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We study quantum turbulence in trapped Bose-Einstein condensates by numerically solving the Gross-
Pitaevskii equation. Combining rotations around two axes, we successfully induce quantum turbulent state in
which quantized vortices are not crystallized but tangled. The obtained spectrum of the incompressible kinetic
energy is consistent with the Kolmogorov law, the most important statistical law in turbulence.
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The study of turbulence has a very long history, going
back at least to Leonardo da Vinci, and understanding and
controlling turbulence are great dreams of science and tech-
nology. Classical turbulence �CT� exhibits highly compli-
cated configurations of eddies. Many studies have been de-
voted to the dynamical and statistical properties of CT after
Kolmogorov’s pioneering work �1,2� on flow at very high
Reynolds number, namely, fully developed CT. The charac-
teristic behavior of CT has been believed to be sustained by
the Richardson cascade of eddies from large to small scales.
However, in CT, there is no universal way to identify each
eddy, because they continue to nucleate, diffuse, and disap-
pear. As a result, many aspects of CT are still not perfectly
understood.

Turbulence is also possible in superfluids, such as the su-
perfluid phases of 4He and 3He. Such quantum turbulence
�QT� consists of definite topological defects known as quan-
tized vortices and has recently attracted interest as a way to
better understand turbulence �3�.

Superfluid 4He has been extensively studied, in particular
with relation to quantized vortices �4�. Below the lambda
temperature T�=2.17 K, liquid 4He enters the superfluid
state through Bose-Einstein condensation. The hydrodynam-
ics of superfluid 4He is strongly influenced by quantum ef-
fects; any rotational motion is sustained by quantized vorti-
ces with quantized circulation �=� /m, where m is the
particle mass. There are two typical cooperative phenomena
of quantized vortices. One is a vortex lattice under rotation in
which straight quantized vortices form a triangular lattice
along the rotation axis �5�. The other is a vortex tangle in QT
in which vortices become tangled in a flow �6,7�.

QT has been studied as a problem in low-temperature
physics since its discovery some 50 years ago. Its study has
recently entered a new stage beyond low temperature phys-
ics. One of the main motivations of recent studies is to in-
vestigate the relationship between QT and CT. Some simi-
larities between the two types of turbulence have been
experimentally observed in superfluid 4He �8,9� and 3He
�10,11�, and have been theoretically confirmed by numerical
simulations of the quantized vortex-filament model �12� and
a model using the Gross-Pitaevskii �GP� equation �13–16�. In
particular, we have successfully obtained the Kolmogorov
law for QT, which is one of the most important statistical
laws in CT �17� by a numerical simulation of the GP equa-
tion �14,15�.

The similarity between QT and CT means that QT is an

ideal prototype to study the statistics and vortex dynamics of
turbulence, because QT exhibits a real cascade process of
quantized vortices. However, in superfluid helium, it is very
difficult to experimentally control the turbulent state and de-
termine the vortex configuration.

Another important example of quantized vortices is mag-
netically or optically trapped atomic Bose-Einstein conden-
sates �BECs� �18�. The characteristics of trapped BECs are as
follows: �i� a BEC system is weakly interacting and can be
easily treated theoretically, �ii� many physical parameters of
BECs are experimentally controllable, and �iii� various
physical quantities such as the density and phase of BECs
can be directly observed, which is in stark contrast to super-
fluid helium systems. Quantized vortices can be considered
to be holes of density and singularities of phase. Shortly after
trapped BECs were first realized, experimental groups
�19,20� reported vortex lattice structures, as well as the crys-
tallization dynamics of these structures under rotation. These
dynamics have been successfully confirmed quantitatively by
the numerical simulation of the GP equation �21,22�.

However, in the experimental research of trapped BECs,
another important phenomenon of quantized vortices,
namely QT, has not been adequately studied. Noting that
quantized vortices are observable and that almost all physical
parameters of trapped BECs are controllable, such systems
are an ideal prototype for truly controllable QT, which is not
possible for superfluid helium. QT in trapped BECs can be
used to determine several details of the system, such as the
distribution of vortex length, details on the cascade of vorti-
ces, the isotropy or anisotropy of vortex configuration and
details on correlations among vortices related to eddy viscos-
ity, as already considered for CT �17�. Clarifying any of
these will allow the transition to QT to be considered a uni-
versal phase transition. Therefore, research into QT offers the
promise of greater advances in understanding turbulence
than has been possible in past studies of turbulence.

There are only a few theoretical pioneering works for QT
in trapped BECs in which QT is realized in relaxation pro-
cesses from nonequilibrium initial state across the BEC criti-
cal temperature �23�, or from vortex-free to vortex lattice
state under rotation �16�. In this paper, we present a numeri-
cal simulation of the three-dimensional GP equation. First,
we present the more experimentally realizable steady QT in a
trapped BEC by combining rotations around two axes. Sec-
ond, we show that the spectrum of the incompressible kinetic
energy Ekin

i �k� per unit mass obeys the Kolmogorov law
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Ekin
i �k� = C�2/3k−5/3. �1�

Here, the energy spectrum is defined as Ekin
i =�dkEkin

i �k�,
where k is the wave number from the Fourier transformation
of the incompressible velocity field and � is the energy trans-
portation rate from small to large k of the incompressible
kinetic energy per unit mass. The Kolmogorov constant C is
a dimensionless parameter of the order of unity in CT. We
further obtain the length distribution of vortices with a scal-
ing structure that reflects the self-similarity in the Richardson
cascade.

In considering a trapped BEC system, we start from the
GP equation

�i − ��x���
�

�t
��x,t� = �−

�2

2m
�2 − 	 + g���x,t��2 + U�x�

− ��x� · L�x,t����x,t� . �2�

Here ��x , t�= f�x , t�ei
�x,t� is the macroscopic wave function
of the BEC, m is the particle mass, 	 is the chemical poten-
tial, L�x�=−i�x�� is the angular momentum, and g
=4��2a /m is the coupling constant with s-wave scattering
length a. The trapping potential U�x� is given by a weakly
elliptical harmonic potential

U�x� =
m
2

2
��1 − �1��1 − �2�x2 + �1 + �1��1 − �2�y2

+ �1 + �2�z2� , �3�

where 
 is the frequency of the harmonic trap and the pa-
rameters �1 and �2 exhibit elliptical deformation in the xy
and zx planes. To develop the BEC to a turbulent state rather
than a vortex lattice state, we combine two rotations along
the z and x axes, as shown in Fig. 1. The rotation vector ��t�
is given by ��t�= ��x ,�z sin �xt ,�z cos �xt�, where �z and
�x are the frequencies of the first and second rotation, re-
spectively. There are two main advantages of using the com-
bined rotation to study turbulence. First, we can do direct
numerical simulations and directly compare them with ex-

periments without any ambiguity. Second, it is possible to
freely control the state from nonturbulent vortex lattice to
fully developed turbulence by changing the ratio �x /�z. In
the classical fluid system, Goto et al. have already adopted
this combined rotation to study turbulence by using water in
spinning sphere on a rotating turntable �24� and reported the
transition from rigid body rotation to nonperiodic turbulent
motion of water.

The condensate density ��x , t� and the superfluid velocity
v�x , t� are given by ��x , t�= f2�x , t� and v�x , t�
= �� /m��
�x , t�. The vorticity rot v�x , t� vanishes every-
where in a single-connected region of the fluid; any rota-
tional flow is carried only by quantized vortices in the core,
of which ��x , t� vanishes so that the circulation is quantized
by �=2�� /m. The vortex core size is given by the healing
length �=� /	2mg�. In trapped BECs, the healing length de-
pends on the position, because the system is not uniform. In
this work, we define the characteristic healing length �
=� /	2mg�0 with the condensate density �0=��x=0� at the
trap center.

We take a system at very low temperatures. The phenom-
enological damping term ��x� simulates the effect of thermal
excitations and is effective only at scales smaller than the
core size of quantized vortices, as shown in our previous
work on the numerical simulation of a coupled system using
the GP equation and the Bogoliubov–de Gennes equation
�see Fig. 2�b� in Ref. �25��. In this work, we adopt the Fou-
rier transformed damping term ��k�=��k� at the temperature
T=0.01Tc given in our previous work, where Tc is the BEC
critical temperature of ideal Bose gas. Introduction of ��x�
conserves neither the energy nor the number of particles. To
avoid the inconservation of the number of particles, we con-
sider the time dependence of the chemical potential so that
the total number N=�dx���x , t��2 can be conserved.

To solve the GP equation �2� numerically with high accu-
racy, we use the pseudospectral method, applying the Cheby-
shev tau method in space with a Dirichlet boundary condi-
tion in a box �26� containing 5123 grid points. For the
numerical parameters, we use the following, taken from ex-
periments on 87Rb atoms �18,19�: m=1.46�10−25 kg, a
=5.61 nm, N=2.50�105, 
=150�2� Hz. The total volume
of the numerical box is set to V=14.03 	m3.

We start from a stationary solution without rotation and
elliptical deformation. At t=0, we turn on the rotation �x
=�z=0.6 and elliptical deformation �1=�2=0.025, and nu-
merically calculate the time development of the GP equation
�2� using the fourth ordered Runge-Kutta method �26� with a
time resolution of �t=1�10−4
.

We calculate the total compressible and incompressible
kinetic energy per unit mass Ekin

c �t� and Ekin
i �t� defined by

Ekin
c,i �t� =

1

2N

 dx��p�x,t��c,i�2. �4�

Here, p�x , t�= �� /m�f�x , t��
�x , t�, �¯�c denotes the com-
pressible part �� �¯�c=0 and �¯�i denotes the incompress-
ible part � · �¯�i=0. We also investigate the anisotropy of
the system by defining a parameter ��t� as

FIG. 1. �Color online�. Schematic sketch of the rotation. The
first rotation is applied along the z axis and the second rotation is
applied along the x axis.
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A�t� =
 dx����x,t��2, �5a�

F�t� = 

i=1

3 �
 dx� �

�xi
��x,t��2

−
A�t�

3
�2

, �5b�

��t� =
F�t�
A�t�

, �5c�

for x1,2,3= �x ,y ,z�. Figures 2�a� and 2�b� show the time de-
velopment of Ekin

c,i �t� and ��t�, respectively. After t
�150,
��t� becomes small showing that the BEC recovers isotropy,
and Ekin

i �t� becomes almost steady, which means that isotro-
pic steady turbulence is realized at t
�150. The steady tur-
bulence is sustained by the balance between the large-scale
energy injection due to the rotation and the small-scale dis-
sipation. The time of t
=150 corresponds to t=0.1 s which
is sufficiently shorter than the actual lifetime of trapped
BECs in experiment. Ekin

i �t� is always much larger than
Ekin

c �t� and dynamics of the BEC is dominated by vortices
rather than compressible excitations in the BEC.

To confirm that the system is genuine turbulence, we cal-
culate the spectrum Ekin

i �k , t� and the flux ��k , t� from small
to large k of the incompressible kinetic energy Ekin

i �t�. ��k , t�
can be obtained by considering the scale-by-scale energy
budget equation for the GP equation and given as �see Eq.
�35� in Ref. �15��

��k,t� =
1

N

 dxLk��p�x,t� · �v�x,t��i�Lk��p�x,t��i� . �6�

Here, Lk is the operator for the low-pass filter:

Lk�s�x�� =
1

V



�k��k

 dx�eik·�x−x��s�x� , �7�

for an arbitrary function s�x�. Figure 3�a� shows Ekin
i �k , t�

and ��k , t� for the turbulent state. Ekin
i �k , t� in this QT satis-

fies the Kolmogorov law of Eq. �1� in the inertial range
2� /RTF�k�2� /�, where RTF=	2	�t=0� /m
2 is the
Thomas-Fermi radius and represents the largest scale in the
BEC �27�. Furthermore, the energy flux is a nearly constant
value ��k , t��1.4 �
2 /m in the inertial range, supporting
that the incompressible kinetic energy steadily flows in wave

number space through the Richardson cascade at the constant
energy transportation rate �=��k , t� in Eq. �1�. Using this �,
we obtain the Kolmogorov constant C=0.25±0.2 which is
smaller than that in CT and consistent with our previous
work for QT in the uniform system �14,15�.

To investigate the relation between the Kolmogorov law
and the Richardson cascade, we calculate the vortex length
distribution n�l��l inside the condensate �Fig. 3�b��, where
n�l��l represents the number of vortices with length from l
to l+�l. At the turbulent state, n�l��l obeys the scaling prop-
erty n�l��l� l−� for 2��� l�2�RTF. This reflects the self-
similar Richardson cascade in which large vortices entering
the condensate from the surface �21,22� are divided into
smaller vortices, which is first confirmed in turbulence with
the framework of the Gross-Pitaevskii equation. The scaling
exponent � is close to unity, which is consistent with those
given by Araki et al. ���1.34� �12� and Mitani et al. ��
�1� �28�.

To visualize the turbulence, we plot the isosurface of the
condensate density ��x , t� and the spatial distribution of the
vortices inside the condensate in Figs. 4�a�–4�f�. At t
=10,
the surface of the BEC becomes unstable �Figs. 4�a� and

FIG. 4. �Color online�. Isosurface plots of 5% of the maximum
condensate density �a�–�c� and configuration of quantized vortices
inside the Thomas-Fermi radius RTF �d�–�f�. �a�, �d� t
=10; �b�, �e�
t
=50; �c�, �f� t
=300. The method for identifying vortices in
�d�–�f� is the same as that in Fig. 7 in Ref. �15�.
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FIG. 3. �Color online�. �a� Wave number dependence of
Ekin
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�300�.
In both figures, atrap=	� /m
 is the characteristic scale of the trap.
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4�d��, and vortices appear in the BEC at t
=50 �Figs. 4�b�
and 4�e��. Figures 4�c� and 4�f� shows QT with no crystalli-
zation but with highly tangled quantized vortices at t

=300.

In conclusion, using a numerical simulation of the GP
equation, we have induced QT in a trapped BEC by combin-
ing rotations around two axes. The quantized vortices in the
trapped BEC are not crystallized but tangled. In the inertial
range, the spectrum of the incompressible kinetic energy
obeys the Kolmogorov law and the energy flux becomes con-
stant value. We further obtained a vortex length distribution
with a scaling property, supporting the self-similar Richard-
son cascade of quantized vortices. The incompressible ki-
netic energy and its spectrum can be experimentally ob-
served by measuring the density and phase of the BEC,
according to Eq. �4�. We anticipate the experimental realiza-

tion of QT in a trapped BEC and further advancement of the
understanding of turbulence.

The obtained energy spectrum in Fig. 3�a� is not so de-
structive straight line and its consistency with the Kolmog-
orov law is incomplete. This inconsistency comes from the
anisotropy of turbulence around the y-axis around which
there is no rotation, and is resolved by other simulations of
quantum turbulence of trapped BECs under the combined
rotations around three axes. We will report on this study in
the near future.
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