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A different way to realize nonadiabatic geometric quantum computation is proposed by varying parameters
in the Hamiltonian for nuclear-magnetic resonance, where the dynamical and geometric phases are imple-
mented separately without the usual operational process. Therefore the phase accumulated in the geometric
gate is a pure geometric phase for any input state. In comparison with the conventional geometric gates by
rotating operations, our approach simplifies experimental implementations making them robust to certain
experimental errors. In contrast to the unconventional geometric gates, our approach distinguishes the total and
geometric phases and offers a wide choice of the relations between the dynamical and geometric phases.
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I. INTRODUCTION

The wave function of a quantum system retains a memory
of its motion in the form of a geometric phase factor �1–3�
when it undergoes a closed evolution in the parameter space.
Geometric phase has been observed in spin 1/2 systems
through nuclear-magnetic-resonance �NMR� experiments �4�
and with polarized photons using interferometers �PPI� �5�.
Recently, geometric phase has been attracting increasing in-
terest because of its importance for understanding and imple-
menting quantum computation in real physical systems
�6–9�. Geometric �holonomic� quantum computation is a
scheme that is potentially intrinsically fault tolerant and
therefore resilient to certain types of computational errors.

Up to now, there have been two approaches to obtain the
geometric gate: �i� driving qubits to undergo appropriate
adiabatic or nonadiabatic cyclic evolutions and �ii� displac-
ing a harmonic oscillator along a closed path conditional on
the state of the qubits. A gate obtained via the first approach
is called a conventional geometric gate, where the dynamical
phase is typically canceled by single-loop or multiloop rotat-
ing operations �6–12�. The latter is referred to as an uncon-
ventional geometric gate and it depends only on global geo-
metric features in the rotating frame at the cavity frequency
�13–17�. In comparison with the conventional geometric
gates, the unconventional geometric gates do not require ad-
ditional operations to cancel the dynamical phase. However,
this approach does not distinguish between the total and the
geometric phases.

It is difficult to experimentally realize quantum computa-
tion with adiabatic evolution �6� because the long operation
time is required, especially for solid-state systems whose de-
coherence time is very short �10–12�. This is especially true
given that the evolution has to be repeated several times to
cancel the dynamical phase. It may be better therefore to
construct geometric quantum gates by using the nonadiabatic
geometric phase �18,19� since this allows for shortening gate
times. In the established methods of geometric quantum
computation, it is necessary to remove the dynamical com-
ponent, such as by using dark states �8� and by rotating op-
erations in so-called single-loop and multiloop schemes. The
experimental errors are, obviously, increased because of the
operational process. More worryingly, the dynamic phase ac-

cumulated in the gate operation is possibly nonzero and can-
not be eliminated. It is interesting therefore to propose a
different scheme to perform the geometric quantum compu-
tation, where the dynamical phase may either equal zero or
has an expression with the corresponding geometric phase by
controlling the Hamiltonian parameters.

II. SINGLE-QUBIT SYSTEM

Consider the Hamiltonian for a single-qubit system in
nuclear magnetic resonance �NMR�,

H�t� = −
1

2
�0��x sin � cos �t + �y sin � sin �t�

−
1

2
�1�z cos � , �1�

where �i=g�Bi /� with g��� are the gyromagnetic, Bi �i
=1,2� and � act as an external controllable parameters and
can be experimentally changed, and �i �i=x ,y ,z� are the
Pauli operators. For the initial time t=0 the magnetic field
lies in the x-z plane. As the evolving time t increases
the magnetic field rotates in the x-y plane. In the
rotating frame, the effective Hamiltonian is
H�=−�� /2�exp�−i���y /2��z exp�i���y /2�, where �
= ��0

2sin2 �+ ��1 cos �+��2�1/2 and ��=tan−1��0 sin � /
��1 cos �+���. Because the effective Hamiltonian H� is in-
dependent of the evolving time, the wave function
���t� in the rotating frame is exactly given by ���t�
=exp�−itH�����0�. Thus the wave function in NMR may be
expressed as

��t� = u�t���0� = exp�− i�t�z/2�exp�− itH����0� , �2�

where u�t�=exp�−i�t�z /2�exp�−itH�� and ��0� is given by
eigenfunctions of the Hamiltonian H�, such as H��k

=− 1
2�k�k, where k= ±1. Thus the eigenfunctions may be

written as �+=exp�− i
2���y��0� and �−=exp�− i

2���y��1�,
where �0� and �1� constitute the computational basis for the
qubit. For a cyclic motion, the total and dynamical phases
are
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	k = 
k − 
��/��k, �k
d = − 
k��/� − cos ��� . �3�

Thus the geometric phase is given by

�k
g = 	k − �k

d = 
k�1 − cos ��� . �4�

From Eqs. �3� and �4�, we find that, when the relation
�1+r���1 cos �+��= �� /�+r�� is satisfied, the total, dy-
namical and geometric phases satisfy

�k
d = r�k

g = rk�, 	k = �1 + r��k
g = �1 + r�k� , �5�

where �=
�1−cos ��� and the proportionality constant r
may be either determined by

r = ���1 cos � + �� − �2/��/�� − ��1 cos � + ��� , �6�

besides a trivial geometric phase, or used also as an arbitrary
constant by adjusting the initial physical quantities, such as
�0, �1, �, and �, according to requirements in experiment or
in theory. We find

�0
2 sin2 � = �1 + r����1 cos � + �� − ��1 cos � + ��2

+
1

2
r2�2 ± r�3/2	�1 + r���1 cos � + �� +

1

4
r2� ,

�7�

which implies that there exist, indeed, some physically
meaningful solutions. In other words, by adjusting the pa-
rameters �1 and � for a given r and frequency �, we can find
a positive value of magnetic field parameter �0 in the x-y
plane. For example, for r=0, if sin ��0 and cos �0 are
chosen, �0=	���1 cos �+��− ��1 cos �+��2 / sin � will be

determined. If sin �0 and cos �0 are chosen,
�0=−	���1 cos �+��− ��1 cos �+��2 / sin � will be deter-
mined. For r=1, similarly, by choosing −�9/8���1 cos �
	3/2�, we can get a group of positive �0. These choices
may easily be experimentally realized.

From Eq. �5�, we find when r=0, �k
d=0 and 	k=�k

g. In this
case, the system is in a dark state and its dynamical phase
disappears. The result is similar to the conventional geomet-
ric quantum computation, where the dynamical phase is can-
celed by rotating operations in single-loop or multiloop ap-
proaches. For r�0, the dynamical and total phases are
proportional to the conditional geometric phase. When r=1,
especially, �k

d=�k
g and 	k=2�k

g. This result is similar to the
unconventional geometric quantum computation, where one
uses global geometric features in the rotating frame at the
cavity frequency and does not distinguish between the total
and geometric phases. In the two cases, however, our ap-
proach is to control the parameters in the Hamiltonian �see
Eq. �7�� and does not need any operations, which may be a
distinct advantage for experimentally implementing geomet-
ric quantum computation.

We see that our approach offers a wide choice of the
relations between the dynamical and geometric phases. Thus
a pair of orthogonal states �± can evolve cyclically accord-
ing to u�T��±=exp��i�1+r����±. An arbitrary initial state
can be expressed as �i=a+�++a−�− with a±= ��± ,�i� and
the final state at time T=2
 /� is calculated as � f
=b+e−i�1+r��+�++b−ei�1+r��−�−. Under the computational basis
��0�, �1��, the unitary transformation u�r ,� ,���, between the
input and output states, can be written as

u�r,�,��� =
e−i�1+r�� cos2 ��

2
+ ei�1+r�� sin2 ��

2

1

2
sin ���e−i�1+r�� − ei�1+r���

1

2
sin ���e−i�1+r�� − ei�1+r��� e−i�1+r�� sin2 ��

2
+ ei�1+r�� cos2 ��

2
� . �8�

III. TWO-QUBIT SYSTEM

For a two-qubit system in NMR, the most natural two-
qubit gate is the one generated directly by the spin-spin cou-
pling Hamiltonian. The Hamiltonian is

H�t� = −
1

2
�0���1x + �2x�sin � cos �t

+ ��1y + �2y�sin � sin �t� −
1

2
�1��1z + �2z�cos �

+
1

4
��� 1 · �� 2, �9�

where � is the strength of the interaction between two qubits.

By redefining J� =�1
� +�2

� , where �Jm ,Jn�=2i�mnlJl �m ,n , l

=x ,y ,z� are satisfied, we can rewrite the Hamiltonian �9�
according to Jx, Jy, Jz, and J�2.

Similarly, an exact solution of the Schrödinger equation
can be expressed as

��t� = exp�− i�tJz/2�exp�− itH����0� , �10�

where the effective Hamiltonian in the rotating frame is

H� = −
1

2
�e−�i/2���Jy�Jz +

1

8
��J�2 − 6�e�i/2���Jy . �11�

The eigenequation can be written as H��Jk

=�− 1
2�k+ 1

2
�J�J+1�− 3

2
���Jk, where J=1 and k=1,0 ,−1 or

J=0 and k=0. The corresponding eigenfunctions for J=1 are
expressed, respectively, as �1+1=exp�− i

2��Jy��00�, �10

=exp�− i
2��Jy�

1
	2

��01�+ �10��, and �1−1=exp�− i
2��Jy��11�.
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For J=0, the eigenfunction is �00=exp�− i
2��Jy�

1
	2

��01�
− �10��, while ��00�, �01�, �10�, and �11�� are the computational
basis for the two-qubit system.

The evolution of the wave function, under the cyclic con-
dition with the period T=2
 /�, is given by

��T� = e−i
ke−i�
/���−k�+��J�J+1�−�3/2����Jk. �12�

Thus the total, dynamical, and geometric phases are

	Jk = 
k +



�
�− k� + ��J�J + 1� − 3/2�� . �13�

�Jk
d =




�
�− �k + ��J�J + 1� − 3/2�� + k
 cos ��, �14�

�Jk
g = 	Jk − �Jk

d = 
k�1 − cos ��� . �15�

Similarly, we find that, when Eqs. �6� or �7� are satisfied for
the two-qubit system, the total phase, dynamical, and geo-
metric phases have the following relations:

�Jk
d =


�

�
�J�J + 1� − 3/2� + r�Jk

g , �16�

	Jk =

�

�
�J�J + 1� − 3/2� + �1 + r��Jk

g . �17�

We see that our approach for the two-qubit system is neither
different from the conventional nor unconventional ap-
proaches, where the total, dynamical, and geometric phases
satisfy the expressions. There does not exist, especially, so-
lution of the dark state because of the spin-spin interaction.

For the J=1 subsystem, the input states are �1+1, �1+0,
and �1−1. After a cyclic evolution, the output state
is �1�f�=exp�−i 
�

�
�J�J+1�− 3

2
���b1+1 exp�−i�1+r����1+1

+b10�10+b1−1 exp�i�1+r����1−1�, where bJk, decided by the
initial states, are constants independent of the evolving time.
For the J=0 subsystem, similarly, the input state is �00 and
the output is �0�f�=b00 exp�i3
� /2���00. Thus the phase
factors exp�−i�
� /���J�J+1�−3/2�� and exp�i3
� /2�� can
be regarded as overall phase factors for the spin J=1 sub-
system and the spin J=0 subsystem, respectively, which are
not important and may be dropped in the quantum computa-
tion under the condition that the control qubit is far away
from the resonance condition for the operation of the target
qubit so that the strength � of the interaction between two
qubits is very small.

In terms of the computational basis ��00� , �01� , �10� , �11��,
where the first �second� bit represents the state of the control
�target� qubit, the unitary transformation U�r ,� ,��� up to a
relative phase factor, between the input and output states, can
be written as

U =
1

2

a1 + a2 cos �� + sin2 �� a2 sin �� −

1

2
sin 2�� a2 sin �� −

1

2
sin 2�� a1 − a2 cos �� − sin2 ��

�1�1 + cos ��� −
1

2
sin 2�� �2 + cos2 �� + 1 �2 + cos2 �� − 1 �1�1 − cos ��� +

1

2
sin 2��

�1�1 + cos ��� −
1

2
sin 2�� �2 + cos2 �� − 1 �2 + cos2 �� + 1 �1�1 − cos ��� +

1

2
sin 2��

a3 + a4 cos �� − sin2 �� a4 sin �� +
1

2
sin 2�� a4 sin �� +

1

2
sin 2�� a3 − a4 cos �� + sin2 ��

� , �18�

where

a1,2 = exp�− i�1 + r���cos2���/2� ± exp�i�1 + r���sin2���/2� ,

a3,4 = exp�− i�1 + r���sin2���/2� ± exp�i�1 + r���cos2���/2� ,

�1 = − i sin�1 + r�� sin ��,

and

�2 = − i sin�1 + r��sin2��.

Thus we achieve the entangling universal quantum gates
based entirely on purely geometric operations. As an ex-
ample, we choose the parameters as �cos �=−� /�1, sin �
=	1−�2 /�1

2, cos ��=0, sin ��=1, r=1, �=
,
�k

d=−
k� /��, Eq. �18� may be written as

U =
1

2

2 0 0 0

0 1 − 1 0

0 − 1 1 0

0 0 0 2
� , �19�

which is a nontrivial conditional geometric phase gate.
In the following, we briefly discuss a modified spin-spin

coupling Hamiltonian, where the interaction term of Eq. �9�
is replaced by 1

4��1z�2z, which is often applied to supercon-
ducting flux qubits interacting via mutual inductance or
change qubits interacting via a capacitor. Similarly, the total
and dynamical phases for the system are given by

	Jk = 
k +



�
�− k� + ��k2 − 1/2�� , �20�
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�Jk
d =




�
�− �k + ��k2 − 1/2�� + k
 cos ��, �21�

and the geometric phase is the same as Eq. �15�. It is noted
that the total and dynamical phases are not relative to J. This
implies that two eigenstates �10 and �00 are degenerate.
Moreover, they include both k- and k2-terms. Therefore the
dynamical phase is difficult to be canceled by a single-loop
rotating operation proposed by Zhang et al. �12�. If Eqs. �6�
and �7� are satisfied, the dynamical and total phases are writ-
ten as

�Jk
d =

�


�
�k2 −

1

2
 + rk� , �22�

	Jk =
�


�
�k2 −

1

2
 + �1 + r�k� . �23�

We know that there exist two independent subspaces with
discrete and degenerate eigenstates, respectively. Thus the
initial states can be constructed in terms of the subspaces,
such as �1�i�=a1+1�1+1+a1−1�1−1 and �2�i�=a10�10

+a00�00 with (�1�i� ,�2�i�)=0. After a cyclic evolution, the
output states are �1�f�=exp�−i �


2�
��b1+1 exp�−i�1+r����1+1

+b1−1 exp�i�1+r����−1� and �2�f�=exp�i �

2�

��b10�10

+b00�00� with (�1�f� ,�2�f�)=0. Thus exp�−i �

2�

� and
exp�i �


2�
� are overall phase factors for �1�f� and �2�f�, re-

spectively. Thus the universal quantum gates, based entirely
on geometric operations, can be described by Eq. �18�.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have proposed a way to realize the
nonadiabatic geometric computation. By varying some
Hamiltonian parameters and letting them satisfy Eq. �7�, we
find that the total and dynamical phases have the expressions
�5� for the single-qubit system and Eqs. �16� and �17� for the
two-qubit system with the geometric phase. Thus the phase
accumulated in the geometric gates is a pure geometric
phase. In comparison with the conventional geometric gates
our approach does not need any such process, which leads to

a possible reduction in experimental errors as well as gate
timing.

In the unconventional approach, the geometric gates are
executed by using global geometric features in the rotating
frame at the cavity frequency �13,14�. Therefore there exists
a direct proportionality, which is independent on all param-
eters of the system, between the total, geometric, and dy-
namical phases, respectively. If the proportionality between
the geometric and dynamical phases is 0, the dynamical
phase is 0. Moreover, the total phase vanishes because the
total phase is also proportional to the dynamical phase in the
unconventional approach. Furthermore, the geometric phase
disappears. A similar information is for the proportionality
with −1. In this case, the total phase is 0 so that the geomet-
ric phase vanishes because the geometric phase is propor-
tional to the total phase. In the laboratory frame, especially,
the total phase is not geometric �see Eq. �2.67� of Ref. �20��.

In contrast to the unconventional geometric gates, we cal-
culate the total, dynamical, and geometric phases in the labo-
ratory frame for the cyclic case and offer a wide choice of
the relations between the dynamical phase and geometric
phase. The proportionality constant includes all possible val-
ues in the physical region. Therefore our approach is more
general compared to the approach based on the unconven-
tional geometric gates. It is known that the errors are mainly
from the proportionality r and the geometric phase because
of fluctuations of the parameters in the Hamiltonian. In our
conditional geometric gates, the proportionality r is constant,
which is similar to the unconventional geometric gates
�13,14�. Therefore our scheme is tolerant against an error just
like the unconventional approach. In the rotating frame for
the NMR system with single or two qubits, the dynamical
phase is equal to the total phase and the geometric phase
disappears. This means that the unconventional scheme does
not adapt the NMR system because the proportionality is
zero �14�. The same cannot be performed with the geometric
gates for the noncyclic case in the NMR system.
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