled resonator. The width of the resonance
at zero diffraction point is governed by second-order diffrac-
tion, and, as follows from expansion �5�, is �k�= �D4Q�−1/4,

where Q is the resonator finesse. The angular spectrum of the
homogeneous cavity, in terms of the normalized variables, is
Q−1/2. Then the boundary between the sub- and superdiffrac-
tion regimes is given by D4=Q, or, equivalently, by
fQ3/4=1. A strong intracavity index modulation in high fi-
nesse resonators �fQ3/4
1� results in subdiffraction,
whereas the opposite regime of a weak index modulation in
low finesse resonators fQ3/4	1 leads to the effect of the
narrowing of the spatial spectrum, i.e., spatial filtering.

In experiments we varied the length of the resonator on a
large scale in order to tune to the zero diffraction point,
which, according to the theoretical calculations �L=7.5�, was
evaluated to exist at l=0.55 mm. �The critical point of triple
interaction is at l=d2 /�=0.44 mm.� The length of the reso-
nator was also varied on the small �submicron� scale in order
to tune the on axis radiation to the resonance. Figure 4 shows
the experimentally recorded far field pattern. The central part
of the experimentally obtained distribution corresponds well
to the theoretically predicted hyperboliclike structure shown
in Fig. 3�c�. The theoretically predicted first-order diffraction
maxima �Fig. 3�e�� are also observed experimentally.

Besides the theoretically predicted central transmission
components, the higher order diffraction components were
experimentally observed �Fig. 4�b��. These components are
beyond the scope of theoretical treatment, as related with the
higher diffraction orders on the index grating. �In theoretical
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FIG. 3. The element R22 of the resonator transmission matrix
�7�: �a�,�c� show transmission on the cross sections kY =0 �solid
lines� and kZ=0 �dashed lines�. �b�,�d� show 2D angular transmis-
sion profiles. �e� shows the full transmission as a sum of central
transmission component R22 and of the first diffraction maxima R21

and R23. Parameters for �a�,�b� are L=9.5, f =0.08, t=0.1,
�=−0.395; for �c�–�e�, L=7.5, f =0.05, t=0.44, �=−0.35.
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treatment based on three-mode expansion only the first dif-
fraction orders are considered.� These components are also
related with the different longitudinal modes. �In the theory
the single longitudinal mode treatment is performed.� These
components match with the intersections of the high-order

diffraction rings of the resonator, as indicated by the dashed
circles in Fig. 4�b�.

Concluding, we built the resonator with the intracavity
modulation of refraction index, i.e., the resonator containing
one longitudinal period of the PC. We developed the theory
of such a resonator, predicting the sub- and superdiffractive
regimes. We demonstrated experimentally the basic proper-
ties expected, i.e., the superdiffraction in the transverse di-
rection of index modulation, as well as 2D hyperboliclike
transmission patterns. The available sample with relatively
low index modulation �f �0.05� and relatively low finesse
�Q�10� allowed to realize experimentally the superdiffrac-
tive regimes only.

The resonators investigated here can be utilized to ob-
serve also the nonlinear effects. The studies of nonlinear ef-
fects in diffraction manipulated systems have been initiated
�hyperbolic patterns in optical systems �14�, and in Bose-
Einstein condensates �15��. Also the nonlinear effects in
resonators with the index modulated in transverse direction
only were investigated �in 1D PCs in resonators with ��2�

�16� and ��3� �17,18� nonlinearities� predicting the modifica-
tion of instabilities. The nonlinear resonators with 2D photo-
nic crystals, however, have never been investigated up to
now. In particular the significant narrowing of the nonlinear
structures �e.g., spatial solitons� in subdiffractive regimes,
and a significant enhancement of spatial stability of these
structures in superdiffractive �filtering� regimes, can be an-
ticipated.
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FIG. 4. �Color online� Far field of the radiation transmitted
through the resonator recorded experimentally: �a� The central part
of the transmitted distribution �corresponding to calculated distribu-
tion�. �b� Full spatial spectrum, containing higher harmonics and
different longitudinal modes. The dashed circles indicate the reso-
nator resonance rings, and the shifted �due to the lateral index
modulation� resonance rings.

STALIUNAS, PECKUS, AND SIRUTKAITIS PHYSICAL REVIEW A 76, 051803�R� �2007�

RAPID COMMUNICATIONS

051803-4


