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Polychromatic cone-beam phase-contrast tomography
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A method is presented for quantitative phase-contrast tomography using unfiltered radiation from a small
polychromatic source. The three-dimensional distribution of complex refractive index in a monomorphous
object is reconstructed given a single projection image per view angle. The reconstruction algorithm is achro-
matic and stable with respect to high-spatial-frequency noise, in contrast to conventional tomography. The
density distribution in a test sample was accurately reconstructed from polychromatic phase-contrast data

collected with a point-projection X-ray microscope.
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Conventional absorption-based computed tomography
(CT) is a method of choice for three-dimensional imaging
[1,2], differentiating regions within the sample based on their
attenuation of penetrating radiation or matter waves (x rays,
neutrons, electrons, etc.). Consequently, features displaying
weak absorption contrast—such as different soft tissues in
the case of medical x rays, or different transparent materials
in neutron radiography—are difficult to resolve using con-
ventional CT [3,4]. However, if one has knowledge of not
only the intensity but also the phase of the transmitted wave
for a number of viewing angles (projections) about the ob-
ject, one may be able to reconstruct its three-dimensional
distribution of complex refractive index. This enables the
differentiation of features on the basis of their refractive
properties, which are otherwise invisible to conventional
absorption-based CT. The use of refraction, rather than ab-
sorption, as a contrast mechanism has an important advan-
tage in the possibility for a significant reduction of the ab-
sorbed radiation dose required for achieving an acceptable
signal-to-noise ratio in the images. Furthermore, exploiting
phase contrast and reducing absorption, e.g., by using high-
energy polychromatic beams, one can minimize beam hard-
ening artifacts [1] which are known to negatively affect the
quantitative accuracy of conventional CT reconstruction. Of
course, it is not feasible to measure wave-field phase directly,
at optical and higher frequencies. Instead, in phase-contrast
CT (PCT) one may employ appropriate phase-retrieval tech-
niques to determine the object-plane phase, either explicitly
or implicitly, from intensity measurements [2,5-21].

In this Brief Report we focus on PCT techniques in which
a weakly absorbing object is illuminated by divergent par-
tially coherent paraxial waves emanating from a source tra-
versing a circular path around the object, the reconstruction
of the three-dimensional complex refractive index distribu-
tion being achieved on the basis of the phase contrast which
occurs as a result of free-space propagation of transmitted
waves from the object to the detector [3,22]. Methods for
propagation-based PCT have been subject to much active
research in recent years [5,6,9-11,14-16,18,21]. However, in
most of the published works monochromatic incident waves
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were assumed. While well suited to, e.g., typical
synchrotron-based experiments, such a methodology cannot
be applied directly to PCT with conventional sources, which
typically generate beams that are both polychromatic and
divergent [14,19]. In the latter case the monochromatization
and collimation of incident radiation is usually impractical as
it strongly reduces the incident flux and, consequently, in-
creases the exposure times beyond acceptable limits. Given
that propagation-based phase contrast may be exhibited us-
ing unfiltered radiation from polychromatic sources of suffi-
ciently small diameter [22], it is timely that the effects of
polychromaticity, partial spatial coherence, and divergence
be explicitly incorporated into PCT reconstruction algo-
rithms. Remarkably, as shown below, in the special case of
nonabsorbing objects and sufficiently short propagation dis-
tances between the object and the detector, the propagation-
based PCT is achromatic, thus allowing quantitative cone-
beam PCT to be realized using unfiltered divergent radiation
from laboratory-based x-ray microfocus sources, as well as
small polyenergetic sources of cold or thermal neutrons. The
method may also be applied to point-projection optical to-
mography using a thermal light source, and to the minimally
destructive three-dimensional imaging of cold atom clouds
[23].

The method of polychromatic PCT can also be extended
to weakly absorbing “monomorphous” (i.e., “homogeneous”
[24]) objects provided the wavelength spectrum is not too
broad (see details below). Recall that an object is
called monomorphous with respect to the incident
radiation if the distribution of its complex refractive index
n(r,\)=1-A(r,\)+iB(r,\) is such that the ratio e(\)
=p(r,N)/A(r,\) is independent of position r, at all wave-
lengths present in the detected spectrum. The assumption of
monomorphicity is valid for x-ray-illuminated or neutron-
illuminated objects composed of a single material [14,24],
for objects composed of light elements (Z<10) illuminated
by high energy (60-500 keV) x rays [16], and also for cold
clouds of two-level atoms illuminated with off-resonant light
[23,25]. Note that nonabsorbing objects constitute a subset of
monomorphous objects, with ¢(\) =0 for all incident wave-
lengths. For weakly absorbing monomorphous objects, £(\)
is assumed small.

Let the object lie entirely within a sphere of radius d
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FIG. 1. Schematic of experimental layout for polychromatic
cone-beam phase-contrast tomography.

centered at the origin of the Cartesian coordinates x
=(x;,X,,x3). Consider first a point source located at position
s(a@)=(p cos a,p sin @,0), emitting radiation with wave
number k=27/\. This source traces a circle of radius p in
the x,—x, plane centered at x=0, where a €[0,2) is the
angle from the x; axis to the source (see Fig. 1). The distance
from the source to the object plane is R;=p+d. Assuming the
projection approximation [21] is valid within the object, the
object-plane phase ¢y(z,a,\) of a monochromatic compo-
nent of the illuminating beam is given by the line integral

P

Ip

where z=(z,,2,)=(-Rp,/p»,R p3/p,) is a Cartesian coordi-
nate system in the object plane (see Fig. 1), and
p=(p,,pa.p3)=(x; cos a—x, sin a,p—x; cOS a—x, sin a,x3)
is a Cartesian coordinate system rotated by an angle
/2 + « about the x3 axis with respect to xy, that is centered
on the x-ray source (see Fig. 1). Given knowledge of the
object-plane phase for projections « € [0,277), we can recon-
struct the real refractive-index decrement A(x,\) using the
well-known Feldkamp-Davis-Kress (FDK) reconstruction al-
gorithm [26,27]:

Rp (*™ 1 ¢o(z,a,\)
A(x,h):——lf =¥ |g|F,| 222220 | g, (2)
2k Jo p3 ! 4ilFs VR +21+ 25

bo(z,a,\) :—kfoc A(s(a) + t,)\)dt, (1)

where F, is the one-dimensional Fourier transform with &,
dual to z;.

To render the phase of the object-plane wave field visible
as intensity variations in a propagation-based phase-contrast
image, a propagation distance R, >0 is introduced between
the object plane and the detector (see Fig. 1). It is assumed
that the transmitted wave is paraxial, and that the Guigay
condition [28], |¢y(z, @, N)—¢y(z+R'NE, a,\)| < <1, holds
for any point z in the object plane and any & from the support
of the spatial Fourier spectrum of the transmitted wave,
&=(¢,,&) being dual to z=(z,,z,), where R'=R,/M,
M=(R,+R,)/R, is the geometric magnification, and
E=|&<1/(2h,,,), where h,,;, is the size of the minimal re-
solvable feature in the image. Then the free-space propaga-
tion of the transmitted wave can be described by the follow-
ing linear expression:
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(3)

where Sg (Mz,a,\) is the spectral density at the detector
plane, S;,(\) is the unperturbed spectral density in the object
plane, F, is the two-dimensional Fourier transform, and
T(€,\)=sin(m\R' &) +e(\)cos(mAR' &) is the phase-
contrast transfer function in the case of a weakly absorbing
monomorphous object [23,29].

The paraxial approximation made in deriving Eq. (3) is
equivalent to assuming a small cone-beam angle and conse-
quently neglecting terms of second or higher order in d/R;.
Applying this approximation to Eq. (2), subsequently making
use of both Eq. (3) and the identity |&|F,[1]=0, the former
equation becomes

RlpMz 2 1 .

A(X,\) =—- —F
(®.)) 4kS;,(N) 0 P% :

[51
X |: T(EN FZ[SRZ(MZ, a,)\)]]da. (4)
Thus we have derived a paraxial cone-beam phase-and-
amplitude computed tomography (PACT) reconstruction for-
mula which is valid for a monochromatic point source illu-
minating a weakly absorbing monomorphous object. It
allows one to reconstruct the complex refractive index
n(x,\)=1+A(x,\)[ie(A)=1] of an object from a single
phase-contrast image taken at each projection angle
a e[0,2). The PACT algorithm for plane incident waves
[18] is a special case of Eq. (4), corresponding to the limit
p— .

The above result may be generalized to the case of a
polychromatic source producing an incident spectral density
distribution S;,(\) in the object plane. Let us first consider
nonabsorbing objects [¢(N\)=0], and also assume that the
propagation distance satisfies the “near-field” condition,
R’ <h[2nin/ A. As usual, the latter condition allows one to ap-
ply the following approximation: 7(&,\)=sin(7mAR’'&?)
=a\R'&, and hence kT(&,\)=27°R'&. Note that this
second-order Taylor approximation, to the transcendental
transfer function 7(&,\), may also be obtained via an analy-
sis based on the so-called transport-of-intensity equation
[21]. This second-order expression for kT(&,\) is quite re-
markable in that it does not depend on A. If we now multiply
both sides of Eq. (4) by S,(AN)D(N\), D(\) being the
spectral sensitivity of the detector, integrate the result over
the wavelength spectrum, and then divide both sides
by the polychromatic (time-averaged) incident intensity,
1;,=[Si(ND(N)dN, we obtain

oM fﬂ _l[lfllFZURz(Mz,a)]} §

T8PM -, )y pr L EFPy(M)]

Ag(x) =

(5)

where Ag(x)=[(S;,,(N)D(N)A(x,N)dN/1,, is the spectrally av-
eraged decrement of the real refractive index, I Rz(z, a)
=Py(z)* [;S R2(z, a,N)D(N\)dN\ is the detected polychromatic
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FIG. 2. Axial slice through the reconstructed distribution of the
imaginary part of the refractive index in the phantom; straight black
line shows the position of a cross section.

intensity, Py(2)=Poueel 2/ (1=M)]* Pyeector(z) is the nor-
malized PSF of the imaging system which accounts for both
the finite size of the source and the spatial resolution of the
detector [29], and “ *” denotes two-dimensional convolution.
Equation (5) is our central result which represents a poly-
chromatic cone-beam PCT reconstruction formula that al-
lows reconstruction of a three-dimentional (3D) distribution
of the spectrally averaged refractive index in a nonabsorbing
object from a single polychromatic projection image ac-
quired at each view angle. Note that unlike an equivalent
reconstruction formula in conventional CT [2], Eq. (5) is
stable with respect to high-frequency noise due to the
suppression of the growth of the ramp filter, |£],
by the “phase retrieval” kernel & in the denominator
[11,18,30]. Note also that when a scaling law of the type
Ax,N)=f(N,Ng)A(x,Ny) is applicable [e.g., A(x,\)
=(N/Ng)?A(x,\) as typically holds outside x-ray absorption
edges of constituent materials], the true 3D distribution of
the refractive index can be recovered from the spectrally av-
eraged refractive index according to A(x,\y)=C(\g)A(x),
provided the position-independent spectral factor C(\)
=1,/ [5SiN)D(N)f(N,Ng)dN is known. When any scaling
law of the above type holds, but C(\,) is not known, Eq. (5)
still provides a distribution equal to the refractive index
A(x,\y) up to a multiplicative factor.

Under additional conditions, Eq. (5) can be extended to
weak monomorphous objects. Here we have T(&,\)
=7AR'&+e(\), and hence kT(&,\) =27°R' & +ke(\). We
see that while the first additive term (which corresponds to
phase contrast) is achromatic, the second term (which corre-
sponds to absorption contrast) is not. It is easy to verify that
when d<<\/mAR’/&(\), the phase contrast term is dominant
at all nonzero spatial frequencies. As absorption has been
assumed weak, this condition is not unrealistic. For example,
in the case of 12 keV x rays, e(\) is typically of the
order of 1073 or so for most biological materials, therefore
the last condition limits the maximum size of the sample to
~0.2 mm for a defocus distance R’=10 cm. Further,
we approximate &(N\)/A=e(\y)/\, within the range
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FIG. 3. One-dimensional cross section through the reconstructed
distribution of the imaginary part of the refractive index taken along
the black line in Fig. 2 (solid line), and the corresponding theoret-
ical cross section (dashed line).

IN=Xo|/Ng<0c(e)<1, where o(e) is a monotonic positive-
valued function. This implies that (\)/\ does not vary too
much within that range. Indeed, for example, it is well
known that for x-ray wavelengths outside the absorption
edges of a sample’s component materials, the real and imagi-
nary parts of the refractive index scale as B(x,\)
=(N/Np)*B(x, o) and A(x,N)=(N/Ng)?A(x,\), respectively
[3]. Therefore in this case |e(N\)/NA—g(\g)/N|
<o(e)e(N\g)/\y and hence e(N\)/A=e(\y)/\y is a suffi-
ciently good approximation for the relatively insignificant
absorption term. A derivation similar to that used above for
Eq. (5) now leads to the following reconstruction formula:

R,pM? f 7

A = —
S(X) 8’n-Iin 0 p%

XF_ll &l (Mz,)] .
2 | [7R' & + e\ P Pyy(Mz)] |“

(6)

Equation (6) defines the polychromatic cone-beam PACT
algorithm for weakly absorbing monomorphous objects,
where the phase-retrieval step is merged with the deconvo-
lution of the PSF and with the filter used in the standard
FDK algorithm. This results in a partial cancellation of sin-
gularities of the CT filter function, phase-retrieval kernel,
and the PSF of the imaging system, in a manner similar to
that demonstrated in Ref. [29] in the case of 2D imaging.
Furthermore, the weak absorption term acts as a regularizer
in the denominator of Eq. (6), increasing the low-frequency
stability compared to Eq. (5) (cf. [24]).

We now turn to an experimental implementation of our
method. We prepared a phantom consisting of a hollow Per-
spex tube of 2 mm external diameter with 100 wm thick
walls and four different nylon fibers with diameters of 100,
240, 330, and 420 um inserted parallel to the axis of the
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Perspex tube and fixed in the caps at the top and bottom of
the tube. A tomographic dataset was acquired on a point-
projection x-ray ultra microscope (XUM) based on an FEI
XL-30 scanning electron microscope [14]. The x rays were
generated by focusing a 30 keV electron beam onto a
500 nm thick tantalum foil target, with the resulting charac-
teristic radiation and bremsstrahlung yielding a divergent
polychromatic x-ray source of approximately 0.2 um diam-
eter, and a mean photon energy of approximately E,
=8.4 keV. The presence of characteristic Ta L lines in the
spectrum has the effect of making the data effectively more
monochromatic, but the contribution of the bremsstrahlung
was large enough to prohibit the use of a quasimonochro-
matic approximation [14]. A total of 720 images of the
sample were acquired with equal rotational steps of 0.5° be-
tween the views. Each projection image took 1 min to ac-
quire, and the total CT scan time was more than 15 h. The
source-to-sample distance R; was 25 mm, with a source-to-
detector distance R;+R, of 259 mm. This geometry gives a
geometric magnification of M=10.4X at the surface of the
detector, producing propagation-based phase-contrast im-
ages. Note that the phase contrast present in these projections
is an inevitable consequence of the geometric magnification
achieved in point-projection x-ray microscopy. The present
experimental approach allows one to collect high-resolution
images without x-ray focusing elements and without a high-
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resolution detector. Using the collected projection data, a nu-
merical implementation of Eq. (6) was used for the tomog-
raphic reconstruction with £(A\)=0.0016 (Ay=1.48 A). A
sample of the reconstructed distribution of B(r,\)
=g(\y)A(r,\y) is shown in Fig. 2. The spatial resolution of
this reconstruction was 3.86 um per cubic voxel. Finally,
Fig. 3 shows a cross section of the reconstructed distribution
of B(r,\,) along the black line in Fig. 2 passing through
three lower fibers, alongside the ideal theoretical profile of
B(r,\y) at the same wavelength. Note that despite the value
of & being quite small, the observed x-ray attenuation
reached almost 50% in some projections. It was difficult to
avoid significant absorption, as our XUM microscope be-
comes less efficient at higher x-ray energies. This means that
the condition for the dominance of the phase contrast formu-
lated above was violated in the experiment, and as a conse-
quence we did observe some beam hardening in the form of
mild “cupping” artifacts. Nevertheless, one can see from
Figs. 2 and 3 that a reasonable quantitative accuracy has
been achieved in the reconstruction using the CT data col-
lected with an unfiltered broad-band cone beam of x rays.
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