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We determine the temperature (T) dependence of first- and second-sound-like mode frequencies for trapped
Fermi gases undergoing the BCS to Bose-Einstein condensation (BEC) crossover. Our results are based on
numerical solution of the two-fluid equations in conjunction with a microscopic calculation of thermodynami-
cal variables. As in experiment and at unitarity, we show that the lowest radial breathing mode is 7 indepen-
dent. At finite 7, higher-order breathing modes strongly mix with second sound. Their complex 7 dependence
should provide an alternative way of measuring the transition temperature 7.
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The recent discovery of the superfluid phases of trapped
Fermi gases has led to considerable interest in their collec-
tive mode spectrum [1-7]. Among the modes of experimen-
tal interest are breathing modes as well as propagating first
sound. While originally theoretical attention [8—10] was fo-
cused on ground-state properties, experimental measure-
ments are naturally not restricted to temperature 7=0. In-
deed, there is an interesting body of information that is
emerging in these Fermi gases about the finite-temperature
behavior [4-6] of the breathing modes and, more recently,
about the propagating sound velocity [7].

The purpose of this paper is to compute sound mode fre-
quencies in spherically trapped Fermi gases undergoing the
BCS to Bose-Einstein condensation (BEC) crossover, at gen-
eral 7. We present a solution of the linearized two-fluid equa-
tions and compare with recent experiments. We focus on the
radial breathing modes and present predictions for a second-
sound-like mode as well. The structure of the two-fluid equa-
tions for Bose [11] and Fermi gases [12] has been rather
extensively discussed. In the crossover regime, the normal
fluid is novel [13,14], containing both fermions and noncon-
densed pairs, which have not been systematically included in
previous collective mode literature.

Of great importance to the field as a whole is the future
possibility of second-sound observations, possibly through
experiments such as those in Ref. [15]. While existing ex-
perimental techniques such as vortex observation [16] and
density profile features [17] help establish superfluidity, they
provide lower bounds on T, or determine its value for the
special case of a population-imbalanced system. Thermody-
namical experiments measure T, more directly [18,19] but
have been confined to unitarity. Thus other techniques, such
as second-sound observation, will be of great value. One of
the principal results of the present paper is an analysis of
how a second-sound-like mode is coupled to the breathing
modes. We demonstrate that higher-order breathing modes
will reveal 7. through this coupling, and therefore are an
alternative to direct second-sound measurements. However,
the lowest breathing mode appears to be remarkably T inde-
pendent at unitarity. This has been observed experimentally
[4,5] and argued to follow from isentropic considerations [6].
Here we show that, even when we treat the full coupling
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At the core of the two-fluid theory is the assumption that
hydrodynamics is valid and that there are frequent collisions
which produce a state of local thermodynamical equilibrium.
Although there are some exceptions [15], reaching the two-
fluid regime has not been easy for atomic Bose gases. Two-
fluid dynamics are more readily achieved for Fermi gases,
principally because in the crossover regime the large scatter-
ing lengths produce sufficient collisions. Nevertheless, there
has been considerable theoretical interest in setting up [12]
and solving [20] the two-fluid equations for Bose conden-
sates. Indeed, hydrodynamical approaches have successfully
addressed both the 7=0 and normal-state regimes of the
Bose gases [21]. Here, by contrast, we address the Fermi gas
case in a trap. Because they interact more strongly near uni-
tarity, hydrodynamical descriptions have been argued quite
convincingly [6,9,22] to be valid.

Previous theoretical work has been confined to 7=0 treat-
ments of a harmonic trap [8,9] or to finite-T theories [22] of
a uniform gas in which there is a clear meaning to “first” and
“second” sound. We extend this terminology to a trap, by
carefully defining the fingerprints of these modes. Our work
is most similar in spirit to an earlier Bose gas study [20],
although we introduce different numerical techniques as well
as addressing fermions rather than bosons. We note that the
input thermodynamics of systems undergoing the BCS-BEC
crossover which is used in the present paper has been rather
well calibrated against experimental measurements in Ref.
[18] and is based on a finite temperature extension of the
simplest (BCS-Leggett) ground state. In the absence of a trap
our results are for the most part similar to those in Ref. [22].

We begin with the two-fluid equations which describe the
dynamical coupling of the superfluid velocity v, and the nor-
mal velocity v,. Just as in the spirit of the original Landau
two-fluid equations, we ignore viscosity terms. In the pres-
ence of a trap potential Vext=%mwh0r2, the two-fluid equa-

tions are given by mav,/dt+V(u+Ve+mv:/2)=0,
9/ t+V -Ml==nVV.,  dn/dt+V-j=0, and  d(ns)/dt
+V-(nsv,)=0, with [1"=p & +nv'v +n,v. v/, n=ns+n,, and

j=n,v+n,v,. Here u is the chemical potential, p the pres-
sure, and s the entropy per particle. Moreover, we have
n,v,+nv,=nv. Here n, (v,) and n, (v,) denote the superfluid

between first and second sound, we obtain similar  and normal densities (velocities), respectively. We use the
T-independent behavior at unitarity. subscript 0 to denote equilibrium quantities such that vy,
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=v,0=0, V(p+Vex) =0, Vpo=—ngV V. and ng, so, po, and
Po are independent of time . Combining this with the ther-
modynamic relation du=-sdT+dp/n, we have VT;=0, im-
plying that the temperature T is constant in the trap. It then
follows that in equilibrium w=puy— V., consistent with the
Thomas-Fermi approximation.

For small deviations from equilibrium, we may linearize
the two-fluid equations. Eliminating the velocities v, and v,,,
one finds [12,20]

F;o 8
m= =V <n0v ”) V . (8TngVsy), (1)
ot ng
*os 1 5
m—zsz—V( OnOSOVé‘T) — (Vs0)?6T + Vs, - V(—p>
ar”  ng Mo ng

2)

We will focus on Su(r) and 8T(r) as the principal variables.
This choice, which is different from that in Ref. [20], is made
because both variables are nonvanishing at the trap edge so
that in a basis set expansion they will satisfy the same
boundary conditions. Moreover, the two-fluid equations are
simplest in this form. Expressing Js, dp, and on in terms of
o and T, the two-fluid equations can be rewritten as

(a_n> P Su ( ) &2§T_A 3
o)y o " \aT) , a*  m’
(o) 2 (o) 2e
/)y or aT m

with

A=V - -(nVéu)+V - (nsVéT),

1 nng ,
=-V. sVOT | +Vs-Véu+sVs-VorT.

n n,

It is understood that all coefficients of du and oT are calcu-
lated in equilibrium so that we drop the subscript 0. The
thermodynamical quantities in equilibrium can be calculated
following Ref. [23], based on the standard local density ap-
proximation, u(r)=po— Ve (r). Their derivatives with re-
spect to T and u can be calculated analytically, and their
gradients can be obtained via Vf=—(Jf/du);VVey, Where f
denotes any of the variables (n,n,,n,,s).

To solve the two coupled differential equations (3) and
(4), we assume a simple harmonic time dependence Su, 6T
e ! We cast the differential two-fluid equations into an
eigenfunction problem with w? playing the role of eigenvalue
and the eigenfunctions given by the amplitudes of Su and
oT. Since neither T nor p depends on the density, they will
not vanish at the trap edge. Our boundary conditions require
that all thermodynamic variables be smooth (but not neces-
sarily zero) at the trap edge. At finite 7, the density in the
trap decreases exponentially when the local chemical poten-
tial becomes negative at large radius. We choose, thus, to
expand Su and ST in terms of Jacobi polynomials. For our
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numerics we choose the matrix dimension to be 300; we
have similarly investigated matrices of dimension 200 up to
900, and found little change in our principal findings.

We now turn to an important aspect of our numerics. Be-
cause we generate some 300 frequencies in our numerical
approach, it is essential to establish a mechanism for system-
atically identifying first- and second-sound modes. To help
find such a “fingerprint,” we introduce a “decoupling ap-

proximation” based on reducing Egs. (3) and (4) to &u

=g,(8w, 8T), 6T=g,(Sw,ST), where g1, are known func-
tions. We eliminate cross terms by setting 67=0 in g; and
ou=0 in g,. With these two decoupled equations, it is then
relatively straightforward to associate a profile plot of the
numerically calculated local pressure and entropy vs r within
a trap with first- or second-sound-like modes. This procedure
can be validated as a zeroth-order approximation to solving
the full coupled equations in large part because the breathing
mode so obtained is quantitatively very accurate and the
sound mode is semiquantitatively consistent. The qualitative
T-dependent behavior we find for the first- and second-
sound-like modes is not so different from that found else-
where [20] for Bose gases. An important check on our pro-
cedure is that we find that there is no sign of second sound
above T..

Up to this point everything is general, applying to both
Fermi and Bose superfluids. All that is needed is a micro-
scopic theory for thermodynamical variables. Here we use a
calculational framework we have developed for treating
BCS-BEC crossover in trapped Fermi gases [23-25], which
emphasizes the importance of pseudogap effects or finite-
momentum pairs. The local thermodynamical potential (den-
sity) Q=Q+(), is associated with a contribution from
gapped fermionic excitations (), as well as from noncon-
densed pairs, called ),. We have

2
Oy =- A; + 2 [(&— Ey) - 2T In(1 + e/,
K

Q== ZN ppe + X Tln(1 — e~ %T). (5)
q

Here ,;; is the chemical potential of the pairs, which is zero
below T, and the pair dispersion (), along with the (in-
verse) residue Z, can be derived from a microscopic T-matrix
theory, described elsewhere [13,14]. Using () one then ar-
rives at thermodynamical properties such as the entropy den-
sity ns=—dQ/JT, as well as self-consistent equations for the
total excitation gap A, the contribution to A from noncon-
densed pairs (called the pseudogap), and the number
equations. These self-consistent (local) equations are
simply given by 9Q/JA=0, HV/ Iy =0, and n=—3Q0/ Ju,
subject to the total number constraint N=[d*r n(r). When
T<T, we can use the gap equation and chain rule to
eliminate the variable A, which is a function of w and T,
via  JA/du= —(aZQf/aA I/ (PQy/0A%)  and  (9A/dT)
=—(&2Qf/(?A ﬁT)/(r?zﬂf/ 9A?). Similarly, when 7> T, we use
the gap and pseudogap equations to eliminate the variables A
and pp;, to arrive at thermodynamical quantities.
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FIG. 1. (Color online) Behavior of the first- (upper row) and
second-sound (lower row) modes for a spherical trap at unitarity
within the decoupling approximation (see text). The left column
shows the 7' dependence of the frequencies, while the right shows
corresponding typical spatial oscillation profiles for &p [(black)
solid lines] and nds [(red) dashed lines] at the lowest frequencies,
which provide fingerprints of first and second sound. For the second
sound, nds dominates and changes sign within the condensate. Here
T.~0.27TF, and the arrows indicate the condensate edge.

Figure 1 shows the lowest two collective modes at unitar-
ity in a spherical trap, obtained by solving the chemical po-
tential or temperature fluctuation equation in the decoupling
approximation scheme described earlier. It is evident that our
approximated breathing mode frequency [Fig. 1(a)] is inde-
pendent of temperature. We understand this result by noting
that the decoupled equation for the breathing mode is given
by —w?Su=C,, V*6u+C,,n-Vou where C,, =n(du/on),
and C,,,=Vu. At unitarity, n(r?,u,/&n);%,u,. The only T
dependence contained in wo=w(r=0) can be eliminated
via a simple rescaling of r— ry2uy/ mwﬁu, yielding a
T-independent breathing mode frequency. An important vali-
dation of our decoupled breathing mode is that it then be-
comes equivalent to that obtained from the isentropic as-
sumption of Ref. [6].

By contrast, the second-sound-mode frequency we obtain
increases rapidly with temperature. Some typical oscillation
profiles of 8p(r) and nds(r) are shown in the right two panels
of Fig. 1. Although the “entropy density oscillations” n8s(r)
fall off at large r, the entropy per particle 8s(r) oscillations
(not shown) increase very rapidly upon entering the normal
region. Consequently, temperature fluctuations 67 become
large at the trap edge.

Our identification of first sound for the decoupled case
leads us to associate this mode in a coupled situation with a
profile for which at the trap center dp has a large amplitude,
while nds is almost zero (with a small peak near the trap
edge) as in Fig. 1(b). By contrast, in the trap center the
second-sound mode has large entropy fluctuations, while the
pressure fluctuations are almost zero [Fig. 1(d)]. These fea-
tures will serve as fingerprints for distinguishing (lower-
order) first- and second-sound modes at finite temperatures.
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FIG. 2. (Color online) Typical spatial oscillation profiles for &p
[(black) solid lines] and nds [(red) dashed lines] obtained from the
fully coupled equations for a spherical trap at (a)—(c) unitarity and
(d) 1/kpa=1 at different 7, for the first- (top row) and second-
(bottom row) sound modes. Also shown in (a) is the T=0 analytical
result [(green) dot-dashed curve]. The arrows indicate condensate
edge.

Figure 2 shows some typical eigenfunction profiles of the
lowest modes obtained in the spherical trap upon solution of
the fully coupled two-fluid equations. The first row corre-
sponds to the breathing mode in the unitary case. The good
agreement between the very low-T result for dp and the
T=0 analytical solution (green dashed line) in Fig. 2(a) helps
validate our numerical scheme. Figure 2(b) corresponds to
a high-temperature breathing mode. In this regime the
pseudogap region outside the superfluid core is relatively
large and the peak in nds(r) is accordingly very broad. The
lower two panels correspond to second-sound modes for the
unitary and BEC cases. By contrast with the breathing
modes, here nds has a larger amplitude than Sp with an
opposite sign. Clearly this is very similar to what we ob-
served in the decoupled-mode analysis of Fig. 1.

Figures 3(a)-3(c) address the fully coupled equations and
show the behavior of the lowest breathing (upper branch)
and second-sound mode (lower branch) frequencies as a
function of temperature in a spherical trap for 1/kpa=1, 0,
and —0.5, respectively. For all three values of 1/kra we find
very little sign of 7. in the lowest breathing mode frequency.
In contrast, the second-sound-mode frequencies increase
with T and disappear above T.. Figure 3(d) presents a more
complete series of modes for the unitary case. Here the lines
serve as guides to the eye for the lowest (nearly horizontal,
blue) and higher-order (green) breathing mode, and second-
sound (increasing lines, red) frequencies.

At unitarity [Fig. 3(d)] one can identify a sequence of
higher-order breathing modes which precisely overlap with
analytical calculations for 7=0. Importantly, only the lowest
of these is found to be a constant in temperature; the others
are found to mix with second-sound modes, as indicated in
the increasing solid and dashed (red) lines in Fig. 3(d). The
behavior of the lowest mode helps to justify the isentropic
assumption made in Ref. [6]. We understand this by referring
back to the decoupled profiles in Figs. 1(b) and 1(c), which
are seen to be quite distinct. By contrast the profiles of the
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FIG. 3. (Color online) Temperature dependence of breathing
mode and second-sound frequencies in a spherical trap. (a)—(c) are
for the near-BEC, unitary, and near-BCS cases, respectively. The
upper and lower branches in (a)—(c) represent the lowest breathing
mode and second-sound frequencies, respectively. In (d), more
complete results (open circles) are shown at unitarity, where the
lines serve as guides to the eye for the breathing mode (nearly
horizontal [blue (lower) and green (upper)] lines) and second sound
[increasing (red) curves] frequencies.

decoupled first- and second-sound modes at higher order
(notshown) appear more similar to each other than their
lowest-order counterparts. Indeed, the behavior of the pro-
files at higher order is associated with an increasing number
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of nodes in the curves of Sp and nds (not shown), which
leads to a greater similarity between first- and second-sound
profiles and helps explain why the higher-order modes are
more readily mixed [26].

In summary, we have presented predictions for future ex-
periments on higher breathing modes and second sound in a
trap. We find that only the lowest breathing mode frequency
has very weak T dependence. For the unitary case this tem-
perature insensitivity was clearly observed by Thomas and
co-workers [6]. As a result of this experiment it should not
be surprising that we find relatively weak dependencies on
either side of the Feshbach resonance for this breathing mode
frequency. In the literature there are experimental claims (at
1/kpa=1.0) which are consistent with a decrease [4] in the
radial breathing mode frequency, as indeed we find here,
although ours is probably too weak to reconcile the different
findings in Refs. [4,2,3]. Finally, our more complete studies
at unitarity show that, if higher-order radial breathing modes
can be accessed, because of their strong hybridization with
second sound, it may be possible to use these breathing
modes, rather than direct second sound to determine the tran-
sition temperatures 7,. This should be of value since there
are currently few experiments that can assign a value to 7.
over the wider crossover regime.
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